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This paper focuses on two nonclassical effects in the behavior of thin-walled composite beams: elastic bending-
shear coupling and restrained torsional warping. These nonclassical effects are clarified and analyzed in some
simple examples involving cantilevered beams. First, elastic bending-transverse shear coupling is shown to be
important in the analysis of beams designed for extension-twist coupling. It is found that the lateral deflections
can be off by more than a factor of two if this coupling is ignored. This coupling stems from plics with off-axis
fibers in the beam. The presence of these plies affects significantly the modeling approach (i.e., determination
of the constitutive equations) in that transverse shear must appear in the kinematics so that its coupling with
bending will be exhibited in the elastic constants. This finding is in accord with “‘exact’’ beam theories which
develop the beam displacement and cross sectional orientation in terms of six kinematical variables instead of
the three or four found in some previously published works on composite blade modeling. A second nonclassical
effect, torsional warping rigidity, is shown to be important for certain box beams having a thin-walled, closed
cross section. The importance of including these nonclassical phenomena in a complete theory is discussed in

light of the magnitude of their effects for various values of configuration parameters.

Introduction

erospace vehicle structures are largely composed of thin-

walled elements stiffened by beam-like members and are
increasingly being made of composite materials. There are cer-
tain modeling assumptions that are typically associated with
so-called classical analyses of isotropic beams which will not
suffice for beams made of composite materials. The usual clas-
sical analyses must be revised to include certain nonclassical
effects. Two of these nonclassical effects, bending-shear cou-
pling and torsional warping rigidity, are the subjects of the
present paper. Here “‘shear’” refers to transverse shear in the
sense of Timoshenko theory. While shearing strains and tor-
sional warping rigidity are treated in some classical analyses,
the influence of such effects is usually small for isotropic beams.
(Exceptions to this include isotropic beams with open cross
sections, which are not considered herein, for which warping
rigidity is known to be important.) For composites, on the other
hand, these effects may not be small. The analysis which fol-
lows is intended as a contribution towards understanding the-
oretical foundations for analysis of composite beams with thin-
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walled closed cross sections and their physical behavior. We
intend furthermore to determine the extent to which bending-
shear coupling and torsional warping rigidity arc essential ele-
ments of such an understanding.

The subject of composite rotor blade modeling was reviewed
in Ref. 1. There exist quite general approaches to the deter-
mination of sectional constants ranging from powerful finite
element methods such as Ref. 2 to simple analytical methods
such as Ref. 3. Reference 2 shows that there are two classes
of warping involved in the calculation of sectional elastic con-
stants. ‘The particular solution (also called the St. Venant so-
lution) ignores all end effects that arise from restraining the
warping. This solution allows the determination of a 6 X 6
matrix of clastic constants for the blade cross section. Thus,
shear deformation must be included in the blade deformation
model in order for these constants to contribute to the strain
energy.

The homogeneous (or boundary layer) solutions, however,
allow the end cffects to be treated to a varying degree of ac-
curacy depending on how many of the restrained warping
“modes’’ are retained. Each of these modes has a characteristic
length which determines how rapidly its effects decay with the
distance from the ends. In order to make use of these solutions
in the determination of sectional elastic constants, additional
kinematical variables, which serve as amplitudes for their modes,
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must be incorporated into the deformation model. These ad-
ditional variables can be the derivatives of existing ones. Sub-
sequent work in Ref. 4 shows that, among the out-of-plane
restrained modes, the torsional warping mode is the most sig-
nificant.

For an arbitrary composite beam the in-plane and out-of-
plane St. Venant solutions can be quite significant. When we
restrict the discussion to thin-walled beams, however, the St.
Venant warping solutions do not significantly affect the stiff-
ness constants (Ref. 5). Thus, a useful contribution to the
understanding of composite blade modeling would be to ex-
amine a simple thin-walled blade theory including at least the
full 6 X 6 matrix of elastic constants while also examining the
effects of additional constants associated with the out-of-plane
torsional warping.

