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Abstract. Nonholonomic constraint equations that are nonlinear in velocities are incorporated with
Kane’s dynamical equations by utilizing the acceleration form of constraints, resulting in Kane’s
nonminimal equations of motion, i.e. the equations that involve the full set of generalized accelerations.
Together with the kinematical differential equations, these equations form a state-space model that
is full-order, separated in the derivatives of the states, and involves no Lagrange multipliers. The
method is illustrated by using it to obtain nonminimal equations of motion for the classical Appell–
Hamel problem when the constraints are modeled as nonlinear in the velocities. It is shown that this
fictitious nonlinearity has a predominant effect on the numerical stability of the dynamical equations,
and hence it is possible to use it for improving the accuracy of simulations. Another issue is the
dynamics of constraint violations caused by integration errors due to enforcing a differentiated form
of the constraint equations. To solve this problem, the acceleration form of the constraint equations
is augmented with constraint stabilization terms before using it with the dynamical equations. The
procedure is illustrated by stabilizing the constraint equations for a holonomically constrained particle
in the gravitational field.
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1. Introduction

Dynamicists have noticed the absence of nonlinear nonholonomic constraints from
daily life observations, and some have gone so far as to argue the nonexistence
of such constraints in nature [1]. Among the few examples of mechanical systems
with nonlinear nonholonomic constraints in the literature of analytical mechanics
is the one due to Appell [2] and Hamel [3]. The constraints were modeled as
nonlinear in the velocities by a limiting process on the nonholonomic constraint
equations. However, the validity of the resulting equations of motion was questioned
[4] because of the reduction in order associated with this limit condition, which
yields a qualitative change in the system behavior and a huge difference in the results
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versus those associated with taking the limit after obtaining the equations of motion.
The reinterpretation of nonholonomic constraints of the rolling type as nonlinear
is originally due to Saletan and Cromer [5]. A further study of the Appell–Hamel
problem for the purpose of analyzing nonlinear nonholonomic constraints in the
context of Kane’s method is found in [6]. An example of nonlinear nonholonomic
constraints of the nonintegrable in accelerations type is due to Kitzka [7]. The fact
that the system is inherently nonlinearly constrained was dismissed in [8], and an
alternative derivation was presented with the constraint equations turning out to be
linear and nonholonomic.

Despite the controversy regarding the feasibility of nonlinear, nonholonomic
constraints of the passive type, active constraints (also called servo- or program
constraints) certainly can be nonlinear and nonholonomic. Furthermore, they need
not be ideal [9] (of the Chetaev type) or limited to second order in the generalized
coordinates. The importance of understanding servoconstraints for control system
analysis and synthesis can be considered the main reason for studying the various
categories of constraints, including nonlinear, nonholonomic constraints. Such is
the focus of the present paper.

The treatment of nonlinear, nonholonomic constraints in Kane’s approach began
with the extension of Passerello–Huston equation to include such constraints [10].
Later, Huston’s method of undetermined multipliers [11, 12] was generalized [6]
to include nonlinear nonholonomic constraints.

During the past three decades, Kane’s equations of motion were successfully
applied to numerical analysis and simulation of multibody systems. The original
treatment of using the minimal (reduced) set of equations [13] becomes less useful
when the multibody system is composed of a large number of bodies that are heavily
constrained. In such cases the resulting equations of motion increase in complexity
and, hence, become more difficult to analyze and less efficient for time simulations.
To alleviate this problem, dynamical equations with orders exceeding the numbers
of degrees of freedom were derived. Examples are [11, 14–19].

In [20], a nonminimal version of Kane’s equations of motion for constrained
multibody systems is derived with the aid of the acceleration form of constraints
and the tangential properties of Kane’s method that provide a relationship be-
tween the constrained and unconstrained generalized active and inertia forces.
The resulting equations of motion are explicit in the generalized accelerations,
and involve no Lagrange multipliers. The derivation is based on simple mathe-
matical operations on the unconstrained equations of motion. This is particularly
advantageous in the case where the equations are already derived and more con-
straints are to be added to the system for the purpose of improving its design
or studying its performance, because the method does not require a totally new
derivation.

The use of the acceleration form of nonlinear constraint equations with Kane’s
equations was first depicted in [6, 11, 21, 22], where the (nonunique) orthogonal
complement of the constraint matrix is multiplied by the full-order, constrained
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form of Kane’s equations to eliminate the contribution of the generalized constraint
forces. It is shown in [20] that a particular choice of the orthogonal complement ma-
trix is embedded in the minimal Kane’s equations and is obtained by expanding these
equations in terms of the unconstrained generalized active and inertia forces. This
particular choice implies the consistency among the governing equations because it
guarantees the nondeficiency of the augmented matrix which becomes a generalized
“constrained” inertia matrix, regardless what the system constraint Jacobian might
be. This provides a tolerance towards the dependency among constraint equations,
as it waives the need to extract the largest independent set of constraints, a process
that can be difficult for highly constrained multibody systems.

However, the above mentioned treatment of nonholonomic constraints was lim-
ited to the “simple nonholonomic” type [23]. It is shown in this paper that the
method is also capable of handling nonlinear constraints. This is exploited from the
fact that the acceleration form of constraint equations is linear in the generalized
accelerations, even if the nonholonomic constraint equations are nonlinear in the
generalized speeds. On the other hand, the relations between the holonomic and
the nonholonomic partial velocities and partial angular velocities of the system are
preserved in the case of nonlinear nonholonomic constraints, and hence the special
structure of the resulting constraint matrices A1 and A2 is also preserved.

In spite of the advantages of modeling multibody systems using the acceleration
form of constraint equations, the accuracy of numerical simulations may degen-
erate due to constraint violations caused by enforcing the constraint equations at
the acceleration level. This is especially true for the case of holonomic constraints,
as the equations must be numerically integrated twice to obtain the generalized
coordinates. It is shown in this paper that nonlinear nonholonomic constraints sub-
stantially alter the constraint violation dynamics, and can reduce the deterioration
in accuracy of the numerical simulations. Furthermore, the explicit appearance
of the acceleration form of constraint equations facilitates the augmentation of
Baumgarte type damping terms [24] before inverting the generalized inertia matrix,
in case it is necessary to modify the dynamical equations in order to suppress this
violation.

