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Aeroelastic instabilitiesare amongthe factors that may constrain the � ightenvelopeof aircraft and, thus, must be
considered during design. As future aircraft designs reduce weight and raise performance levels using directional
material, thus leading to an increasingly � exible aircraft, there is a need for reliable analysis that models all of the
important characteristics of the � uid–structure interaction problem. Such a model would be used in preliminary
design and control synthesis. A theoretical basis hasbeen established for aconsistent analysisthat takes into account
1) material anisotropy, 2) geometrical nonlinearities of the structure, 3) unsteady � ow behavior, and 4) dynamic
stall for the complete aircraft. Such a formulation for aeroelastic analysis of a complete aircraft in subsonic � ow is
described. Linear results are presented and validated for the Goland wing (Goland, M., “The Flutter of a Uniform
Cantilever Wing,” Journal of Applied Mechanics, Vol. 12, No. 4, 1945, pp. A197–A208). Further results have been
obtained that highlight the effects of structural and aerodynamic nonlinearities on the trim solution, � utter speed,
and amplitude of limit-cycle oscillations. These results give insight into various nonlinear aeroelastic phenomena
of interest: 1) the effect of steady-state lift and accompanyingdeformation on the speed at which instabilities occur,
2) the effect on nonlinearities in limiting the amplitude of oscillations once an instability is encountered, and 3) the
destabilizing effects of nonlinearities for � nite disturbances at stable conditions.

Nomenclature
b = semichord
Cab = direction cosine matrix from frame b to frame a
cd = drag coef� cient
D = drag per unit length
ei = unit vector in the i th direction
F = internal force
f = external force (aerodynamic)
G = gravitational energy
H = linear momentum
hn = generalized airfoil deformations
I = inertia matrix
K = kinetic energy
Ln = generalized lift distribution
` = wing length
M = internal moment

= mass
m = external applied moment
P = angular momentum
r = position vector from aircraft reference point

= stiffness matrix
U = potential energy
u0 = aircraft forward velocity
V = linear velocity (structural)
vn = generalized velocity perpendicular to airfoil
X = structural variables
Y = induced-�ow variables
C = circulation
c = strain
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D = identity matrix
D cn = reduction in generalized loads due to stall (static)
d = variational operator
d = virtual action
d W = virtual work
h = Rodrigues parameters
j = curvature
k n = induced-�ow expansion coef� cients
n = mass offset
q = density of air
X = angular velocity

Subscripts

b = wing reference point
f = fuselage properties
w = wing properties
0 = fuselage reference point

Superscripts

a = aircraft frame
B = deformed wing (beam) frame
b = wing (beam) undeformed frame
i = inertial frame
Ç( ) = derivative with respect to time

( ) 0 = derivative with respect to x1
¯( ) = steady-state solution
ˆ( ) = small perturbation about steady state
˜( ) = dual matrix

Introduction

T HE last decade has seen an expansion of the � ight envelope of
aircraft as well as an increase in the variety of � ight missions.

Aeroelastic tailoring of composite wings opened an era in which
structural coupling could be used favorably, making new concepts
such as forward swept wings possible.High-aspect-ratiowings have
come into prominence lately due to the interest in high-altitude
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long-endurance(HALE) uninhabitedaerial vehicles (UAVs) for fu-
ture military as well as civilian missions. An increase in � ight per-
formance is desired and would have to be accompanied by very
robust and intelligent controllers. Here � ight maneuvers that were
once discardeddue to their uncertaintiescould be consideredduring
design if the aircraft model (analysis) possesses all of the physical
characteristicsof theaircraft.Then stall couldbe a regularpart of the
� ight trajectories, and control reversal could be used effectively as
control augmentation.There is a need for a model that takes into ac-
count the higher-order,nonlinear effects and the various couplings.

