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Abstract-There is no lack of composite beam theories. Quite to the contrary, there might be 
too many of them. Different approaches, notation, etc., are used by the authors of these theories, 
so it is not always straightforward to compare the assumptions made and to assess the quantitative 
consequences of those assumptions. Moreover, there is a serious lack of experimental results and 
benchmark problems. As a result, one finds that most theories perform about equally well on the few 
extant benchmark problems. This can obscure differences among theories and simultaneously create 
the false expectation that a specific theory will perform ss well in all cssee. The goal of this paper 
is to attempt to objectively sssess theories within a common framework. The validity and relative 
importance of various assumptions that are present in the literature are discussed. It is hoped that 
this will be a first step toward the clearly desirable situation in which an engineer can safely and 
easily choose a composite beam theory based on the type of application and specific needs for fidelity. 
@ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Composite beam theories find extensive application in modeling rotor blades. Most commonly, 

rotor blades are modeled as thin-walled box-beams. However, the popularity of more sophisti- 

cated cross-sectional modeling is increasing, ranging from analytical theories for one- or two-celled 

thin-walled beams to finite element cross-sectional analyses which will model any cross section. 

Here we focus on blade modeling, since the geometry of flexbeams is somewhat simpler than that 

of blades; and such sophistication is usually not required for modeling flexbeams. 

Once the geometric idealization is made, a separate logical step in beam modeling consists 

of selecting the type of beam theory to be employed. Any beam theory is associated with 

introduction of variables which depend only on the coordinate along the beam axis. For general 

deformation at least four such 1-D variables have to be introduced: extensional (ui), torsional (e’), 

*Presented at the American Helicopter Society 55 th Annual Forum, Montreal, Quebec, Canada, May 25-27, 1999. 

03957177/01/S - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. Typeset by 4&W 
PII: SO3957177(00)00302-2 



1100 V. V. VOLOvOl et al. 

and two flexural variables (ui and u$) corresponding to bending deformation along two Orthogonal 

directions. The corresponding 1-D governing equations are uncoupled for isotropic beams with 
doubly symmetric cross sections and are given by the Euler-Bernoulli Theory for extension and 
bending and the St. Venant Theory for torsion. To extend this theory to composite beams, one 
must allow the governing equations to become coupled due to the appearance of off-diagonal 
terms in the cross-sectional stiffness matrix. This 4x4 stiffness matrix S characterizes elastic 
properties of the beam. Then, the strain energy per unit length is expressed in terms of the four 
1-D strain measures as 

2~classical = QTSQ7 (1) 

where aT = {z&,u~,u~,#}. Various methods have been proposed in the literature to improve 
the fidelity of such a theory, which below is referred to as “classical”. Two important examples 

of such refinements are the theories due to Timoshenko [l] and Vlasov [2]. The latter is known 
to be more important for open cross sections 131. In both cases, additional 1-D variables must 
be considered which are rotations of the cross sections and twist rate, respectively; the size 
of the cross-sectional stiffness matrix becomes 6 x 6 and 5 x 5, respectively, or 7 x 7 if both 
effects are included [4]. Apparent successes of these refinements have led to their extensive use 
for beams, even in cases where improvements over the classical theory are questionable at best. 
Moreover, these apparent successes have led some investigators to unnecessarily introduce still 
more 1-D variables. That was especially true for box-beams, where formulations having stiffness 
matrices as large as 9 x 9 can be found [5,6]. While these refinements inevitably result in more 
complicated models with more 1-D variables as well as more complicated boundary conditions, 
the benefits of those refinements are yet to be generally accepted. In other words, in many cases 
there seems to be no proof that the additional complexity of such theories is warranted. Even 
quite elaborate models such as [7] are based on assumptions that have to be verified for various 
material properties before their results can be totally trusted. 