The simplest theory required to examine the importance of
bending-shear coupling and restrained out-of-plane torsional
warping is that of Ref. 3, a linear composite beam theory,
which serves as the starting point for this study. Results from
this theory were shown to agree well with NASTRAN finite
clement results for the static deformation of a model rotor blade
(Ref. 6). Very good correlation between the theory and ex-
periments was also obtained for both box beams (Ref. 7) and
circular tubes (Ref. 8). In Ref. 7 Rehfield’s theory (Ref. 3)
was able to predict strain distribution in the beam cross section.
Also, the correlation between Rehfield’s theory and the ex-
periment in Ref. 8 was very good.

In this paper, we proceed by first summarizing the basic
equations of Rehfield’s theory, in which distortion in the plane
of the cross section, local shell bending and twisting moments,
the hoop stress resultant, and initial twist and curvature are not
considered. The significance of the nonclassical effects is eval-
uated by means of simple examples involving cantilevered beams.
The importance of bending-shear coupling is assessed for beams
designed for extension-twist coupling. Finally, the importance
of restrained torsional warping in composite beams is assessed
for a family of thin-walled box beams. The differences relative
to isotropic cases are highlighted.

Synopsis of the General Theory

The starting point of our considerations is the linear theory
for thin-walled, composite beams developed in Ref. 3. After
the kinematics of the theory are summarized, we will then
outline development of the equilibrium equations and the force-
deformation relationships from the principle of virtual work.

Kinematics

A thin-walled beam with closed, single-cell cross section is
shown in Fig. 1. The coordinate direction x is along a straight,
but as yet unspecified, reference axis while y and z are the
transverse coordinates of the cross section measured from the
reference axis. The circumferential coordinate s is taken along
the middle surface of the wall. The beam undergoes stretching,
bending, twisting, and transverse shearing. Introducing a frame
which coincides with the cross section of the undeformed beam,
one can decompose the displacement field of the beam into a
rigid-body translation and rotation of the frame, and a warping
of the cross section relative to that translated and rotated frame.
Considering only small displacements and rotations and ig-
noring distortion of the cross section in its own plane, one can
immediately represent the transverse displacement components
in the form

v=V - zd

Il

w=W+ yd (1
Here V = V(x) and W = W(x) arc transverse components of
the displacement at the point where the reference axis passes
through a given cross section, and ¢ = ¢(x) is the twist angle.

COMPOSITE BEAMS 43

Fig. 1 Schematic of thin-walled beam configuration.

In order to obtain an expression for the axial deflection u,
some assumptions must be made concerning the tranverse shear
strains. As in the usual theory of torsion for thin-walled beams
made of isotropic materials, the shear strain is assumed to be
independent of s. Therefore, let y,, = v,,(x) and y,, = v..(x)
be the transverse shear strains of any cross section. They are
assumed to be uniform for each cross section so that there is
no warp due to transverse shear; that is, a pure transverse shear
strain results in a plane cross section. Furthermore, let v =
v(x) be the shear strain due to twisting. Therefore, from the
strain transformation law and elementary geometrical consid-
erations, the membrane shear strain in the beam wall is given
by

-+ (2)

Introducing the position vector r from the reference axis of the
beam to an arbitrary point in the wall of the beam and a unit
vector n normal to the wall at the arbitrary point and directed
toward the interior of the cross section, one can express the
shear strain in terms of the deformation as

'Y.TS o “.“‘ + T')f..\ (3)

where v, is the tangential component of displacement given by
+ W— —r-n¢ 4)
s

Following Ref. 3, one can find the form of the axial displace-
ment component, u, by ignoring any effects of taper along the
spanwise direction and by enforcing the continuity condition
around the circumference of the cross section. The result is

u=U-— sz + ZB)' + lI"¢'\ (5)

where U = U(x) is the axial component of the displacement
of the point where the reference axis passes through a given
cross section, B, = B,(x) and B, = B.(x) arc the cross section
rotations, positive in a right-handed sense about the axes y and
z, respectively,*®