The main contributions in this paper are twofold. First, nonminimal Kane’s
equations are formulated for nonlinearly constrained multibody dynamical systems.
Second, the nonminimal Kane’s equations of motion are modified in a manner to
provide accuracy to numerical integration schemes for the purpose of improving
the robustness of time simulations.

2. Nonminimal Kane’s Equations with Nonlinear Nonholonomic Constraints

The development in this introduction can be found in [23], and is provided here
for convenience. Consider a nonholonomic dynamical system S with p degrees of
freedom consisting of a set of ν particles and µ rigid bodies, and let R be an inertial
frame of reference in which the configuration of the system is described by a set of
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n generalized coordinates q1, . . . , qn . The generalized speeds u1 . . . un are scalar
variables satisfying the kinematical differential equations [23]

q̇ = C(q, t)u + D(q, t). (1)

In the above equation, q denotes a column matrix containing the n generalized
coordinates, u denotes a column matrix containing the generalized speeds, C ∈
R

n×n , D ∈ R
n , C−1 exists for all q ∈ R

n , and all t ∈ R, and (·) = d( )/dt . The
velocity of a generic particle P of the system relative to R can be written as [23]

RvP =
p∑

r=1

RṽP
r (q, t)ur + RṽP

t (q, t), r = 1, . . . , p. (2)

The nonholonomic partial velocities RṽP
1 . . .RṽP

p in Equation (2) are vector entities
that can be obtained by inspecting the velocity expression of the particle for the
coefficients of the independent generalized speeds u1 . . . u p. Another way to express
the velocity of the particle P is by using the full set of generalized speeds u1 . . . un

as [23]

RvP =
n∑

r=1

RvP
r (q, t)ur + RvP

t (q, t), r = 1, . . . , n, (3)

where RvP
1 . . .RvP

n are the holonomic partial velocities of the particle P in R, and
u1 . . . un are constrained according to some constraint relations, as discussed in the
next section. In a similar manner, the angular velocity of a generic body B of the
system relative to R may be written as [23]

RωB =
p∑

r=1

Rω̃B
r (q, t)ur + Rω̃B

t (q, t), r = 1, . . . , p. (4)

The coefficients of the independent generalized speeds in Equation (4),
Rω̃B

1 . . .Rω̃B
p , are called the nonholonomic partial angular velocities of B rela-

tive to R. Another expression for RωB is in terms of the full constrained set of
generalized speeds [23],

RωB =
n∑

r=1

RωB
r (q, t)ur + RωB

t (q, t), r = 1, . . . , n, (5)

where RωB
1 . . .RωB

n are the holonomic partial angular velocities of the body B in
R.

Let Ri be the resultant active force on the i th particle, Pi . The resultant active
forces on the i th rigid body Bi are equivalent to a force Zi on a point Qi on Bi ,
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together with a torque Ti . The nonholonomic generalized active forces are defined
as [23]

F̃r (q, u, t)

=
ν∑

i=1

RṽPi
r · Ri +

µ∑

i=1

RṽQi
r · Zi +

µ∑

i=1

Rω̃Bi
r · Ti , r = 1, . . . , p. (6)

The inertia torque of Bi relative to R is [23]

RT�
Bi

= −RαBi · IBi − RωBi × IBi · RωBi , (7)

where IBi is the central inertia dyadic of Bi relative to Bi . The nonholonomic
generalized inertia forces are defined as [23]

F̃�
r (q, u, u̇, t) = −

ν∑

i=1

m Pi
RṽPi

r · RaPi −
µ∑

i=1

m Bi
RṽBi

r · Rabi

+
µ∑

i=1

Rω̃Bi
r · RT�

Bi
, r = 1, . . . , p. (8)

where bi is the mass center of body Bi .
Kane’s dynamical equations of motion are [23]

F̃r (q, u, t) + F̃
�

r (q, u, u̇, t) = 0, r = 1, . . . , p. (9)

The accelerations RaPi and Rabi used to form the expression (8) for F̃
�

r are found
by differentiating Equation (2). To obtain the inertia torques RT�

Bi
, Equation (4) is

differentiated, and the resulting angular accelerations RαBi are used in expression
(7). If the holonomic partial velocities are used instead to form Equations (6) and
(8), then n holonomic generalized active forces and n holonomic generalized inertia
force can be defined for the nonholonomic system, and are distinguished from their
nonholonomic counterparts by removing the “ ˜” from above the corresponding
symbols. Defining holonomic quantities for nonholonomic systems is useful in
constructing the nonminimal form, as will be shown later in the paper.

2.1. CONSTRAINTS INVOLVING NONLINEARITY IN GENERALIZED SPEEDS

The m nonholonomic constraint equations take the form

φ(q, u, t) = 0, (10)

where φ is the column matrix

φ = �φ1 . . . φm�T , (11)
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in which φ(q, u, t) is in general nonlinear in its arguments. Differentiating the
constraint equations, Equation (10), with respect to time t , one obtains

φ̇(q, u, u̇, t) = ∂φ

∂q
q̇ + ∂φ

∂u
u̇ + ∂φ

∂t
= 0. (12)

Substitution of the kinematical differential equations, Equation (1), in the above
equation results in the acceleration form of the constraint equations

φ̇(q, u, u̇, t) = ∂φ

∂u
u̇ + B1(q, u, t)u + B2(q, u, t) = 0, (13)

where

B1(q, u, t) = ∂φ

∂q
C(q, t) (14)

B2(q, u, t) = ∂φ

∂q
D(q, t) + ∂φ

∂t
. (15)

Let

u = ⌊
uT

I uT
D

⌋T
, (16)

where uI = �u1 . . . u p�T and uD = �u p+1 . . . un�T . Define the m × p matrix

J1(q, u, t) :=





∂φ1

∂u1
. . .