An accurate modeling of nonlinear phenomena in aeroelastic-
ity is bound to be an integral part of next generation aircraft de-
sign. Such a model would also be required in designing a control
system for the entire expected � ight regime. This paper presents
the ongoing research toward development of such a model. High-
� delity computational techniques are already available for both the
structural analysis and aerodynamics, but the emphasis in this re-
search is on using a far less computationally expensive model. To
accomplish that, the goals set for this work are 1) development of
an inexpensive but reasonably high-� delity model that might help
get more insight into the true nonlinear aeroelastic behavior and
2) buildingan analysis tool useful in preliminarydesign and control
system design.

There is a vast amount of literature available in the � eld of aero-
elasticity. The development of theories for aeroelastic analyses,
which started with simplistic models of linear modal analysis for
structures and one-dimensional quasi-steady aerodynamics, have
come a long way to the point that tools based on coupling the com-
putational structural dynamics and computational � uid dynamics
are in current use. An overview of recent and ongoing research in
related � elds is presented in detail in an earlier paper.1

Aeroelastic analysis of composite wings is a subject of an ever
increasing body of literature. The interest stems from the possi-
bility of using directional properties of composites to optimize a
wing, that is, aeroelastic tailoring. Shirk et al.2 presented a histor-
ical background of aeroelastic tailoring and the theory underlying
the technology. Librescu and Song were among the � rst to use a
more realistic cross section, a box beam model made up of various
composite laminates for the wing,3 as opposed to laminated plates.
This type of model was analyzed for static aeroelastic instabili-
ties. Butler and Banerjee,4 Chattopadhyayet al.,5 Cesnik et al.,6 and
Patil7 have investigatedthe in� uenceof ply-angle layupon the static
and dynamic aeroelastic characteristicsof composite box beams.

Aeroelastic characteristics of highly � exible aircraft is investi-
gated by van Schoor and von Flotow.8 The complete aircraft was
modeled using a few modes of vibration, including rigid-body
modes. Waszak and Schmidt9 used Lagrange’s equation to derive
the nonlinearequationsof motion for a � exibleaircraft.Generalized
aerodynamic forces are added as closed-form integrals. This form
helps in identifying the effects of various parameters on the aircraft
dynamics.

Nonlinearaeroelasticanalysishas gathereda lot of momentum in
the last decade due to understanding of nonlinear dynamics as ap-
plied to complex systems and the availability of the required math-
ematical tools. The studies conducted by Dunn and Dugundji are a
combination of analysis and experimental validation of the effects
of dynamic stall on aeroelastic instabilities for simple cantilevered
laminated platelike wings.10 Virgin and Dowell have looked into
the nonlinear behavior of airfoils with control surface free play
and investigated the limit-cycle oscillations and chaotic motion of
airfoils.11 On the other hand, nonlinear aeroelastic behavior of an
airfoil supported by nonlinear springs was investigated by Gilliatt
et al.12

The authors1,6 have analyzed the nonlinear behavior of can-
tilevered box beams in subsonic � ow. The studies include the struc-
tural nonlinearities arising due to large displacements and aerody-
namic nonlinearities due to stall. Stall modeling is very important
for HALE aircraft because the � ight at high altitude (low density)
and low speeds would necessitate a high trim angle of attack. Fur-
thermore, because of the length of the wing and the accompanying
elastic deformations, it is possible for the wing tip to encounter

stall. Aeroelasticcharacteristicsof the wing were analyzed from the
standpoint of stability. The present paper describes the theory sup-
porting the nonlinearaeroelasticbehaviorof a wing and investigates
the effects of the various nonlinearities on the aeroelastic stability
as well as high-amplituderesponse.As such, it is the � rst time that a
geometricallyexact structural model is coupled to a nonlinear aero-
dynamic model that includes dynamic stall effects. The results are,
thus, relevant in understanding the nonlinear aeroelastic behavior
of high-aspect-ratiowings and the need to include nonlinearitiesin
the modeling process.