A seemingly different approach was taken in [8-lo], where so-called “closed form fundamental 
beam solutions” are provided. Those solutions differ from traditional beam theories, because the 
warping used therein depends on the boundary conditions. Still other researchers have argued 
that beam modeling should be abandoned for box-beams altogether and more computationally 
intensive plate analysis needs to be employed [ll]. 

In this paper, using asymptotically correct stiffnesses derived from [3,12], the results of classical 
beam theory are compared with various published refinements. It is the goal of this paper to 
critically examine these and other recent developments. The relative validity and importance of 
various assumptions that are made by different authors is discussed and illustrated. 

2. ANALYSIS OF THEORIES 

The present discussion is restricted to prismatic beams where 3-D constitutive as well as strain- 
displacement relationships can be considered linear. To facilitate the following discussion, let us 
introduce the following system of coordinates: a Cartesian one with the zr = z axis directed 
along the beam, and 22 = y and 2s = z axes defining the beam cross section; and a curvilinear 
one (for the case of thin- and thick-walled sections) with s and [ being the contour and through- 
the-thickness coordinates, respectively. Here [ = 0 corresponds to the shell midsurface. 

While the traditionally classical 1-D variables are often introduced using intuitive consider& 
tions, this choice of variables for statics and low-frequency dynamics can be shown to be “natural” 
by applying rigorous mathematical procedures to 3-D elasticity without any ad hoc assump- 
tions [13,14]. In particular, it follows that if the classical stiffness coefficients are calculated 
correctly, then the elastic behavior of beams is predicted well for slender beams, i.e., a/e < 1, 
where a is a characteristic dimension of the cross section and e is a longitudinal dimension related 
to the wavelength of deformation. On the other hand, as the beam becomes less and less slender, 
so that a/e M 1, beam theory is practically useless. However, a quantitative connection between 
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the slenderness ratio a/C, and the accuracy of classical beam theory strongly depends on material 

properties and the cross-sectional geometry. 
A direct way to assess the importance of nonclassical effects is by studying the dispersion curves 

for a given cross section [14]. This study provides quantitative estimates for the decay rate of any 
neglected modes of deformation for any specified beam. ‘Slow” decay indicates deep penetration 
of these deformations into the interior of the beam, while “fast” decay indicates localization of 
those effects at the ends of the beams. (Here “slow” and “fast” are relative to the slenderness 
ratio of the beam.) Consequently, in the case of slow decay rates, such as one finds with an 
I-beam, nonclassical deformations are important for the global elastic behavior of the beam. The 
inadequacy of classical theory is clearly exhibited; in particular, the well-known importance of the 
Vlasov effect can be established using this type of analysis. In the latter case, however (e.g., box- 
beams), such analysis shows clearly that nonclassical deformations can be justifiably neglected. 
Thus, we expect box-beams, whether thin-walled or thick-walled, to be adequately modeled using 
classical theory. Indeed, based on this type of analysis [14], we argue that something is amiss 
when refinements of classical beam theory are claimed necessary in order to accurately predict 
box-beam behavior. 

The popularity of refined theories is fed by continual claims in the literature that classical 
theory is inadequate, even for thin-walled box-beams. Unfortunately, these claims are often 
based on results obtained from an incorrect 4 x 4 classical stiffness matrix. This has the effect of 
giving the illusion that refined theories make a big difference in the right direction and facilitate 
a favorable comparison for benchmark problems. Obtaining the correct 4 x 4 cross-sectional 
stiffness matrix is then vital to establish the validity of such claims. 

A correct analytical procedure for doing this appears to have first been outlined for thin- 
walled beams in [15]. However, a closed-form solution was provided as an example only for special 
“pseudoisotropic” materials. The introduction of the variational-asymptotic method in context of 
anisotropic beams in [13] allowed the treatment of this problem from a different perspective: beam 
theory can be obtained from 3-D elasticity without making any ad hoc assumptions using the 
small parameter a/l < 1. For a cross section with arbitrary geometry and material distribution, 
the problem is reduced to a system of 2-D equations over the cross-sectional plane. Development 
of a numerical solution of this problem is presented in [12], providing a means to calculate the 
matrix of cross-sectional stiffness constants for any kind of cross section whatsoever, including 
thin- and thick-walled box beams. Results consistent with VABS can also be obtained using 
NABSA [16]. E ven though both approaches use a 2-D finite element method for cross-sectional 
analysis, the amount of calculation is very modest and is easily compensated for by the gained 
simplicity of the resulting beam theory. By taking advantage of the existence of an additional 
small parameter [3] provides asymptotically correct closed-form expressions for the stiffnesses of 
thin-walled beams. 