∂φ1

∂u p

...
...

...
∂φm

∂u1
. . .

∂φm

∂u p





= ∂φ

∂uI
(17)

and the m × m matrix

J2(q, u, t) :=





∂φ1

∂u p+1
. . .

∂φ1

∂un

...
...

...
∂φm

∂u p+1
. . .

∂φm

∂un





= ∂φ

∂u D
. (18)

We assume that u p+1, . . . , un can be chosen such that the matrix J2 is nonsin-
gular for all q, u, and t that satisfy the constraint equations, Equation (10). This
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variable partitioning was first introduced in the seminal article [25]. To avoid sin-
gularities of J2, variant formulations may be prepared in advance by redefining
the sets of generalized speeds uI and uD in the vicinities of these singularities. A
projective criterion for best variable partitioning is found in [26]. Thus, Equation
(13) can be written as

φ̇(q, u, u̇, t) = J1u̇ I + J2u̇D + B1(q, u, t)u + B2(q, u, t) = 0. (19)

Solving for u̇ D yields

u̇D = A(q, u, t)u̇ I + B(q, u, t), (20)

where

A(q, u, t) := −J−1
2 J1

B(q, u, t) := −J−1
2 [B1(q, u, t)u + B2(q, u, t)].

Equation (20) can be written in matrix form as

A1(q, u, t)u̇ = B(q, u, t), (21)

where

A1 = [−A I ]. (22)

2.2. HOLONOMIC VERSUS NONHOLONOMIC PARTIAL VELOCITIES

AND PARTIAL ANGULAR VELOCITIES

It is convenient to write Equation (2) in the matrix form

RvP = RVP (q, t)u + RvP
t (q, t) (23)

where

RVP = ⌊RvP
1 . . .R vn

P
⌋
. (24)

Hence, the acceleration of the particle relative to R is

RaP =R VP (q, t)u̇ + RaP
t , (25)

where

RaP
t = RV̇Pu + Rv̇P

t . (26)
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Defining

RVI
P = ⌊R

v1
P . . . Rvp

P
⌋

(27)
RVD

P = ⌊R
vp+1

P . . . Rvn
P
⌋
, (28)

Equation (25) can be written as

RaP =RVP
I (q, t)u̇ I +R VP

D(q, t)u̇D +R aP
t (29)

Substituting Equation (20) for u̇D in Equation (29) gives

RaP = [R
VP

I (q, t) + RVP
D(q, t)A(q, u, t)

]
u̇ I

+RVP
D(q, t)B(q, u, t) + RaP

t . (30)

Also, it is convenient to write Equation (4) in the matrix form

RvP = RṼP (q, t)uI + RṽP
t (q, t), (31)

where RṼP is the row matrix containing the nonholonomic partial velocities

RṼP = ⌊R
ṽP

1 . . .R ṽP
p

⌋
. (32)

Differentiating Equation (31) with respect to time in R gives

RaP = RṼP (q, t)u̇ I +
Rd[RṼP (q, t)]

dt
u I +

Rd
[R

ṽP
t (q, t)

]

dt
. (33)

Comparing the coefficients of u̇ I in Equation (30) and (33) gives the relations
between the holonomic and the nonholonomic partial velocities of a particle in the
system as

RṽP
r = RvP

r +
n−p∑

s=1

RvP
p+s Asr (q, u, t), r = 1, . . . , p. (34)

In a similar manner, the relations between the holonomic and the nonholonomic
partial angular velocities of a body in the system is found by comparing the coef-
ficients of u̇ I in the two expressions of the angular acceleration RαB obtained by
taking the time derivatives of RωB , as given in Equation (7) and (4).

Rω̃B
r = RωB

r +
n−p∑

s=1

RωB
p+s Asr (q, u, t), r = 1, . . . , p. (35)
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Remark. The relation between u̇ I and u̇D given by Equation (20) is similar to
the relation between uI and u D in a simple nonholonomic system [23], except
that the matrices A and B are functions of u. This yields relations between the
holonomic and the nonholonomic partial velocities and partial angular velocities
for nonlinearly constrained nonholonomic systems that are similar to their relations
in a simple nonholonomic system, except that the matrix A is a function of u also,
as given by Equation (34) and (35).

2.3. GENERALIZED ACTIVE AND INERTIA FORCES

Equations (34) and (35) can be used to represent the nonholonomic generalized
active and inertia forces (6) and (8) in terms of the holonomic generalized active
and inertia forces. Omitting the arguments for simplicity, these relations become

F̃r = Fr +
n−p∑

s=1

Fp+s Asr (36)

F̃�
r = F�

r +
n−p∑

s=1

F�
p+s Asr , r = 1, . . . , p. (37)

Therefore, Equation (9) can be written as

Fr + F�
r +

n−p∑

s=1

(Fp+s + F�
p+s)Asr = 0, , r = 1, . . . , p. (38)

or in matrix form as

A2 F� = −A2 F, (39)

where

A2 := [I AT ]. (40)

The accelerations and angular accelerations are linear in u̇; it follows that the
generalized inertia forces are as well. Consequently, F� can be written in the form

F� = −Q(q, t)u̇ − L(q, u, t), (41)

where Q is a symmetric positive definite matrix. Then, Equation (39) becomes

A2(q, u, t)Q(q, t)u̇ = A2 P(q, u, t), (42)
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where

P(q, u, t) = −L(q, u, t) + F(q, u, t), (43)

and Q is the generalized inertia matrix of the system.

Remark. Expanding the velocities and the angular velocities of the nonholonomic
system S components in terms of the n generalized speeds allows one to define
quantities that are related to the corresponding holonomic system, i.e. the system
obtained by removing the nonholonomic constraints. This is crucial for the present
development, as it permits construction of equations of motion for the nonholo-
nomic system from those of its holonomic counterpart.