#In other words, U, V, and W are components of the rigid-body dis-

placement of the point in the cross sectional frame where the reference
axis passes through it; ¢, B,, and B. are components of the rigid-body
rotation of the cross sectional frame.
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B_v = N — W,.t
Bz = v..r ~ Yy (6)

and W is the torsional warping function given by
A 5
P(s) = — s + r(s") n(s*)ds* (7

which satisfies the condition that §-lids = 0. Herec A is the
enclosed area of the cross section, ¢ = $-ds is the circumfer-
ence, and I represents the cross section shape. The axial strain
is then obtained as

€ = U.I == )’Bz..t‘ =k sz‘..\' + lbd)..\'.\ (8)
and the shear strain is

dy dz

v = Yoo T oy
Y Yy 0 Yz e

24
i b, )]

where U , is the axial strain, and -y, and y,_ are the shear strains
at the beam reference axis, while ¢, B,., and B., are the
twist and bending curvatures, respectively. ¢ . is the additional
kinematical variable associated with torsional warping. With
both shear deformation and torsional warping present in the
theory it is possible to examine the roles of these nonclassical
effects.

Force-Deformation Analysis by Principle of Virtual Work

For thin-walled beams, local shell bending and twisting mo-
ment resultants can be ignored, and thus, the beam reacts ex-
ternal forces by membrane action in the wall. Introducing axial
and shear stress resultants, N,, and N,,, respectively, and as-
suming that there is no internal pressure so that the hoop stress
resultant, N, can be ignored, one can write the principle of
virtual work as

L
fu 35,‘ (N Bey + Nydy,)dsdx — 8W =0 (10)

where 8 W is the virtual work of the external forces. Application
of the calculus of variations with the usual assumptions re-
garding continuity results in the following equations of equi-
librium:

N,+qg,=0
0., +tgq =0
Q:,.! + q: = 0

Mr.,\' - Qu-..\:\' + M — Guw = 0
M, — Q. +m =20
M., +0Q,+m =20 (11)

where the generalized internal forces are defined as

§ Null 2, —y, s = @, 8, 1., 0,)

Q. 0., M) (12)

——
ey
&
& &
LS
S——
=

=

I

JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

where N is the axial force, O, and Q. are the shear forces, M,
is the torsional moment, M, and M. are the bending moments,
and Q,, is the generalized warping related force (or bimoment).
Here q,, q,, and g, are applied, distributed forces, nt,, m,, and
m, are applied, distributed moments, and g, is an applied bi-
moment. The generalized internal forces and the resulting equi-
librium cquations are identical to thosc in Ref. 3.

Composite thin-walled construction, herein, is characterized
by the membrane stiffness matrix K which relates the non-zero
stress resultants to the membrane strains. The constitutive re-
lations are (sec also Ref. 1)

Ny, = JKIIE.\'.\' it KIE'Y.\'.T

AX

N_n = KI'ZE,n + Kzz'Y,rx (]3)

The stiffness K,, corresponds to uniaxial extension, K5, cor-
responds to shear, and K, is a coupling modulus. They are
related to the usual laminate stiffness matrix A (Ref. 9) as
follows:

Ky, =4, — A:z
ARA
Ky = Ay : %
A')(:,
Ky = Agg — — 14
22 66 Ax (14)

For N plies, the laminate stiffnesses are determined by simply
adding the plane stress stiffnesses, Q,J,, for each ply. Thus,

N

2 o®h (i, j=1,2,06) (15)

where fy is the thickness of the kth ply. The ply stiffnesses
depend upon the material and fiber orientation.

The deformational variables or generalized strains are easily
identified from the strain expressions. Arrayed in a column
matrix u they are

u = [ U,.'I' -Y.'I)' ,)'Tl' (‘b,,\' B}'.J BI,J ¢,.\'.\'] ( 16)

Similarly the generalized internal forces can be put in a column
matrix form as

=[N O Q. M, M, M, Q.1 a7

The relationship between the beam and its reference axis (the
coordinate direction x) has not yet been specified; however, it
is convenient to choose it in such a way that

?gl_ Kyyds =0
ﬁ_[(“zds =0 (18)