In what follows, we will use results from [3,12] to depict the behavior of consistent classical 
formulations (i.e., with 4 x 4 cross-sectional stiffness matrices) and compare these with results 
from “refined” or “higher-order” approaches (having larger cross-sectional stiffness matrices). 
The intent is to show that classical theory is sufficiently accurate for all the csses we present, so 
that refinements are unnecessary. 

First, let us turn to the assumption of vanishing stresses in the plane of the cross section, 
the so-called Bernoulli hypothesis or uniaxial stress hypothesis. Since this is a very popular 
assumption [7-lo], commonly invoked explicitly for solid sections and implicitly for thin-walled 
ones, let us consider it in more detail. 

2.1. Uniaxial Stress 

Unlike the case of thin plates and shells, where the analogous assumption that oZZ = 0 makes 
perfect sense, it is easy to verify that a uniaxial stress field cyY = u,, = uyZ = 0 for a beam 
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is incompatible unless the material is isotropic. While the asymptotically correct displacement 
field leads to a coupled problem for warping in and out of the cross-sectional plane, only.the out- 
of-plane warping need be considered when the stress field is uniaxial. This resulting simplicity, 
with in-plane warping effectively eliminated from the problem, versus the complexity of the more 
rigorous approach, might explain why the assumption is so popular, despite the incompatibility. 
While it is possible that cross-sectional constants based on this assumption differ only slightly 
from their asymptotically correct counterparts for many cases, a comprehensive investigation 
of this assumption is long overdue. Until then, a false sense of security might be somewhat 
dangerous. It is reasonable to expect that for certain configurations the discrepancy might become 
significant. The situation is thus analogous to the neglect of hoop and shell bending stress 
measures for thin-walled, closed sections [3]. One such configuration is considered below in the 
“thin-walled beams” section. 

It is interesting to note that in the theory developed by Kim and White [7], in which this 
assumption is invoked, the resulting 6 x 6 cross-sectional stiffness matrix (the extra 2 rows and 
columns are for transverse shear since the theory is Timoshenko-like) is not symmetric. Let us 
recall that an alternative way for accounting for transverse shear effects due to Levinson is used 
in the paper. The original elegant derivation in [17] was conducted for isotropic rectangular 
sections, and even the author himself mentions that extension of the method to other geometries 
is far from straightforward. Thus, without some justification for the way in which this theory 
was extended to composite box-beams in [7], one has reasons to question its rigor. The “uniaxial 
stress” assumption combined with adjusted material constants effectively transfers the effect of 
in-plane warping into the out-of-plane warping. Even if the calculation of the beam stiffness 
is carried out correctly from that point, the out-of-plane warping is not necessarily close to the 
result from 3-D elasticity. Bather, it is an “equivalent” warping when 3-D effects are condensed to 
1-D form. The inconsistency of the displacement field modeled in this way versus that from 3-D 
elasticity is most likely the reason for the beam stiffness matrix turning out to be nonsymmetric 

in [7]. 