2.4. NONMINIMAL SYSTEM OF EQUATIONS

Equations (21) and (42) can be used to form the matrix system

T u̇ = V, (44)

where T := [AT
1 [A2 Q]T ]T , and V := �BT [A2 P]T �T . The matrix T is a con-

strained generalized inertia matrix for the nonholonomic system S. It is invertible
for all choices of generalized coordinates and generalized speeds that render the
elements of the constraint matrix A finite, i.e. render the matrix J2 invertible. To
show this, it is noticed that the row spaces of A1 and A2 are orthogonal comple-
ments. That is, both matrices are full row ranks, and A1 AT

2 = 0. The row space
of A2 is unaltered if the rows of A2 are scaled by scalars. Therefore, T is full
rank if the holonomic system (41) is diagonal, i.e. the inertia matrix Q is diag-
onal. This diagonalization is possible by a proper choice of generalized speeds,
and can be performed starting from an arbitrary choice of generalized speeds, by
a Graham–Schmidt orthogonalization of the corresponding partial velocities [27].
The invertibility of T for this special choice of generalized speeds, denoted say by
w, implies the invertibility of T for any other choice of generalized speeds. This
can be seen by equating the right sides of the equations

q̇ = C1(q, t)w + D1(q, t) (45)

q̇ = C2(q, t)u + D2(q, t) (46)

which gives

w = �1(q, t)u + �2(q, t) (47)
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where

�1 = C−1
1 C2 (48)

�2 = C1
−1(D2 − D1). (49)

Equation (47) is a unique invertible transformation between the two sets of gener-
alized speeds, which implies the equivalency of the existence of solution for one
set and the existence of solution for the other. Therefore,

u̇ = T −1V . (50)

The above aggregation of the dynamical equations and the constraint equations
can also be found in [18], where a nonminimal form is derived with the aid of
differential geometry concepts.

Remark. The appearance of the constraint matrix A in the dynamical equations
(39) as well as in the constraint equations (21) exploits the feature of deriving the
nonminimal form of equations for a nonholonomic system by simple manipulations
of the equations of motion for the corresponding holonomic system.

The two sets of ordinary differential Equations (1) and (50) form a complete
separated-in-accelerations state space model for the constrained dynamical system,
and involves no reduction in the dimension of the space of generalized speeds
from the number of generalized coordinates to the number of degrees of freedom.
Furthermore, this is obtained without employing Lagrange multipliers. Therefore,
it enables the use of system analysis and control techniques that are related to state
space model representation, in a unified treatment of holonomic and nonholonomic
constraints. This complements the previous differential algebraic equations (DAE)
approach.

The procedure of using the acceleration form of constraints in obtaining a con-
sistent set of separated in accelerations equations of motion for nonlinear nonholo-
nomic systems is summarized as follows:

1. A set of generalized speeds satisfying Equation (1) is chosen, and the nonlinear
nonholonomic constraints, Equation (10) are differentiated with respect to time.
The set of generalized speeds is partitioned according to Equation (16), and the
dependency among the set is described at the acceleration level by Equation (20).
If holonomic constraints are involved, the corresponding equations are twice
differentiated in time to appear in the same acceleration form.

2. The matrix A is used to construct the matrices A1 and A2, Equations (22) and
(40).
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3. Expressions are obtained for holonomic partial velocities/angular velocities by
inspecting the corresponding expressions for linear/angular velocities, as the
coefficients of the generalized speeds.

4. Holonomic generalized active and inertia forces are found from the scalar (dot)
product of the impressed and gravitational forces with the holonomic partial
velocities/angular velocities, and used together with A2 to form Equation (42).

5. Equations (21) and (42) are used to form the matrix equation, Equation (44),
and T is inverted to yield the resulting equations of motion (50).

Example 1: The Appell–Hamel problem. The mechanism shown in Figure 1 con-
sists of a frame with two legs that slide without friction on the x–y plane and
supports two massless pulleys that are a distance ρ apart. A thread is passed around
the pulleys, hanging a weight P that is idealized as a particle of mass m, and its
movement is restricted to be along the vertical bar of the frame. The thread is wound
around a drum of radius b, which is fixed to a wheel W of radius a, mass M , mass
center W ∗. The wheel rolls on the x–y plane, where φ is its angle of rotation in its

Figure 1. Schematic for the Appell–Hamel mechanism.
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own plane. For simplicity, it is specified that the wheel has equal axial and polar
moments of inertia, I . The plane of W makes the angle θ with the x axis, and the
frame keeps it vertical relative to the x–y plane. Let x, y, z be the coordinates of
the center of mass of P in the xyz coordinate system, which is fixed to an inertial
frame of reference. The configuration parameters can be chosen as x , y, z, θ , and φ.
Finally, let i, j, and k be unit vectors parallel to the positive x , y, and z directions,
respectively, and let iw, jw, and kw be wheel-fixed unit vectors parallel to i, j, and
k, respectively when θ = 0 and φ = 0. The no slip condition of W on the plane xy
gives rise to two relations that describe the velocity of the center of the wheel o,

ẋo = aφ̇ cos θ (51)

ẏo = aφ̇ sin θ. (52)

The velocity of o can also be described in terms of the velocity of P by the relations

ẋo = ẋ + ρθ̇ sin θ (53)

ẏo = ẏ − ρθ̇ cos θ. (54)

The relations (51) and (52) can be manipulated in order to create the nonlinear
nonholonomic constraint Equation [5]

ẋ2
o + ẏ2

o = a2φ̇2, (55)

and the linear nonholonomic constraint equation

ẋo sin θ − ẏo cos θ = 0. (56)

Substituting Equations (53) and (54) into Equations (55) and (56) yields

(ẋ + ρθ̇ sin θ )2 + (ẏ − ρθ̇ cos θ )2 − a2φ̇2 = 0, (57)

and

ẋ sin θ − ẏ cos θ + ρθ̇ = 0. (58)