Formulation
The theory is basedon two separateworks, namely,1) mixed vari-

ational formulation based on exact intrinsic equations for dynamics
ofmovingbeams13 and 2) � nite stateairloadsfordeformableairfoils
on � xed and rotatingwings.14,15 The former theory is a nonlinearin-
trinsic formulation for the dynamics of initially curved and twisted
beams in a moving frame. There are no approximationsto the geom-
etry of the reference line of the deformed beam or to the orientation
of the cross-sectional reference frame of the deformed beam. A
compact mixed variational formulation can be derived from these
equations, which is well-suited for low-order beam � nite element
analysis16 based in part on the originalpaperby Hodges.13 The latter
work presents a state-space theory for the lift, drag, and all gener-
alized forces of a deformable airfoil. Trailing-edge � ap de� ections
are included implicitly as a special case of generalizeddeformation.
The theory models a thin airfoil that can undergoarbitrary small lo-
cal deformationswith respect to a reference frame that can perform
arbitrary large global motions.

Structural Theory

During the last nine years, a comprehensiveframework has been
developed for modeling of generally nonhomogeneous,anisotropic
beams with arbitrary cross-sectional geometry and material distri-
bution.17,18 With the modeling power of the � nite element method,
it takes a two-stepmodelingapproach,which facilitates the accurate
treatment of complicated, built-up beamlike structures with a very
small number of states. It is based on three-dimensional elasticity
and is capableofmodelingcomplexcross-sectionalgeometry(solid,
built up, thick walled, or thin walled; open or closed; airfoil shaped
if necessary), including all possible couplings and deformation in
an asymptotically correct manner.

The framework of structural analysis also gives rise to a set of
geometrically exact nonlinear equations for the beam structural
dynamics.13 Thus, it provides a concise and accurate formulation
for handling built-up, beamlike structures undergoing large mo-
tions with geometrically nonlinear deformation. It has been suc-
cessfully applied to rotary-wing static and dynamic aeroelastic sta-
bility problems19 and aircraft composite-wingaeroelasticanalysis.1

This formulationis ideallysuitedfor largemotion and geometrically
nonlinear deformation of wings structures and will be used here as
the starting point.

The formulationpresentedis an extensionof themixed variational
formulationfor dynamicsofmovingbeams. It includesglobalframe
motion as variable, and is thus able to handle aircraft dynamics and
gravitational potential. To generate the equations for this problem,
the only changes are the inclusion of the appropriate energies in
the original formulation. The equations of motion are obtained by
application of the calculus of variations.

Thereare variousreferenceframesused in the formulation:i is the
inertial reference frame, with i3 verticallyupward (needed to de� ne
the direction of gravitational forces); a is a frame attached to the
aircraft, with a2 pointing toward the nose and a3 pointing upward;
b is a series of frames attached to the undeformed beam (wing)
reference line, b1 is along the reference line; B is the deformed
beam reference frame. The superscripts i , a, b, and B refer to the
frame in which a given vector is expressed.

Note that the formulation is presented here assuming just one
wing for clarity. In actual implementation,a user-de� ned numberof
wings is allowed, thus accountingfor two wings, tail wings, vertical
stabilizer, canard, or any other winglike surfaces.
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The variational formulation is derived from Hamilton’s extended
principle, which can be written as

t2

t1

[d (K ¡ U ) + d W ] dt = d (1)

where t1 and t2 specify the beginning and end, respectively, of the
time interval over which the solution is required.