2.2. Solid-Cross-Section Beams 

Solid rectangular sections are not widely used in the rotorcraft industry, with one notable 
exception being flex-beams (and even there open sections are more prevalent). Still, some research 
in this area might be useful to the rotorcraft community, because it could be a basis for the 
development of a beam analysis for different cross sections, such as thick-walled box-beams [7] 
(see the discussion below). F’rom this point of view, it is interesting to look at assumptions made 
in [8-lo]. Similar to its treatment in Euler-Bernoulli Theory, the displacement field is assumed 
to consist of a combination of four “rigid” motions of the cross sections, which correspond to 
beam (1-D) variables related to extension, torsion and bending in two directions, as well as an 
unknown out-of-plane (3-D) warping \zI. The uniaxial stress hypothesis (see the discussed above) 
is used. Thus, the constitutive equations are reduced to 

and a problem for the warping Q (as a function of beam variables) can be posed. If the so- 
lution for warping is superimposed over the “rigid” cross-sectional displacement field, with the 
resulting strain energy density consequently integrated over the cross section, one obtains an 
Euler-Bernoulli-like theory with a 4 x 4 stiffness matrix. Then $ corresponds to at St. Venant 
torsional warping function, which is, of course, the same as for the uncoupled case (i.e., when 
cls = 0). Bather than considering the four 1-D strain measures as independent, which would 
allow one to later satisfy arbitrary beam boundary conditions, constraints are posed on those 
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1-D strain measures in [8]. This allows for the warping to satisfy appropriate equations for given 
boundary conditions. Both the constraints on the 1-D strain measures and resulting warping 
become dependent on the boundary conditions. For example, in the case of a cantilever beam 
with a torque applied at the tip, 

Cl6 
4,x = 44 - 2C16 -‘W,xxr 

where J,= is a twist rate for an uncoupled lay-up (Cis = 0). From the viewpoint of beam 
equations, this implies that 

s23 
Cl6 

= s22-. 
2C1e 

Here S22 is the torsional stiffness and $3 is the coupling term between bending and torsion. It 
should be noted that the words “exact analytical solution” used in [&lo] are somewhat misleading 
since the solutions presented there are clearly not exact solutions of 3-D elasticity. 

For comparison, the configuration in Table 1 is used. As one can see in Figure 1 for the 
homogeneous solid rectangular cross section, the correlation with VABS is excellent (the plot is 
for a square section, but other aspect ratios were checked 8s well). Thus, we can conclude that 
for this particular type of cross section, the approach in [8] leads to a solution that is practically 
equivalent to the asymptotically correct one. In particular, it implies that the uniaxial stress 
assumption performs satisfactorily for homogeneous, solid cross sections. However, extension of 
this methodology to nonhomogeneous beams is not straightforward, and there is clearly no reason 
to expect that the uniaxial stress hypothesis will lead to accurate results in the general case, as 
demonstrated below for box-beams. 

Table 1. Properties of homogeneous, solid-crowsection beams used in study. 

Outer Dimensions 

Height b = 0.1 m I 
Width a = 0.1 m 

I LaYuP I [@lN I 

Figure 1. Torsional-bending coupling stiffness for a homogeneous square solid cross 
section. 
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Bcxdichcvsky etuL [20] l l . 

Figure 2. Torsional rigidity of box-beam. 
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Figure 3. Twist of a CAS thin-walled beam 0 = 15’ due to a tip shear force (1 lb.). 

2.3. Open Sections 

Experimental data for open sections practically boils down to I-beams studied in [18]. Such 

scarcity of experimental data, similarly to the closed-section case, leads to a peculiar situation 
when, depending on one’s point of view, either most of the existing theories correlate reasonably 
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Figure 4. Vertical deflection for a thick-walled CAS box-beam due to a l.l3KN-m 
tip twisting moment. 

well with these data, or none correlates well enough. As a typical example let us consider a 

lamination angle of 15”, results for which are shown in Figures 2 and 3, where distribution of a 

bending slope and a twist are depicted, respectively. In both cases, a unit shear load is applied 

at the free tip. As one can see, a simple asymptotically correct theory with 5 x 5 stilfness matrix 

performs at least as well as other, more complicated theories. On the other hand, an experimental 

data for a twist distribution due to a tip torque (see Figure 4) is not predicted well by any theory, 

if one takes for granted the statement made in [la] that the “warping was restrained” at the free 

end, i.e., kinematic condition 8’ = 0 is used. In order to avoid widespread confusion, it has to be 

remembered that sometimes the term “restrained warping” is used just to distinguish the Vlasov 