The inextensibility of the thread gives rise to the holonomic constraint equation

z = −bφ + z0, (59)

where z0 is a constant. Hence, the system has two degrees of freedom. Considering
the generalized speeds u1 = θ̇ , u2 = φ̇, u3 = ẋ , u4 = ẏ, u5 = ż, and taking the
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time derivatives of the constraint Equations (57)–(59), the acceleration form of the
constraint equations is

(u3 + ρu1 sin θ )
(
u̇3 + ρu̇1 sin θ + ρu2

1 cos θ
)

+ (u4 − ρu1 cos θ )
(
u̇4 − ρu̇1 cos θ + ρu2

1 sin θ
) = a2u2u̇2 (60)

u̇3 sin θ + u1u3 cos θ − u̇4 cos θ + u1u4 sin θ + ρu̇1 = 0 (61)

u̇5 = −bu̇2. (62)

Let

uI = �u1 u2� (63)

uD = �u3 u4 u5�, (64)

then the matrices J1 and J2 for the system are

J1 =




n1 n2

ρ 0

0 b



 (65)

J2 =




n3 n4 0

sin θ −cos θ 0

0 0 1



 , (66)

where

n1 = ρ2u1 + ρu3 sin θ − ρu4 cos θ (67)

n2 = −a2u2 (68)

n3 = u3 + ρu1 sin θ (69)

n4 = u4 − ρu1 cos θ. (70)

The matrices A and B in Equation (20) for the system are

A(q, u, t) = 1

n5




−ρn4 − n1 cos θ −n2 cos θ

ρn3 − n1 sin θ −n2 sin θ

0 −n5b



 (71)

and

B(q, u, t) = n6

n5




−u1(n4 + ρu1 cos θ )

u1(n3 − ρu1 sin θ )

0



 , (72)
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where

n5 = n3 cos θ + n4 sin θ (73)

n6 = u3 cos θ + u4 sin θ. (74)

Therefore, the matrices A1 and A2 are

A1 =





ρn4+n1 cos θ

n5

n2 cos θ
n5

1 0 0
−ρn3+n1 sin θ

n5

n2 sin θ
n5

0 1 0

0 b 0 0 1



 (75)

and

A2 =
[

1 0 −ρn4−n1 cos θ

n5

ρn3−n1 sin θ

n5
0

0 1 −n2 cos θ
n5

−n2 sin θ
n5

−b

]
. (76)

The inertial velocity of P is

vP = u3i + u4j + u5k, (77)

and its inertial acceleration is

aP = u̇3i + u̇4j + u̇5k. (78)

The applied force on P is

FP = −mgk, (79)

where g is the gravitational constant. Hence, the generalized active forces on P are
contained in the column matrix

FP = �0 0 0 0 –mg�T . (80)

Similarly, the generalized inertia forces are contained in the column matrix

F�
P = �0 0 –mu̇3 –mu̇4 –mu̇5�T . (81)

Since the applied forces acting on W are all in the vertical direction, they do not
contribute to the generalized active forces. The inertial angular velocity of W is

ωW = −u2 sin θ i + u2 cos θ j + u1k, (82)
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and its angular acceleration is

αW = (−u̇2 sin θ − u1u2 cos θ ) i + (u̇2 cos θ − u1u2 sin θ ) j + u̇1k. (83)

The velocity of the center of mass of the wheel is

vo = (u3 + ρu1 sin θ )i + (u4 − ρu1 cos θ )j, (84)

and its acceleration is

ao = (
u̇3 + ρu̇1 sin θ + ρu2

1 cos θ
)
i + (

u̇4 − ρu̇1 cos θ + ρu2
1 sin θ

)
j. (85)

The generalized inertia forces of the wheel are given by

F�
W r = F�

o · vo
r + T�

W · ωW
r , (86)

where the inertia force F�
o is

F�
o = −Mao, (87)

and the inertia torque T�
W is

T�
W = −αW · IW − ωW × IW · ωW . (88)

Here, IW denotes the central inertia dyadic of W [23]. The relation between the
wheel-fixed and the inertial frame-fixed unit vectors is given by:






iw
jw
kw





=




cos φ cos θ cos φ sin θ – sin φ

– sin θ cos θ 0

sin φ cos θ sin φ sin θ cos φ










i

j

k





. (89)

Hence,

IW = I (iwiw + jwjw + kwkw) (90)

= I (ii + jj + kk), (91)

and the inertia torque is,

T�
W = −I u̇1k − I u̇(cos θ j − sin θ i) − u1u2 I (– cos θ i – sin θ j). (92)
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Therefore, the contribution of the wheel to the generalized inertia forces is given
by

F�
W 1 = −M(ρ2u̇1 + ρu̇3 sin θ − ρu̇4 cos θ ) − I u̇1 (93)

F�
W 2 = −I u̇2 (94)

F�
W 3 = −M

(
u̇3 + ρu̇1 sin θ + ρu2

1 cos θ
)

(95)

F�
W 4 = −M

(
u̇4 − ρu̇1 cos θ + ρu2

1 sin θ
)

(96)

F�
W 5 = 0. (97)

The generalized inertia forces for the system are given by

F� = F�
P + F�

W . (98)

Therefore, with the above mentioned choice of generalized speeds,

Q =





Mρ2 + I 0 Mρ sin θ −Mρ cos θ 0

0 I 0 0 0

Mρ sin θ 0 M + m 0 0

−Mρ cos θ 0 0 M + m 0

0 0 0 0 m




(99)

P =






0

0

−Mρu2
1 cos θ

−Mρu2
1 sin θ

−mg






. (100)

Forming Equations (21) and (42) for this system and augmenting the two equations
yields Equation (44). u̇ can be obtained by inverting the coefficient matrix T :=
[AT

1 [A2 Q]T ]T . This can be done for all values of generalized coordinates and
generalized speeds that give nonzero values of n5.