The kinetic energy of the system comes from the two subsystems
that have mass, namely, fuselageand wing. The kinetic energies for
the fuselage (modeled as a rigid body) and the wing (modeled as a
beam) can be represented as

K f =
1

2
f V a

0
T V a

0 ¡ 2 f X
a
0 V a

0 n f + X a
0

T I f X a
0

Kw =
1
2

`

0
w V B

b
T

V B
b ¡ 2 w X B

b V B
b n w + X B

b
T

Iw X B
b dx1

(2)

The gravitational potential energy can be written as

G f = f geT
3 C i a ua

0 + n f

Gw =
`

0
w geT

3 C ia ua
0 + ra

b + ua
b + CaB n w dx1 (3)

The strain energy due to elastic deformation of the wing is given
by

U =
1
2

`

0

c

j

T

[ ]
c

j
dx1 (4)

where [ ], the stiffnessmatrix, can beobtainedfor an arbitrarycross
section using variational asymptotic beam sectional analysis.18

The variationof the individualenergiesis requiredfor substitution
into the Hamilton’s principle. For the kinetic energy,

d K = d V a
0

T Pa
0 + d X a

0
T H a

0 +
`

0

d V B
b

T
P B

b + d X B
b

T
H B
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where the expressions for P and H have been derived in Ref. 19
and are given by

P =
@K

@V

T

= (V ¡ ˜n X ), H =
@K

@X

T

= I X + ˜n V

(6)

Similarly, the variation of the potential energy is given by

d U = d G +
`

0

d c T F B
b + d j T M B

b dx1 (7)

where the expressions for F and M are obtained as

F

M
=

@U

@c

T

@U

@j

T
= [ ]

c

j
(8)

The virtual work done on the system can be written in terms of
the external forces as

d W = d ua
0

T f a
0 + d w

a

0

T
ma

0 +
`

0
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a
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By the use of the kinematic relationships derived in Ref. 13 and
the transformedrepresentationpresented in Ref. 19, the expressions
for the velocities and the generalized strains can be written as

V a
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0 , ˜X a
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V B
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0 + ˜X a
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b
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(10)

Before proceedingany further, it is necessary to de� ne rotational
variables to represent the orientation of the aircraft and wing sec-
tions. The orientation of B frame with respect to a frame can be
represented in terms of Rodrigues parameters. Rodrigues parame-
ters have been applied to nonlinear beam problems with success.
Using the Rodrigues parameters, the expressions for the angular
velocities and moment strain can be simpli� ed as

X B
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b 2

1 + h a
b

T h a
b 4

Çh a
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0
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b 4
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b

0 (11)

For the orientation of the aircraft, that is, of the a frame, the
regular use of the Rodrigues parameters is insuf� cient because of a
singularity at rotationof 180 deg. Thus, the directioncosines of a in
i will be used as rotationalvariables.The expression for the angular
velocity will automatically constrain the six additional unknowns.

The variational forms of all of the energies and the expressions
for all of the variables used therein have been given. In the mixed
formulation, the expressions of the variables are enforced as con-
straints using Lagrange multipliers. By denoting of the expressions
of all of the variables by ( ) ¤ , Hamilton’s equation becomes
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The expressions for various quantities and their variations can be
substituted in the preceding equations to get a complete form of
Hamilton’s equation.

The external forces and moments in the preceding expressions
are the various loads acting on the aircraft, including aerodynamic
and propulsive loads. Propulsive loads will be treated as given.
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Aerodynamic Theory

To have a state-spacerepresentationof the aerodynamicproblem
with a low number of states, the � nite state aerodynamic theory of
Peters and Johnson14 is a natural choice. It accounts for large frame
(airfoil) motion as well as small deformation of the airfoil in this
frame, for example, trailing-edge � ap de� ection. The theory has
been extended to include compressibility effects15 and gives good
dynamic stall results when complemented with the ONERA stall
model.14

The aerodynamic loads used are as described in detail by Peters
and Johnson.14 The integro–differential airloads equations are con-
verted into ordinarydifferentialequations(ODEs) througha Glauert
expansion. The ODEs are in terms of the expansion coef� cients,
which are represented by a subscript n, so that