Theorfi which takes into consideration changes in the rate of twist, i.e., 8” from a St. Venant 

Theory, where only 8’ is included in the analysis. The latter theory is then referred to as “free 

warping theory”. It can be seen from Figure 4 that experimental data fall somewhere between 

the curves produced using such a “restrained end” (kinematic) boundary conditions and a “free 

end” (natural) one with zero bimoment at the free end. 

2.4. Thin-Walled Beams with Closed Sections 

We now turn to thin-walled beams, which are reasonable approximations used to represent 

rotor blades in preliminary design. Thin-walled beams have attracted a lot of research due to the 

feasibility of analytical solutions. The box-beam configurations used in the examples, all of which 

have an effective length of 30in., are described in Table 3. Applying the variational-asymptotic 

procedure to thin-walled cross sections, where another small parameter exists, namely h/a < 1 

(where h is a wall thickness), allows one to start with shell theory rather than 3-D elasticity. 

This procedure was used first in [20] to obtain analytical solutions for closed sections using only 
membrane strain measures, and was expanded further to account for multicell configurations with 
active materials [21]. Recently, asymptotically correct formulae for a general anisotropic thin- 

walled beams were provided in [3]. Let us recall that there are three membrane shell strain mea- 

sures rT = {~z, “yss , @cm 1 and th ree bending/twisting shell strain measures pT = (pzz, pea, pzs}. 

(The latter are asymptotically equivalent to the three curvatures 7T = {ns2, /cSS, IE~~}.) For a 

generally anisotropic shell these six strain shell measures are connected with stress resultants 
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Table 2. Properties of an I-beam used in study. 

Outer Dimensions Flange Width b = l.Oin. 
Wall Thickness h = 0.04 Web Height a = 0.5 in 

Layup 
Web 

Right Upper Flange 

Left Upper Flange 

Left Lower Flange 

Right Lower Flange 

P/9014 

Material Properties 

Et = 1.42 x 106psi 

Gt, = 6.96 x 10s psi 

El = 20.59 x lo6 psi 

Glt = 8.7 x lo5 psi 

ult = ut,, = 0.42 

Table 3. Properties of thin-walled box beams used in study. 

Outer Dimensions 
Wall Thickness h = 0.03 

Width a = 0.953 in 
Height b = 0.53 in 

Layup 

Flight and Upper Wall CASl 

Left and Lower Wall CASl 

Flight Wall CAS2 

Left Wall CAS2 

Upper Wall CAS2 

Lower Wall CAS2 

All Walls CUSl 
I 

[es/ - e3i 

[-s/e31 

[ei - 013 

we13 

[@IS 

[-a3 

[els 

Material Properties 

Et = 1.42 x 10s psi 

El = 20.59 x lo6 psi 

Grt = 8.7 x lo5 psi 

Gt, = 6.96 x 10s psi yt = vt,, = 0.42 

NT = {N,, , NS8, N,,} and moments M T = {M,,, Ms8, M,,} by a fully populated 6 x 6 stiffness 

matrix. 

It is the relative importance of these six strain measures that allows one to sort out the 

various assumptions made for different types of thin-walled beam cross sections. Indiicrim+ate 

retention of all of these measures in an analysis without regard for their relative importance 

inevitably leads to an overly complex analysis. Moreover, inappropriately neglecting a measure 

can introduce inaccuracies into the analysis. 