The inversion of the matrix T can be done either numerically or symbolically.
The symbolic inversion results in lengthy expressions that are not needed for our
purpose. The time simulations must run with initial conditions that satisfy the
constraint equations. These are chosen to be θ̇ = φ̇ = 1.0 rad/s, ẋ = 1.0 m/s,
ẏ = 5.0 m/s, ż = −0.5 m/s, z = 30 m, and zero initial conditions for the remaining
generalized coordinates. Time simulations are performed with a = 1.0 m, b =
0.5 m, ρ = 5.0 m, m = 1.0 kg, M = 5.0 kg, z0 = 30 m. Figures 2 and 3 show
the responses of θ and φ, respectively. The responses of the time rates of change of
these angles, θ̇ and φ̇ are shown in Figures 4 and 5, respectively. The angle θ tends
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Figure 2. Example 1: θ vs. t .

Figure 3. Example 1: φ vs. t .

Figure 4. Example 1: θ̇ vs. t .
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Figure 5. Example 1: φ̇ vs. t .

Figure 6. Example 1: θ̇ vs. φ.

to reach a constant steady state value as the wheel continues to roll over the x–y
plane, as shown in Figure 6. Also, the load P intercept on the x–y plane is shown
in Figure 7, and the time history of its height z is shown in Figure 8.

2.5. NONLINEAR NONHOLONOMIC CONSTRAINTS AND NUMERICAL STABILITY

OF THE EQUATIONS OF MOTION

The problem of numerical drift of constraints and integrals of motion is well known
in the solutions of differential equations subjected to constraints. Several methods
have been introduced to remedy this problem. Every method has its advantages
and disadvantages, but all these methods involve modifications to the dynamical
equations in order to suppress the numerical violation. Stabilizing the constraint
equations and the dynamical equations are not independent matters, and one should
be careful when implementing a constraint stabilizing scheme, as the modification
can alter the dynamics of the whole system in addition to its effect on the constraint
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Figure 7. Example 1: y vs. x .

Figure 8. Example 3.1: z vs. t .

dynamics. Alternatively, it is possible to consider the issue of numerical stability
during the modeling phase, to avoid the need to correct the motion by modifying
the already formulated equations of motion.

Modeling the constraints to be nonlinear in the velocities results in equations
of motion that are different in appearance from the equations of motion resulting
from modeling the constraints as linear in the velocities. However, the solutions of
the resulting equations of motion and the time simulations should not be different,
irrespective of the way the constraint equations are manipulated in order to be
augmented with the dynamical equations. Nevertheless, the numerical stability of
the solution is certainly affected by the constraint modeling. In that regard, it can
be beneficial to use the nonlinearity of the constraint equations as a passive tool to
suppress the numerical errors. To illustrate that, we create the linear nonholonomic
constraint equations by equating Equations (51) and (52) with Equations (53) and
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(54). The resulting equations are

aφ̇ cos θ − ẋ − ρθ̇ sin θ = 0 (101)

aφ̇ sin θ − ẏ + ρθ̇ cos θ = 0. (102)

Taking the time derivatives of Equations (101) and (102) , the same procedure can
be used to obtain the equations of motion for the Appell–Hamel mechanism with
the constraints modeled as linear nonholonomic. By running the time simulations
for both systems of equations, a common numerical violation measure can be tested,
that is the total energy E of the mechanism. Considering the x–y plane as the datum
for computing the potential energy, E is given as

E = I

2

(
u2

1 + u2
2

) + M

2
[(u3 + ρu1 sin θ )2 + (u4 − ρu1 cos θ )2]

+ M

2
ga + m

2

(
u2

3 + u2
4 + u2

5

) + mgz. (103)

Figure 9 shows the plots of E by using the state variables obtained from integrating
the equations of motion that correspond to the two types of constraint modeling,
where 	E is the difference between the computed value of the energy and its
initial value. It is noticed that the nonlinearity in the constraint equations subdues
the growing deviation in the total energy of the mechanism.

Nevertheless, the error dynamics for nonlinear systems depends on the initial
errors in the state variables, and on the input forces on the system. These can vary
substantially during the simulation process, and manipulating the constraint equa-
tions provides no guarantee of error convergence, which frequently necessitates
an implementation of a corrective scheme. It is noticed also that when the con-
straints are modeled as nonlinear nonholonomic then the inversion of the resulting

Figure 9. Example 1: Energy integral, LC: linear constraints, NC: nonlinear constraints.
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constrained generalized inertia matrix substantially increases the complexity of the
equations of motion. For that reason, this artificial nonlinearity of constraints should
be used only when the purpose is to increase robustness of numerical simulations.
The equivalent equations of motion that are obtained by modeling the constraints
as linear nonholonomic are more suitable for analysis.

In the next section, we derive a version of the nonminimal equations that is free
of the constraint drift phenomenon.

3. Elimination of Constraint Drift

The problem of constraint drift is generally unavoidable when a differential form
of the constraint equations is used to formulate the equations of motion. Such a
problem becomes more serious for the case in which the acceleration form of holo-
nomic constraints is enforced, since two integrations are needed at each time step
to obtain the generalized coordinates. The purpose of this section is to modify the
derived equations of motion to suppress the errors resulting from this integration
process. The explicit use of the acceleration form of constraint equations suggests
the employment of the classical numerical stabilization method by Baumgarte [24].
Let φ be the set of m nonholonomic constraint equations. Instead of using the accel-
eration form of the constraint equations, Equation (13), the equations of Baumgarte
type

φ̇(q, u, u̇, t) − 
φ(q, u, t) = 0, (104)

are considered. Here 
 ∈ R
m×m is a matrix that has eigenvalues with strictly negative

real parts. Using Equation (19) in Equation (104), one obtains

J1u̇ I + J2u̇D − 
φ(q, u, t) + B1(q, t)u + B2(q, t) = 0. (105)

Solving for u̇D yields

u̇D = A(q, t)u̇ I + B̂(q, u, t), (106)

where

A(q, u, t) = −J−1
2 J1 (107)