This choice defines the reference axis as the tension axis found
in Ref. 3. This is the axis for which the application of a resultant
tensile force will not produce any bending. It is also possible
to define the y and z axes as principal flexural axes which
uncouple bending about these orthogonal axes in cross section.
The necessary condition for this is that

%1' K“_VZ(IS =0 (Ig)
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Since the force and the deformation are linearly related, a
symmetric 7 X 7 stiffness matrix, C, can then be defined such
that

F = Cu (20)

By virtue of the procedure and choice of axes defined above,
the elements of C consist of 25 independent stiffness constants

dy :
C“ = K”dS; CZZ = _Kzz — ds
r 1 ds

dy dy d
Cp, = jg K,z—)ds; Cy = % K e Is
r ds I

VA I E £
2
M e dz _ % dz
Ci = i.Ku s ds;, Cy = A Ky (ds) ds
2A 2A d
C|4 s Kll d‘.’, C24 = %_Kzzldi'
I ds
, dy
Cys : Ky, 7 zds; Cy = ]_Klz a}’dﬂ‘

2A % dz B 4; dz
T ¢ I‘K22 a'sds' Cys = r Klzds 2

2
dz 2A
Cy = — %[‘ K ;ydﬂ Cyy = (T) jgr Ky ds

2A 2A
Cis = 5 ﬁ, Kipzds, Cu = — — jgr K yds

C55 = %I’ K||22([S; Cﬁﬁ = %]‘ K||y2dS

o
2
|

dy
Cpy = I_KnlIJd-T; Cy = [.Klzallld-f

ﬁﬂ K\ yds

Cs; = %I_KHZ‘!-"’S; Cgy = — jgr Ky ybds

dz 2A
Cy = jgl, Ky, Z‘WS; Cy = T

Cpn = _‘ﬁl. Ky §lds; Csg = — jﬁrKu)’ZdS =0

C|5 — %I’ K]]Zdb' = C|5 = = %l_Knyds =0 (21)

Now that we have the stiffness matrix, it is possible to ex-
amine special cases that illustrate some nonclassical effects. In
order to apply forces and calculate beam deformations, how-
ever, it is necessary to invert Eq. (20) to obtain the flexibility
relationship

u = SF (22)

where § = C~!'. This inversion is only carried out for certain
simplified cases below.

Shear Deformation with Bending-Shear Coupling

The first nonclassical effect examined is that of shear de-
formation and its coupling with bending. To illustrate this cou-
pling, the terms in the stiffness matrix arc evaluated for a
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circular cross section and a choice of material and fiber ori-
entation so that the extension-twist coupling C,, is non-zero.
A simple case is that of a slender cantilevered beam with a
circular cross section as shown in Fig. 2. For example, consider
such a beam with diameter of 2 in and with a circumferentially
uniform stiffness (CUS) layup made of IM6/R6376 Graphite/
Epoxy. The material properties used in determining the elastic
constants are £y, = 23.1 X 10° psi, Ey, = 1.4 X 10° psi,
V2 = 0.338,and G, = 0.73 X 10° psi. From these properties
and Eq. (21), the 6 X 6 matrix of elastic constants can be
determined; the results are presented in Table 1. A blade with
these properties is under development at NASA Langley Re-
search Center (Ref. 6).

As can be seen in Table 1, for this type of design there are
other nonzero coupling terms (i.e., off-diagonal terms) in ad-
dition to C,,4, which are C»5 and Ci4. These terms couple the
displacements in the two orthogonal directions by coupling the
transverse shear strain along each axis with the bending strain
about that axis. The extension, twist, and warping terms are

IM6 / R6376 and T300 / 5208
Graphite / Epoxy
[0]; £ = 0.0055" (single ply)

[0,6,-6,90]T; £ = 0.022" (balanced layup)
[6,6-90,8,(6-90)5,0]; £ = 0.033" (CUS)

D

Fig. 2 Schematic of circular tube cross section.

Table 1 Stiffnesses for a composite circular cross section
Material IM6/R6376 Graphite/Epoxy [20, —70, 20,(—70),, 20];
Ply thickness 0.0055 in.; D = 2 in.