(1/2 p q ){Ln} = ¡ b2[M]{ḧn + Çvn} ¡ bu0[C]{ Çhn + vn ¡ k 0}

¡ u2
0[K ]{hn} ¡ b[G]{ Çu0hn ¡ u0vn + u0 k 0}

(1/2 p q ){D} = ¡ b{ Çhn + vn ¡ k 0}T [S]{ Çhn + vn ¡ k 0}

+ b{ḧn + Çvn}T [G]{hn} ¡ u0{ Çhn + vn ¡ k 0}
T [K ¡ H ]{hn}

+ { Çu0hn ¡ u0vn + u0 k 0}T [H ]{hn} (13)

where [K ], [C], [G], [S], [H ], and [M ] are constant matrices, ex-
pressions for which are given in Ref. 14.

The required airloads, namely, lift, moment about midchord, and
hinge moment, are obtained as a linear combinationof Ln . The the-
ory describedso far is basicallya linear, thin-airfoiltheory.However,
the theory lends itself to correctionsand modi� cations from experi-
mental data. Thus, corrections such as thickness and Mach number
can be incorporatedvery easily, as describedin Ref. 15. The induced
� ow k 0 in Eq. (13) is calculated using the induced-�ow model as
described next.

Induced-Flow Theory

The induced � ow is obtained through the � nite state theory of
Peters et al.20 The induced-�ow velocity k 0 is represented in terms
of N states, k 1 , k 2, . . . , k N , so that

k 0 ¼
1

2

N

n = 1

bn k n (14)

where the bn are found by least-squares method and the k n are
obtained by solving a set of N � rst-order differential equations20

given by

Çk 0 ¡ 1
2
Çk 2 + (uT /b) k 1 = 2 Ç¯C

(1/ 2n)( Çk n ¡ 1 ¡ Çk n + 1) + (uT / b) k n = (2/ n) Ç¯C n ¸ 2 (15)

where ¯C is the normalized circulation C /2 p b. The expression for
the normalized circulation is calculated based on the deformable
airfoil model as

¯C = {1}T [C ¡ G]{hn + vn ¡ k 1} + (u0 /b){1}T [K ]{hn} (16)

Stall Model

The airloads and induced-�ow models can be modi� ed to include
the effects of dynamic stall accordingto the ONERA approach.The
stall-correctedgeneralized airloads can be written as

LTn = Ln + q uT C n , n ¸ 1

C T = C + C ` (17)

where

uT = u2
0 + (v0 + Çh0 ¡ k 0)2

¨C n +
uT

b
g ÇC n +

uT

b

2

x 2 C n = ¡
x 2u3

T D cn

b
¡ x 2euT

d
dt

(uT D cn )

(18)

and the parameters D cn , g , x 2 , and e must be identi� ed for a particu-
lar airfoil. C ` is the correctionto the circulationobtainedfor D c .̀ To
calculate the correction to lift ¡ L0 and drag D, the followingequa-
tions are used, which also include the effect of skin-frictiondrag:

LT0 = L0 ¡ q u0 C ` ¡ cd uT (v0 + Çh0 ¡ k 0) q b

DT = D ¡ q (v0 + Çh0 ¡ k 0) C ` + cduT u0 q b (19)

The airloads are inserted into Hamilton’s principle to complete
the aeroelastic model.

Solution of the Aeroelastic System

Coupling the structural and aerodynamics models, one gets the
completeaeroelasticmodel. By selectingthe shape functionsfor the
variational quantities in the formulation, one can choose between
1) � nite elements in space leading to a set of ordinary nonlinear
differential equations in time and 2) � nite elements in space and
time leading to a set of nonlinear algebraic equations. Using � nite
elements in space,onecanobtain the steady-statesolutionandcalcu-
late linearizedequationsofmotion about the steadystate for stability
analysis. This state-space representation can also be used for con-
trol synthesis. Finite elements in space and time are used to march
in time and get the dynamic nonlinear behavior of the system. This
kind of analysis is useful in � nding the amplitudesof the limit-cycle
oscillations and investigating the nonlinear response of the system.