As an example of the former, consider [5] where retaining &zt led to the introduction of derive 

tives of beam transverse shear strain measures as independent 1-D variables-leading to a 9 x 9 

cross-sectional stiffness matrix. (A later analysis, [19], modified thii approach so that the matrix 

is reduced to 7 x 7 while still retaining the derivatives of the transverse shear strain measures.) 
However, the asymptotic approach, (31, clearly shows that retention of IE,* is inconsistent with 

shell theory, where terms of order h/a are neglected with respect to unity. In thin-walled beam 

analysis, the torsional stiffness of open cross sections stems from lczs of the underlying shell the- 

ory. On the other hand, torsional stiffness of closed sections arises from 7z8 while the portion 

from )E=~ (sometimes called “secondary warping”) ought to be neglected for exactly, the same 

reasons as stated above for IG==. This in turn implies the difference in relative importance of a 

higher-order Vlasov’s term (which stems from -yzz). It becomes important for open cross sections. 
due to the presence of the inverse of the small parameter h/a; clearly, thii is not the case for 

closed sections. 
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Figure 5. Bending slope of a CUS box-beam due to a tip shear force (1 lb.). 

Most researchers neglected all bending strain measures for closed sections [20,22]. This would 
seem to be logical since IC,, an d fizz are small. Indeed, one can show that for circumferen- 
tially uniform stiffness (CUS) beams, the approach of [20] yields asymptotically correct results. 
However, as shown in [3], for certain layups, such as those with circumferentially asymmetric 
stiffness (CAS) construction, K Bs cannot be neglected without introducing significant errors. To 
illustrate this, consider the thin-walled box-beam CASl, the properties of which are given in 
Table 3. In the thin-walled approximation, the coupling is negligible which results in a diagonal 
4x4 cross-sectional stiffness matrix. Note the upper curve in Figure 5, taken from [20] which 
severely ozler predicts the torsional rigidity. 

It is worthwhile to remark that, for thin-walled beams, the uniaxial stress hypothesis (see the 
discussion above) is analogous to setting N,, = it&, = 0. Thii also has serious consequences 
for thin-walled beams. Results for the torsional rigidity are plotted in Figure 5. These results 
demonstrate the qualitative consequences of this assumption, which are not negligible at all. 
Indeed, the torsional rigidity is severely under predicted when this assumption is invoked for the 
box-beam CASl. 

In [8], a similar methodology as described above for solid cross sections is developed for thin- 
walled beams with CUS construction. Results obtained for extensional-torsional stiffnesses by 
using the method of [8] are asymptotically correct. Extension of this method to other types of 
beams, such as those with CAS construction, is not straightforward. Moreover, cases which are 
nonhomogeneous through the thickness need to be considered with particular caution (see the 
discussion on uniaxial stress assumption). 

2.5. ‘l&umverse Shear 

Another important point that needs to be made concerning results obtained for box-beams is 
associated with the need of having explicit transverse shear measures in the 1-D theory. Several 
cases in the literature where this claim is made resulted from an inconsistent handling of the shear 
effects. VABS includes transverse shear effects in the 3-D model but without explicit transverse 
shear measures in the 1-D model. The good correlation between VABS and the results of [7] indi- 
cates that the explicit transverse shear effects in the 1-D model are not very important in the cases 
studied. As was shown in [12,13,23,24], and for beams made of anisotropic materials transverse 
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shear is not zero within the framework of classical beam theory (i.e., a consistent generalization 
of Euler-Bernoulli Theory to the anisotropic case). Rather, in general, the two transverse shear 
measures can be found as functions of the four 1-D variables of classical theory [24]. It is only for 
structural configurations which have zero bending-shear coupling (such as prismatic beams made 
of homogeneous, isotropic material) that the transverse shear measures vanish. Thus, a proper 
judgment of the importance of Tiioshenko’s correction should be based on the comparison of 
such a consistent implementation of classical theory for an anisotropic beam (e.g., VABS [12]) 
with the results of a theory where transverse shear variables are considered as independent 1-D 
strain measures. Needless to say, comparing results to an inconsistent implementation of Euler- 
Bernoulli Theory (i.e., one in which the transverse shear measures set to zero from the outset) 
may lead one to misleading conclusions on the importance of transverse shear [23,24]. 