Stiffnesses Calculated Values
Cys 1b 0.1972 x 107
C\4, Ib-in 0.6680 x 10°
Cy, Ib 0.2317 x 10¢
C,s, Ib-in —0.3340 x 10°¢
Ci;, Ib 0.2317 x 10°
Cyg, Ib-in —0.3340 x 10¢
C,4, Ib-in? 0.4634 x 10¢
Css, Ib-in? 0.9862 x 10°
Cegs Ib-in? 0.9862 x 10°
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decoupled from these effects; thus, one can consider just the
remaining 4 X 4 matrix of stiffness constants so that

Q}' C22 0 CZS 0 Yy
Q: — 0 C33 0 C.'if) Yz
M |cs 0 s 0 [YBf @
Mz 0 C36 0 Céﬁ Bz“\‘

Clearly, now, if one does not consider transverse shear defor-
mation in the model development, as in Refs. 10 and 11 for
example, there is no possibility of correctly accounting for the
bending-shear coupling terms in Eq. (23). These terms will
soften the model, and the question naturally arises whether
these coupling effects can be important.

To see the effect more explicitly, consider the inverse of Eq.
(23)

‘Y.n;\' S22 0 S25 0 Q'r
Yz = 0 S33 O S}f) Qz
B Sis 0 S5 0 [Ym [ @Y
Bz..\' O S36 0 Sﬁﬁ Mz
where
1 1
S = Sss o
Cpll1 -2 Css |1 — =—2
e ( CZZCSS) - ( CZZCSS
1 1
S 2 Seo c?
C 1 6 C ] _ 36 )
H ( cgac(,ﬁ) e ( C3Ces
C25 _Clﬁ
Sy = ; = 36 __ (25)
- -
CZZCSS CBI!Cﬁﬁ

Clearly, if one ignores the coupling effect, the transverse shear
and bending flexibility coefficients are simply the reciprocals
of the transverse shear and bending stiffnesses, respectively,
ie.,

1 1
Sy = — » Sy = —
27 Cy A Cs

(coupling ignored)

f I
Sss = =5 Seg = o
55 66 Cﬁﬁ

26
Cor (26)
The fact that the correct flexibility coefficients are larger than
the ones in which coupling is ignored is now plain.

In order to see the magnitude of the effect we can calculate
the deflection of a beam under uniform distributed load in the
z direction so that . = g* where g¥ is a constant. From the
equilibrium equations, Egs. (11), and the zero shear force and
bending moment boundary conditions at the tip, the shear force
and bending moment become

0, =0

Q. = q¥(L — x)

M, = - %q?(L — x)2

M. =0 27
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Therefore, from Eqgs. (24) the curvature about the y-axis can
be written easily in terms of beam flexibility terms and applied
loads as

1
B‘\'..t = SSSM,\' = SSS 5 ‘]:‘U—' = x)2 (28)

Integration of Eq. 28 and application of the boundary condition
B, = 0 at the root yields the section rotation about the y-axis
to be

By = SLf [ = 2 = L7] (29)

Now, from the first of Eq. (6)
W.,r =Yg = B_\' (30)

In light of Eqs. (27) and (24), .. can be written in terms of
beam flexibility terms and applied loads as

Ye: = S3130: = S1agF(L — x) (31)
Substitution of Eq. (31) into Eq. (30) results in

Sssq¥

W, = Sugfl —x) - 5 [L-x*-L] (32

Finally, with the boundary condition that W vanishes at the
root, integration of Eq. (32) gives an expression for W

o GREY 3
W = S 24 (& 487 + 6£2)
gL’
+ 83 T(ZE ~£%) (33)

where £ = i and where S33 and Sss are the correct (including
coupling) shear and bending flexibilities, respectively. It can
be recognized that the flexibility terms correspond to the en-
gineering flexibility constants found in Ref. 6; §55 corresponds
to the flapwise bending flexibility, and S;; corresponds to the
transverse shear flexibility (due to Timoshenko).