Thus, three kinds of solutions are possible: 1) nonlinear steady-
state solution,2) stability analysisof small motionsabout the steady
state (by linearizing about the steady state), and 3) time-marching
solution for nonlinear dynamics of the system.

For steady-state and stability analysis, the formulation is con-
verted to it weakest form in space, while retaining the time deriva-
tives of variables.This is achievedby transferringthe spatialderiva-
tives of variables to the corresponding variation by integration by
parts. Because of the formulation’s weakest form, simplest shape
functions can be used.13 With these shape functions, the spatial in-
tegration in Eq. (12) can be performed explicitly to give a set of
nonlinear equations.16 These equations can be separated into struc-
tural, FS , and aerodynamic, FL , terms and written as

FS (X , ÇX ) ¡ FL (X, Y, ÇX ) = 0 (20)

Similarly, one can separate the induced-�ow equations into an
induced-�ow component FI and a downwash component FW as

¡ FW ( ÇX ) + FI (Y, ÇY ) = 0 (21)

The solutions of interest for the two coupled sets of equations
[Eqs. (20) and (21)] can be expressed in the form

X

Y
=

X̄

Ȳ
+

X̂ (t )

Ŷ (t )
(22)

For the steady-state solution, one gets Ȳ identically equal to zero
[from Eq. (21)]. Thus, one has to solve a set of nonlinear equations
given by

FS ( X̄ , 0) ¡ FL ( X̄ , 0, 0) = 0 (23)

The Jacobian matrix of the preceding set of nonlinear equa-
tions can be obtained analytically and is found to be very sparse.16

The steady-state solution can be found very ef� ciently using the
Newton–Raphson method.
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By theperturbingofEqs. (20) and (21) about thecalculatedsteady
state using Eq. (22), the transient solution is obtained from

@FS

@ ÇX
¡

@FL

@ ÇX
0

¡
@FW

@ ÇX

@FI

@ ÇY X = X̄
Y =0

ÇX̂
ÇŶ

+

@FS

@X
¡

@FL

@X
¡

@FL

@Y

0
@FI

@Y X = X̄
Y =0

X̂

Ŷ
=

0

0
(24)

By assuming that the dynamic modes are of the form est the pre-
ceding equations can be solved as an eigenvalue problem to get the
modal damping, frequency, and mode shape of the various modes.
The stabilityconditionof the aeroelasticsystemat variousoperating
conditions is, thus, obtained.

To investigate the nonlinear dynamics of the aircraft, a time his-
tory of aircraft motion has to be obtained. To get such a solution,
space– time � nite elements are used. This requires that the formula-
tionbe convertedinto its weakest formin spaceaswell as time.Thus,
the spatial and temporal derivativesare transferredto the variations.
Again becauseof the weakest form of the variationalstatement,con-
stant shape functions are used for the variables, and linear/bilinear
shape functions are used for the test functions.21 With these shape
functions, Eqs. (20) and (21) take the form

FS (X i , X f ) ¡ FL(X i , X f , Y ) = 0

¡ FW (X i , X f ) + FI (Yi , Y f ) = 0 (25)

where subscripts i and f are the variable values at the initial and
� nal time. If the initial conditions and time interval are speci� ed,
the variable values at the � nal condition are obtainedby solving the
set of nonlinear equations.

Numerical Results
Flutter and divergence results have been obtained for a metallic

wing model presented by Goland.22 Linear results are compared

Table 1 Goland22 wing structural data

Property Value

Wing half span 20 ft
Wing chord 6 ft
Mass per unit length 0.746 slugs/ft
Radius of gyration of wing

about mass center 25% of chord
Spanwise elastic axis of wing 33% of chord (from leading edge)
Center of gravity of wing 43% of chord (from leading edge)
Bending rigidity, E Ib 23.65 £ 106 lb ft2

Torsional rigidity, G J 2.39 £ 106 lb ft2

Fig. 1 Linear and stall data for c` and cm .

with published results. The linear and nonlinear results obtained
indicate that the steady-state solution and the eigenvalues can be
computed ef� ciently and are accurate. The time-marching scheme
based on space– time � nite elements was found to be stable. Aeroe-
lastic tailoring of a composite box beam wing was conducted in
earlier papers6,7 and will not be repeated here.