As a first example, consider the case of a CUS configuration, exhibiting extension-twist cou- 
pling. The cross-sectional properties are given under CUSl in Table 3, with 0 chosen to be 15” for 
the results presented. Previous studies (for example [25]), attribute the discrepancy in the results 
solely to the presence of the transverse shear measures in the 1-D model. However, according to 
the results in [23,24], accurate predictions can be obtained without the explicit use of transverse 
shear variables as long as the classical stiffnesses are correctly calculated. Thii can be seen in 
Figure 6 where the two asymptotic analyses [3,12], neither of which has transverse shear in its 
1-D model, correctly predict the bending stiffness of this beam. 

As another example related to transverse shear, consider a box-beam with configuration CAS2, 
Table 3, which exhibits bending-twist coupling. Typical examples of 1-D results for this beam 
with B = 45” are shown in Figure 7. It shows the twist distribution due to a tip vertical shear 
force of 1 lb. Differences between the results from the plate analysis of [ll] and the beam analysis 
of [25], shown in Figure 7, were attributed by the authors of [ll] to transverse shear effects not 
being correctly treated in [25]. That this claim would be made in the first place is somewhat 
puzzling, because [25] does include this effect in its treatment. It is a moot point, however, for 
the following reason. It can be seen that both asymptotic approaches [3,12], correlate better with 
experimental data than the plate analysis employed in [ll, Figure 121. But in fact, neither of the 
1-D asymptotic models have explicit 1-D transverse shear variables in them. Obviously then, the 
conclusion of [ 1 l] cannot be correct. 

0.020 

0.015 

g 

+I 0.010 

: 
g 

0.005 - 
- VABS [12] 
--- SmithaudChopra[25] 
-- alahttopadhyay l?taL [ll] 
__ wtlwdc [31 

Figure 6. Twist of a CAS thin-walled beam, &J = 45O due to a tip shear force (1 lb.). 
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Figure 7. Bending slope of an I-beam 0 = 15’ due to a tip shear force (1 lb.). 
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Figure 8. Twist of an I-beam 0 = 15O due to a tip torque (1 lb.). 

Consider again a box-beam with configuration CASP but this time with lamination angle of 15O, 
results for which are shown in Figure 8. Due to uncertainty in the 3-D material constants and 
in the experimental data, and effects neglected from the 3-D theory, one could not conclude that 
a theory which happened to coincide with experiment within half a percent for one case is any 
better than one which predicts within 3%. This figure, along with Figure 7, confirms the point 
made earlier, that many of the theories predict essentially the same behavior for the test cases in 
the literature. A notable exception to this statement is certainly Figure 5, an uncoupled beam 
which should be considered as a good test for beam theory. 

2.6. Thick- Wailed Beams 

Of course, the above discussion on relative importance of shell strain measures does not hold 
for thick-walled beams; but to the best of the authors’ knowledge, a rigorous ana2yticcr2 treatment 
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Figure 9. Twist of an I-beam 0 = 15’ due to a tip shear force (1 lb.). 

Table 4. Properties of thick-walled CAS beam used in study. 

Outer Dimensions Width a = 106.7mm 
Wall Thickness h = 15.24 mm Height 6 = 50.8 mm 

Upper Wall Layup CAS5 [eZO/ - 02013 

Lower Wall Layup CAS5 [-~20/~2013 

Right Wall Layup CAS5 pil2o 

Left Wall Layup CAS5 [-eilzo 

Material Properties El = 141.96GPa 

Et = 9.79 GPa Glt = 6.0GPa 

Gt, = 4.63 GPa V1t = 0.24 vtn = 0.5 

of such beams has not been conducted. Such an analysis would have to involve a refined shell 

theory, at least including the shell transverse shear effects (implying at least a Keissner-lii shell 

theory). In the meantime, various ad hoc theories are suggested in the literature. Probably the 

most elaborate one is suggested for thick-walled box-beams by Kim and White [7]. To obtain 

this theory, the uniaxial stress hypothesis is invoked (see the discussion above pertaining to this 

assumption). A factor 4/3 for quadratic distribution of the out-of-plane warping in [7] is obtained 

directly from the integration over the cross sectional coordinate. In addition to problems related 

to the incompatibility described above for nonisotropic materials, this result implies homogeneity 

of the material properties. 