To examine a simpler expression, consider only the tip de-

flection
SSS fif L4 4533
lip 3 Seol.2 (34)

The second term in parenthesis corresponds to the direct trans-
verse shear flexibility effect. This term has relative importance

only when the ratio E&i‘—l becomes significant compared to
55

unity; for a beam of given cross sectional geometry and ma-
terial, this ratio becomes larger as the beam becomes shorter.
It may or may not be important for a particular value of slen-
derness, depending on the ratio of extension and shear moduli.
However, the importance of the elastic coupling—determining
the correct values of Sy; and Sss—has nothing to do with slen-
derness of the beam! Rather, it depends on the magnitude of
the coupling C35 relative to CCss. In order to assess this

effect, clearly one must determine a complete set of elastic
constants (C;;, 7, j = 1, 2, . . . 6 at least). The approach of
Refs. 10 and 11 will not suffice when the beam is designed
for extension-twist coupling.

For a beam whose elastic constants are given in Table 1,
Fig. 3 shows the tip deflection determined with two approxi-
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s 1

3]

E 08 W (no shear flexibility)/W (correct)
o

Q

E 0.6

e

g 04 W(no coupling)/W({correct)
o

Q

b

:9;' 02 V/W (correct)
S

0 10 20 30 40 50
Length/Diameter

Fig. 3 Effect of beam slenderness on the relative importance of bend-
ing-shear coupling and transverse shear flexibility for tip deflection.

mations: (1) without transverse shear flexibility and (2) without
bending-shear coupling. Both are normalized by the correct tip
deflection from Eq. (34). Neglecting only the direct transverse
shear flexibility is seen to be inconsequential for slender beams
since, as the length to diameter ratio increases, the normalized
displacement tends toward unity. On the other hand, if only
the bending-shear coupling is neglected, we see about a 50
percent reduction in the displacement which is independent of
the slenderness!

Also shown in Fig. 3 is the lateral displacement V normalized
by W. Unless the beam is extremely slender, the presence of
bending-shear coupling is seen to induce non-neglible lateral
displacements. In light of the importance of the lead-lag de-
flection and flap-lag elastic coupling in rotor blade stability
problems (e.g., see Ref. 12), this would appear to be another
reason to include bending-shear coupling.

Fig. 4 shows the magnitude of coupling C3; normalized with
C1,Css. (For circular cross sections w;th constant stiffness around

the cross section, this becomes L - Gk K
C]3C66 KIIK22

255
B.) Here we use the material T300/5208 Graphite/Epoxy with
the following properties: E;;, = 21.3 X 10° psi, Ey; = 1.6
X 10° psi, vj; = 0.28, and G|, = 0.9 x 10° psi. It is seen
that the balanced construction does not exhibit any coupling.
On the other hand, a single ply gives maximum coupling around

0.6 1
o Single Ply
= 051
= CuUs
k=
Q
0.4
g
=
3 031
=
E 0.2 1
=
E 0.1 Balanced Layup
- !
0.0 ” ¥ T m . T g 1

0 30 60 90
Orientation Angle

Fig. 4 Variation of normalized bending-shear coupling parameter
Cis

CZZ CSS

with respect to ply angle.
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0 = 23 deg. Any model which ignores that amount of bending-
shear coupling will be off by at least a factor of 2 in predicting
the deflections. As 6 increases beyond 23 deg the amount of
coupling decreases. The CUS construction gives a symmetric
distribution about 8 = 45 deg at which no coupling exists.
The maxima are reached around 23 deg and 67 deg. After its
maxima, the amount of coupling decays more rapidly than in
the single ply case.

Torsional Warping Rigidity
We now turn to another nonclassical effect, the influence of
torsional warping rigidity. In order to proceed, we first need
to calculate the solution of the coupled warping-torsion-exten-
sion equation. Then, the effect of the warping stiffness on the
behavior of a cantilevered box beam will be examined.