The Goland wing data22 is reproduced in Table 1. The results are
shown in Table 2. The current analysis gives the � utter speed and
� utter frequencyresults to within 1% of the exact linear � utter speed
of the cantilevered wing.

The lift-curve slope and stall data for the airfoil are obtained by
curve � tting the empirical c` and cm . Figure 1 shows the assumed
linear and stall data for the results presented. The coef� cients for
the dynamic stall model, that is, g , x , and e, as functions of D c` are
assumed for the present symmetric airfoil to be23

g = 0.25 + 0.10( D c`)
2, x = 0.20 + 0.10( D c`)

2

e = 3.3 ¡ 0.3( D c )̀2 (26)

Effect of Nonlinearities on Flutter

Structural as well as aerodynamic nonlinearities are known to
affect � utter. One of the goals of this research is to be able to deter-
mine up front those cases for which nonlinear models are essential
for accuracy. As a � rst step toward that goal, � utter analysis is con-
ducted on the Goland22 cantilevered wing. The gravitational forces
and skin-frictiondrag are neglected in these results. Figure 2 shows
the variationof the � utter speed with increasingangleof attack.The
results show the effect of structural nonlinearitiesand dynamic stall
nonlinearitieson the � utter speed.

As the angle of attack is increased, the aerodynamic load on the
wing increases and so do the bending and torsional displacements.
The � utter speed is seen to increasedue to geometric stiffening.The
results including dynamic stall model are markedly different from
those without. This is due to coupling between the structural states
and the stall states. The stall delay frequency of around 25 rad/s
interacts with the � rst two structural modes and leads to additional
coupling and coalescence and, thus, change in � utter mode. The
� uttermode frequencyshifts fromaround70 rad/s at 7 deg to 55 rad/s
at 12 deg. Also as the angle of attack is increased,wing stall occurs
at lower speeds, thus leading to possibilityof � utter at lower speeds.

The effects of structural nonlinearities seem to be small in the
preceding test case, which is a relatively low-aspect-ratio conven-
tional wing. Potentially,however, the effects would be considerably
higher for a � exible high-aspect-ratiowings used in UAVs.24

Table 2 Comparison of � utter results for Goland22 wing

Flutter velocity, Flutter frequency,
Method ft/s rad/s

Present analysis 445 70.2
Exact solution 450 70.7
Galerkin solution 445 70.7
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Fig. 2 Variation of � utter speed with angle of attack.

Fig. 3 Time history showing LCO above � utter speed.

Limit-Cycle Oscillations

The � utter results obtained in the earlier section give the velocity
of onset of � utter.These � utter results imply that small disturbances
will grow exponentially for velocities higher than the � utter speed.
However, as the amplitude of oscillations grows, so does the addi-
tional nonlinear stiffness. Consequently, the vibrationsdo not grow
to in� nity, but instead converge to a limit-cycle oscillation (LCO).
The amplitudeof theLCO givesan ideaof theamountof stress/strain
on the structure and, thus, is useful in failure analysis and design.
The amplitude, phase, and type of LCO can be determined by time
marchingthe nonlineardifferentialequationsof motionof theaeroe-
lastic system.