In spite of the fact that this model is a “refined” theory, with a 6 x 6 cross-sectional stifIness 

matrix, good correlation of the results reported in [7] is obtained with a 4 x 4 model from VABS 
is obtained. A typical example of these results is depicted in Figure 9, where a vertical bending 

deflection due to l.l3KN-m tip torque is given. These results correspond to [7, Figure 291, 

for a thick-walled box-beam with bending-twist coupling (CAS5). The material (AS4/3501-6) 
properties and dimensions are given in Table 4 for a beam of length 1,524mm. 

It is worth mentioning at this point that Kim and White [7], do not include restrained warping 

effects. If the claims of [6,26] on the importance of restrained warping for thick-walled beams are 

to be believed, these would be cases that should be tested. However, in view of the dispersion 
analysis discussed above, this effect is not at all important for thin-walled box-beams, and it 
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certainly should not be any more important for thick-walled beams than it is for thin-walled 

ones. 

3. CONCLUSIONS AND RECOMMENDATIONS 

Based on investigations of various beam theories for beams with a variety of geometry and 
material properties, the following has been concluded. 

1. Most of the reported improvements in the cited references on refined beam theory for the 
modeling of box-beams are due to wrong stiffness coefficients for classical theory having 
been used as baselines for the comparison. When asymptotically correct stiffness constants 
are used for classical theory, the corresponding correlation with 3-D finite element and/or 
experiments is not inferior to any of the studied “refined” theories. 

2. Claims that any significant contribution to the 1-D results is due to transverse shear, 
Vlssov’s warping, or any other effects which are not accounted for by a classical theory, 
are not found plausible for any of the box-beams considered in the study. Of course, these 
effects become more important for short beams, but other end effects (neglected) can be 
expected to be at least as important. 

3. These claims and associated motivation to introduce additional 1-D variables can be par- 
tially attributed to the misconception that a cross section remains rigid in its own plane 
in classical theory. In reality, an asymptotically correct classical theory will account for a 
consistent in-plane deformation which is proportibnal to classical 1-D strain measures. In 
a similar fashion, for general anisotropy, transverse shear strains that are proportional to 
classical 1-D strain measures are present as well. 

4. There is a fundamental difference between open- and closed-cross-section beams which 
explains why the Vlasov correction is needed in the former case but not in the latter. 

5 The “fundamental closed-form solutions” for solid rectangular cross sections for beams 
made of homogeneous orthotropic material [8], are practically equivalent to asymptotic 
beam solutions. This is also true for homogeneous thin-walled sections of CUS construc- 
tion. Extension of this work to more general cases is not straightforward. 

The study presented here suggests strongly that additional experimental data are needed to 
validate composite blade models. In particular, a set of benchmark problems needs to be designed 
which can be used to evaluate ranges of validity for various theories. Wall thickness, initial twist 
and curvature, and full elastic couplings of all types should be widely varied in this set. It is very 
easy to evaluate the importance of Vlasov’s term and other end effects for thick-walled sections. 
Tests only have to be run for beams having the same cross-sectional properties but differing 
lengths. A far more difficult problem involves the validation of transverse shear stiffnesses in 
a 1-D model, since their effect in static analyses is quite small. It is possible that experiments 
involving dynamics would have to be performed. Because of the extreme difficulty involved in 
devising meaningful and useful experiments, other alternatives should be explored as well. One 
such alternative to experimental validation is 3-D finite element calculations. These cannot be 
taken lightly, since they would be very computationally intensive, requiring approximately lo5 
degrees of freedom for realistic rotor blade analysis. 
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