Determination of Twist Distribution

Consider a beam subjected to a discrete twisting moment,
M, at the free end with no axial force, implying that N = 0.
Set m, = q, = g, = 0. Taking the twisting moment equilib-
rium equation, the fourth of Egs. (11), and writing the moments
in terms of kinematical quantities by using the stiffness matrix,
one obtains

M? = CTdJ..t - C??d).,\:r.r (35)

Here the effective torsional stiffness (for zero axial force) is
given by

Cai = 6 —%*C(]—B) (36)
T = Caa c,. = b

11

KZ
where B = H’%—z

The boundary conditions arise naturally from the principle
of virtual work. Atx = 0 the rotation and warping displacement
are restrained so that ¢ = ¢, = 0, and at x = L the warping
is free so that ¢, = 0. The classical solution is the particular
solution of Eq. (35) or

ME  MFEL
CT CT

3 (37)

where £ = f With restrained warping, the general solution

has the form
¢ = ¢1'f ' d)r(' (38)

where the homogeneous solution ¢,, can be expressed in terms
of exponentials

b, = Ce=r 4 C@AE 4 ) (39)
Here A is a decay length parameter given by

B

}\2
CT:‘

(40)

A large value of X indicates rapid decay of the solution as the
distance from the end increases. Evaluation of the constants
from the boundary conditions yields

o = ML 1
Cr N1+ e

X [e™M—1+ e P—egre 0] 4 E} 41)
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Assuming that e™» << 1 (which is true for practical situations),

Eq. (41) reduces to

S MELHT e
¢ =" [R (e 1)+£} (42)

It can easily be seen that the tip rotation is

(1 - ;1\) (43)
E=1

Thus, the classical tip rotation is reduced by a factor related
to the decay length. If A >> 1, then the effect is insignificant;
but if A\ is, for instance, less than 25, the tip rotation can be
significantly reduced.

¢ = ¢'r.'.'

E=1

Influence of Warping Stiffness for Box Beams

Now that the solution is known in terms of A, we shall
determine the value of A for the cross section under consid-
eration. For the sake of simplicity, suppose that material prop-
erties do not change over the cross section. To obtain the
effective torsional stiffness, Cr, given in Eq. (36), we use C;,
C\4, and C44 which results in

4A?
Cr = Kyp(l — B) e (44)

For the rectangular cross section (Fig. 5) being used

a?

1+ a)

CT' = Kzz(I & B)]6a1 (45)

where 2b is the height of the cross section, 2a is the width,
and o« = b/a. For the rectangular cross section the warping
stiffness becomes

4 ol - @)

CTI = Kuga (1 n Q’) (46)

Thus, A? is then found for the rectangular cross section as

_ Kzz(l = B) 480'1

hz
K, (1 - 01)2

(47)

where o0 = ;;a is a slenderness parameter. The solution for the

twist, given in Eq. (42), is identical to that obtained in classical
theories for isotropic beams; only the value of the parameter
A is different. Indeed, for isotropic materials one finds that Eq.
47 reduces to

G 480?

e L
E (1 — o)?

(isotropic case) (48)

which agrees with the result obtained by Von Karman and
Christensen (Ref. 13).%%*

#**A slightly different result was determined by Benscoter (Ref. 14).

_ G 4802

i =
E( + o

The greatest difference between the theories of Refs. 7 and 8 occurs when
the cross section is square (e = 1), which is the value of « for which the
warping displacement and stress vanish at every point in the cross section.
A limited numerical study in Ref. 15 suggests that the differences between
these two theories are not very great.
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It should be observed that A*, can be conveniently regarded
as a product of “*material’’ and ‘*geometric’’ parts as long as
stiffnesses are uniform around the cross section. Thus, Eq. (47)
can be written as
A2 N2

mftg

[Kn(l — B) . 4V3o
Ny = e A, = —— 4
K, S @)

The geometric part, A, is the same for both orthotropic and
isotropic beams. However, the material part, A, is different.
Figure 6 shows how M\, changes with fiber orientation. The
material used in Fig. 6 is T300/5208 Graphite/Epoxy. In Fig.
7 the variation of A, is shown with respect to slenderness pa-
rameter and the breadth of the cross section. For a given box
beam, the boundary layer parameter can be found by multi-
plication of the numbers coming from Figs. 6 and 7.