The Goland22 wing at zero steady-state angle of attack and a
velocity of 500 ft/s (VF = 468 ft/s) was disturbed by a small dis-
turbance, and the time history of oscillations was obtained. The tip
displacement, tip rotation, and the total energy (sum of kinetic and
potential energy) are plotted against time in Fig. 3. The tip dis-
placement and rotation increase exponentially when the amplitude
of vibration is small, that is, the nonlinearitiesare negligible.As the
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a)

b)

c)

d)

e)

f)

Fig. 4 Phase-plane diagrams for various initial disturbances.

amplitude of vibration increases, nonlinearitiesdue to stall become
important and in fact dominant. The aerodynamic forcing function
drops and, thus, can no longer pump the required amount of en-
ergy into the structure,and the amplitudeof oscillationand the total
energy levels out.

Anotherway of lookingat the historyof oscillationsis via a phase
plane plot. Here two variablesof the system are plotted against each
other to give an insight into the mode shape of oscillation.Figure 4
shows the plot of tip displacement vs tip rotation. One can clearly
see the changes in the mode shape as the amplitude increases and
eventually settles into a LCO.

Effect of Large Disturbances
Stability as calculated by eigenvalues is a linear concept and,

thus, is valid for small disturbancesabout the steady state. The � ut-

ter speeds calculated earlier predict that small disturbances grow
for speeds higher than the � utter speed and decay for lower speeds.
However, the disturbances encountered by an aircraft depend com-
pletely on its mission and environment,for example,maneuversand
gust amplitudes. A nonlinearsystem found to be stable under small
disturbances may not necessarily maintain stability for higher am-
plitudes of disturbances. In fact, the dynamics of the system can be
completely different for varying initial conditions.

Consider the Goland22 wing at 10-degsteady-stateangle of attack
� ying with a velocityof 450 ft/s (VF = 466 ft/s). Figure 5 shows the
response of the system for various initial conditions. The initial
conditions are obtained by deforming the wing with tip forces and
moments. S denotes a stable response, L denotes a mode that is
either an LCO or very lightly damped oscillation, and U denotes
that the initial mode shape is unstable and, thus, the amplitude of
oscillation increases and � nally settles into a new higher amplitude
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Fig. 5 Stability at various initial conditions.

LCO. The reason to distinguish between the latter two responses
is that the � rst one has a small amplitude and most likely will not
result in structural failure. Figure 5 shows that, depending on the
disturbance,thewing may go into a � utter/LCO evenat speedslower
than the � utter speed.

The mode shapes represented in the phase plane are given in
Fig. 4. Figure 4b shows the behavior of the system for small dis-
turbances. It is lightly damped and the mode shape is that obtained
by a linear eigenvalue solution. Figures 4c and 4d show the kind
of responses for medium-level disturbances. The mode shape is
nonlinear, that is, nonsinusoidal, and depending on the disturbance
the damping is either zero or very close to it (Fig. 4d) or small
(Fig. 4c). Figures 4e and 4f show the initial and � nal mode shape
for high-powerdisturbance.Two plots havebeen made for easiervi-
sualization.Figure 4e clearly shows that the amplitude of vibration
is increasing,and Fig. 4f shows the � nal converged large-amplitude
LCO.

Conclusions
A theoretical basis for nonlinear aeroelastic analysis of aircraft

in subsonic � ow has been presented. It takes into account structural
geometric nonlinearities and aerodynamic stall nonlinearities.The
equations for the aeroelastic system have been solved using low-
order � nite elements. Examples of different nonlinear aeroelastic
effects have been presented.

Although the results presented are somewhat complex, they still
provide insight into the effects of nonlinearities on aeroelastic sta-
bility. Structural nonlinearitieswere stiffening for the wing consid-
ered. Stall nonlinearitiesdecreased the � utter speeds drasticallydue
to coupling between the low-frequency stall dynamics and struc-
tural modes.LCOs were observed,but the amplitudewas very high,
which might lead to failure in an actual wing. A very interesting
nonlinear effect was that of � nite disturbances. It has been shown
that even for speeds lower than the predicted linearized instability
speed, instabilities could be induced due to � nite disturbances.
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