B̂(q, u, t) = B(q, u, t) + J−1
2 
φ(q, u, t). (108)

Equation (106) can be written as

A1(q, u, t)u̇ = B̂(q, u, t), (109)



NONMINIMAL KANE’S EQUATIONS 177

which, together with Equation (42), form the matrix system

T u̇ = V̂ , (110)

where V̂ := �B̂T [A2 P]T �T . Therefore,

u̇ = T −1V̂ . (111)

A similar treatment can be developed for holonomic constraint equations. In-
stead of the acceleration form of the constraint equations, the following constraint
equations are used:

φ̈(q, u, u̇, t) − 
1φ̇(q, u, t) − 
2φ(q, t) = 0, (112)

where 
1 and 
2 are chosen such that the dynamics of Equation (112) is stable. In
this case, B̂ becomes

B̂(q, u, t) = B(q, u, t) + J−1
2 [
1φ̇(q, u, t) + 
2φ(q, t)]. (113)

Remark. The matrices 
, 
1, 
2 can be thought of as feedback gains of a control
system that is aimed to regulate the constraint functions φ at the zero value. In order
to obtain from the numerical integration scheme a true and accurate state of the
dynamical system, these gains must also keep the entire system of Equation (111)
stable. The choice of the gain matrices can affect the stability of Equation (111),
beside its effect on the convergence rate of φ. For adaptive choices of gain matrices
for Baumgarte type of constraint violation stabilization, the reader is referred to
[28].

The procedure for deriving nonminimal form of Kane’s equations of motion that
is free of constraint drift for dynamical systems subjected to nonlinear nonholo-
nomic constraints is summarized as follows:

1. Stable constraint dynamics equations are constructed by augmenting the con-
straint functions φ with their differentiated forms by means of the matrix 
 in
case φ is nonholonomic, resulting in Equation (104). In case φ is holonomic, both
φ̇ and φ̈ are augmented withφ by means of
1 and
2, resulting in Equation (112).
In both cases, these matrices are chosen to damp out any nonzero values of φ.

2. A generalized speeds partitioning according to Equation (16) is used to put
the equations in the form (106), which results in the upper subsystem of the
unreduced form, Equation (109).

3. Equation (109) is used with Equation (42) to form the system of Equation (110),
which can be solved for u̇ by inverting the matrix T to obtain Equation (111).
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Figure 10. Schematic for Example 2.

The following example illustrates the procedure for numerically stabilizing a holo-
nomic constraint equation.

Example 2: Sliding Particle. A particle is sliding over a surface is shown in
Figure 10. The surface and the x-y coordinate system are fixed in an inertial refer-
ence frame R. The surface defines the holonomic constraint equation

φ(x, y) = y + x2

l0
− l0 = 0, (114)

where l0 is a positive constant equal to l(x, y) =
√

(x2 + y2) when either x = 0
or y = 0. Consider x and y as the generalized coordinates, and let the generalized
speeds be u1 = ẋ and u2 = ẏ. Also, let i and j be unit vectors in the x and y
directions, respectively. The position vector of the particle P is

p = x i + yj. (115)

The inertial velocity of the particle is

RvP = u1i + u2j.

The velocity form of the constraint equation above is thus

φ̇(x, u) = u2 + 2

l0
xu1 = 0,

and the acceleration form is

φ̈(x, u, u̇) = u̇2 + 2

l0

(
u2

1 + xu̇1
) = 0.
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Choosing uI = u1,

A1 = ⌊
2
l0

x 1
⌋
,

A2 = ⌊
1 − 2

l0
x
⌋
,

(116)

and

B = − 2

l0
u2

1. (117)

The unconstrained equations of motion are

u̇1 = 0

u̇2 = g. (118)

Equation (44) for this system is

2

l0
xu̇1 + u̇2 = − 2

l0
u2

1 (119)

u̇1 − 2

l0
xu̇2 = − 2

l0
gx . (120)

Given the parameter l0 = 1.0 m, solving for u̇1 and u̇2 yields,

u̇1 = −2x
(
g + 2u2

1

)

1 + 4x2
(121)

u̇2 = 4gx2 − 2u2
1

1 + 4x2
. (122)

Setting the initial condition x(0) = 1.0 m, and using the Kutta-Merson numerical
integration scheme, the above system of equations is solved for x , y, u1, and u2,
with the constraint violation φ evaluated at each time step. The time history of φ

after 500 s of simulation time is plotted for two small values of the time integration
step 	t , as shown in Figures 11 and 12. It is clearly seen that φ grows with time.
Both the pattern and the magnitude of φ are affected by the choice of 	t . Reducing
	t reduces the growth of φ, at the cost of increasing the required time to perform
the simulation. The same is concluded for a constant of motion of this conservative
system, namely the energy integral E . This is simply the sum of kinetic and potential
energies of the system,

E = K + V = 1

2
m

(
u2

1 + u2
2

) + mg(l0 − y), (123)
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Figure 11. Example 2: Constraint violation, φ: 
1 = 
2 = 0, 	t = 0.01 s.

Figure 12. Example 2: Constraint violation, φ: 
1 = 
2 = 0, 	t = 0.001 s.

where the datum for computing the potential energy is chosen as yd = l0. For
m = 1.0 kg and l0 = 1. Figures 13 and 14 show the deviations in E for the two
choices of 	t after 500 s of simulation time.

Next, Equation (112) for this system is used. The resulting Equation (110) with
l0 = 1.0 m becomes

2xu̇1 + u̇2 = −2u2
1 + 
1φ̇(x, u) + 
2φ(x, y, u)

u̇1 − 2xu̇2 = −2gx . (124)

Solving for u̇ yields

u̇1 = −2x
(
g + 2u2

1

)

1 + 4x2
+ 2x(u2 + 2xu1)

1 + 4x2

1 − 2x(1 − y − x2)

1 + 4x2

2 (125)

u̇2 = 4gx2 − 2u2
1

1 + 4x2
+ u2 + 2xu1

1 + 4x2

1 − 1 − y − x2

1 + 4x2

2. (126)
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Figure 13. Example 2: Energy integral: 
1 = 
2 = 0, 	t = 0.01 s.