Because M is relatively large for slender, thin-walled box
beams made of isotropic materials, it is well known that the
effects of warping are not very important in such beams. For
example, a thin-walled beam with the geometry depicted in
Fig. 5, wilh% =25, a =0.25and o = 10, hasx = 58.42.
Here, warping makes a difference of only 1.7 percent in the
tip rotation due to twist.

On the other hand, A can be much smaller for certain com-
posite beams, giving the ‘‘boundary layer’’ effect more sig-
nificance. Indeed, for a thin-walled box beam with the same
geometry as depicted in Fig. 5, with a = 0.25, 0 = 10, and
6 = 15 deg, except made of T300/5208 Graphite/Epoxy under
“‘normal’’ conditions, we obtain A = 22.35. In this case,
warping makes a difference in the tip rotation due to twist of
approximately 4.5 percent. Consider another box beam section
witha = 0.1, ¢ = 10, and 8 = 0 deg, made of AS 3501-6
Graphite/Epoxy with hygrothermal effects. The material prop-
erties used in the calculation are £, = 19.3 X 10° psi,
E,, = 0.33 x 10 psi, v = 0.41, and G, = 0.25 x 10°
psi. Thus, A = 8.76, and warping makes a difference in the
tip rotation due to twist of approximately 11.4 percent. The
classical and nonclassical twist angle predictions and the bound-
ary layer effects for these cases can be seen in Fig. 8; here,
thenormalized twist angle is defined as ﬁgi The boundary layer

zone is determined as the distance where the amplitude of the
twist rate ¢ is within 5 percent of the classical twist rate
(unity).

hz

T 300/ 5208 and AS 3501-6
Graphite / Epoxy
[8]T; £ =0.0055"

2b

2a

Fig. 5 Schematic of box beam cross section.
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Fig. 6 Variation of material part of the boundary layer parameter
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The percentage reduction in twist angle at the tip increases
for beams for smaller values of a. We hereby conclude from
this that restrained torsional warping can affect certain global
deformation results. Extremely small values of such parameters
as the slenderness L/2a, the thickness ratio o, the material ratio
K12/K 1, and ply angle 6 being chosen to give a small A, can
result in a value for A that influences the tip rotation in a
significant way. Thus, this effect should be weighed carcfully
before being excluded from composite rotor blade analyses.

Concluding Remarks
Two main conclusions have been drawn in the present work:

1. Instructural models designed for extension-twist coupling
(the circumferentially uniform stiffness case), an important de-
gree of bending-shear coupling is present which causes the
structure to be significantly more flexible in bending than it
would be if the coupling were ignored. In light of possible uses
of extension-twist coupling in future designs, effects such as
coupling between bending and shear deformation must be pres-
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ent in any general-purpose analysis. It is further observed that,
without the presence of shear deformation in the kinematics,
the proper form of the coupling terms in the flexibility matrix
cannot be obtained. The influence of this coupling is far more
significant in the case analyzed than the direct (Timoshenko)
effect of transverse shear flexibility and is independent of the
slenderness of the beam. This coupling also induces an elastic
*“*flap-lag’” type coupling the influence of which on rotor blade
stability is well known. Finally, even the direct shear flexibility
term may not be negligible for the composite case in general,
because there are materials for which the shear modulus may
be much .smaller than the extension modulus (i.e., K5y <<
Ky). .

2. Torsional warping is found to be significant enough to
warrant its inclusion in composite beam analyses in certain
circumstances. A boundary layer parameter caused by the re-
strained warping at the ends is identified. Although this pa-
rameter is relatively large for slender, thin-walled beams made
of isotropic materials, it can be much smaller for composite
beams. A smaller boundary layer parameter yiclds longer decay
length, along which the end effects prevail and stiffen the
structure. Thus, the smaller this parameter the larger the error
in the twist angle predictions. In some rather unusual cases,
the error in the twist angle predictions at the tip can reach more
than 10 percent. Therefore, inclusion in the cross sectional
stiffness matrix of the torsional warping rigidity, which stems
from the inclusion of an additional variable to the kinematical
field, would be important for certain laminated structures.
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