Figure 14. Example 2: Energy integral: 
1 = 
2 = 0, 	t = 0.001 s.

The time history of φ after 500 s is shown in Figure 15. It is noticed that the
constraint violation becomes bounded during the time simulation period. Arbitrarily
small bounds can be obtained by increasing the values of 
1 and 
2. However, this
also increases the relative magnitudes of the damping terms, which results in an
increase in the stiffness of the differential equations, and requires smaller time
steps. For 
1 = −20 s−1 and 
2 = −100 s−2, a bound of |φ| < 2.0 × 10−11 m
is obtained for 	t = 0.001 s. The choice of 
1 and 
2 affects the numerical
stability of the whole nonminimal system of equations, as discussed below. For the
purpose of comparison, Kane’s minimal equation may be derived. The solution of
this equation is free from the constraint drift, because the constraint equation is
used in its algebraic form. Substituting y from Equation (114) into Equation (115)
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Figure 15. Example 2: Constraint violation, φ: 
1 = −20, 
2 = −100, 	t = 0.001 s.

yields

p = x i + (1 − x2)j. (127)

The first and second time derivatives of the above equation relative to R are the
inertia velocity and acceleration of P , represented in terms of u1 and u̇1,

RvP = u1i + (1 − 2xu1)j (128)

= u1(i − 2xj), (129)

and

RaP = u̇1i − (
2u2

1 + 2xu̇1
)
j. (130)

The coefficient of u1 in Equation (129) is the holonomic partial velocity of P ,

RvP
1 = i − 2xj. (131)

The holonomic generalized active force F on the particle is the contribution of
gravity, given by

F = mgj · RvP
1 (132)

= −2mgx, (133)
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and the generalized inertia force is

F� = −mRaP · RvP
1 (134)

= −m
[
u̇1 + 2x

(
2u2

1 + 2xu̇1
)]

. (135)

Kane’s dynamical equation of motion is

F + F� = 0, (136)

yielding to

2gx + u̇1 + 2x(2u2
1 + 2xu̇1) = 0. (137)

To illustrate the improvement in the numerical solution of the nonminimal equa-
tions resulting from the augmentation of the damping terms, the solutions for y after
1 h of simulation time obtained from the integrations of Equations (121)–(122) and
Equations (125)–(126) are compared with the most accurate one obtained from
the integration of Equation (137), as shown in Figure 16. To reduce the computer
memory and time costs, a bigger integration step 	t of 0.1 s is chosen. Clearly,
the damping of constraint violations is crucial for accurate fast long-term simula-
tions of such systems. It should be noted, however, that despite the correction in
the computed holonomic constraint violation, this does not imply necessarily an
improvement in the accuracy of the individual states. The energy integral provides
a check on the stability of the whole system of nonminimal equations of motion,
and is independent of the constraint violation measure φ. Figure 17 shows the de-
viation in the energy for the constraint-stabilized system. This deviation represents

Figure 16. Example 2: y solution after 1 h, 	t = 0.1 s: M minimal, N nonminimal (
1 =

2 = 0), DN damped nonminimal (
1 = −20, 
2 = −100).
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Figure 17. Example 2: Energy integral deviation 	E : 
1 = −20, 
2 = −100, 	t = 0.001 s.

a deterioration in accuracy compared to the constraint-unstabilized system for the
same 	t , as noticed by comparing with Figure 14. Careful choice of 
1 and 
2 is
therefore important to preserve the stability of all the states. Nevertheless, the only
tangible effect of the constraint stabilization in this example is favorable on y, as
illustrated in Figure 16.

The achieved constraint numerical violation dynamics is compared in Figure 18
with those corresponding to two constraint numerical violation geometric elimina-
tion methods, given in [29] and [30]. Both methods are based on appropriate correc-
tions of the state variables, without modifying the equations of motion. Clearly the
augmentation of Baumgarte numerical stabilization terms yields better constraint
violation dynamics, provided that the coefficients of the stabilizing terms are chosen
properly.

Figure 18. Example 2: Constraint violation φ: 	t = 0.01 s; “1” Baumgarte, “2” Blajer, “3”
Yoon et al.
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4. Conclusions and Future Work

By taking advantage of the mathematical conformity of the acceleration form of
the constraint equations and the dynamical equations, a procedure for deriving
nonminimal Kane’s equations of motion is presented, where the constraint equa-
tions might be nonlinear in the generalized speeds. This is possible because of the
special structure that the constraint matrices A1 and A2 retain as the variables of the
dynamical system evolve in time, which implies the invertibility of the generalized
constrained inertia matrix T . The resulting equations of motion are used to solve
the Appell–Hamel problem, when the constraints are modeled as nonlinear in the
generalized speeds. This nonlinearity is shown advantageous in stabilizing the
solution of the equations of motion when numerically integrating the equations of
motion. Furthermore, a systematic procedure is provided to modify the equations
of motion for the purpose of suppressing the constraint violation due to numerical
integration errors, by augmenting the constraint equations with damping terms
of the Baumgarte type. The associated coefficients can be chosen to obtain any
desired constraint dynamics without affecting the invertibility of the generalized
constrained inertia matrix, as the coefficients of the acceleration terms in both the
dynamical and the constraint equations remain unaltered. An illustrative example
shows a significant reduction in a holonomic constraint violation, although
the effect on the whole system of equations is slightly destabilizing. Therefore,
the coefficients of the stabilizing terms must be chosen such that the improvement
in the numerical stability of the constraint equations does not deteriorate the
numerical stability of the resulting nonminimal system of equations. Employing
optimal control theory to obtain the best coefficients implies minimizing an integral
that involves the constraint violations, the stabilizing coefficients, and possibly the
energy of the dynamical system. Solving the resulting optimality conditions is an
on-going research by the authors.
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