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Abstract

Early analyses for numerical cross-sectional analysis of anisotropic beams were based on linear elasticity theory. For
more general treatment of non-linear phenomena, asymptotic formulations can serve as the basis for the numerical
method, say a finite element method. When based on geometrically non-linear elasticity theory, an intermediate result of
such analyses is frequently the splitting of the non-linear 3-D problem into a linear 2-D analysis of the cross section and
a non-linear 1-D analysis along the beam. Thus, the published work to date cannot treat the so-called ‘‘trapeze effect’’,
because it stems from non-linearity of the cross-sectional analysis. Herein, a non-linear numerical cross-sectional analysis
is presented, based on the variational-asymptotic method and capable of treating cross sections of arbitrary geometry
and generally anisotropic material. This type of analysis is particularly important in rotating structures, such as
helicopter rotor blades. Results from this model are compared with those available in the literature, both theoretical and
experimental. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Beam-like structures are common in engineering
practice, e.g., rotor blades, turbine blades, high-as-
pect-ratio wings, and girders can all be represented
as beams. Structural analysis of such members is
currently based on three-dimensional (3-D) solid
modeling, plate/shell elements to model thin-walled
structures, and beam finite elements. The first two
of these approaches require significant modeling
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and computational effort and are frequently inap-
propriate, especially in preliminary design stages.
On the other hand, beam finite elements are com-
putationally efficient and are available in all com-
mercial finite element codes. The use of beam finite
elements, however, requires a set of cross-sectional
elastic constants as input. For all but the most
trivial configurations, these constants must be de-
termined from a separate cross-sectional analysis.
Presently available commercial finite element codes
lack the capability of performing cross-sectional
analysis for beams, and cross-sectional elastic con-
stants for beams made of general anisotropic-
material cannot be determined analytically except
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in the case of very specialized cross-sectional geo-
metry. The present paper provides an increase in
capability for a recently developed cross-sectional
analysis. Such an approach is able to deliver fast
and compact results which can then be used in
a much more efficient 1-D formulation.

The loads peculiar to rotating beams are respon-
sible for centrifugal and Coriolis forces and call for
rigorous treatment of various couplings and non-
linear effects that may occur. In this context, the
so-called ‘‘trapeze effect’’ is a non-linear effect due
to extension-torsion coupling in beams undergoing
large axial forces. This effect has been found to be
important in applications involving helicopter ro-
tor blades, propellers and turbomachinery blades
which, in all cases, have to cope with large centrifu-
gal forces.

With the advent of composite rotor blades,
values for the additional (coupling) stiffness con-
stants need to be accurately determined. Published
analyses can be found for numerical cross-sectional
analysis of anisotropic beams (see [1, 2] and the
references cited therein). Although most of the
earlier works are based on linear elasticity theory,
the resulting cross-sectional constants have been
frequently used in geometrically non-linear ana-
lyses. One should not expect this sort of an ad hoc
approach to be sufficient for general treatment of
non-linear phenomena.

In recent years, to remedy this problem, asymp-
totic formulations have been developed which serve
as the basis for a numerical method, say a finite
element method [2]. Starting with geometrically
non-linear elasticity theory, one finds frequently
that a helpful intermediate result is a splitting of the
non-linear problem into a linear 2-D analysis and
a non-linear 1-D analysis. However, published
work in this area to date cannot yet treat the
so-called ‘‘trapeze effect’’, because it stems from
non-linearity of the cross-sectional analysis.

For composite beams the trapeze effect has been
treated by means of a simple expression, attributed
to Rehfield in [3]. Also there is the finite element
approach of [4], intended to augment [5]. Recently,
an analytical asymptotic solution for anisotropic
strips was presented in [6, 7]. To our knowledge,
however, there are no analyses within an asymptotic
framework which capture the trapeze effect in gene-

rally anisotropic beams of arbitrary cross-sectional
geometry. The present work is intended to fill this
gap and allow for an asymptotically correct deter-
mination of the class of those effects which render
the cross-sectional analysis non-linear for beams of
arbitrary cross-sectional geometry and made of gen-
erally anisotropic materials. This is accomplished
by using a finite element discretization of the cross
section. The measure for ‘‘correctness’’ is provided
by the variational-asymptotic method. This gets rid
of the ad hoc assumptions which are frequently
invoked in the process of specializing the exact 3-D
elasticity to beams regarded as 1-D structures.

As far as the ‘‘trapeze’’ effect is generally con-
cerned, one can talk basically about two different
aspects of it. One is the change in torsional stiffness
due to an axial load, and other is the untwisting of
pretwisted beams of non-circular cross section due
to an axial load [8]. The former is due to the
presence of certain non-linear terms in the strain
field due to moderate local rotation [9]. The latter
is mostly due to geometrical considerations and has
been treated in [8] for isotropic beams and in [10]
for generally anisotropic beams.

As a prime consequence of the above effects, both
the aerodynamics and the torsional vibration char-
acteristics will be affected, which in turn will modify
the aeroelastic stability boundary. Such analyses
are available in Refs. [3, 11]. The effect is also
inevitable when dealing with axial-torsional buck-
ling of columns with open sections, where a com-
pressive axial force is applied as opposed to a
extensional force in the case of rotating blades.

2. Previous work

The first recorded observation of the ‘‘trapeze’’
effect came with experiments conducted by Camp-
bell [12] and was investigated by Pealing [13]. The
first explanation came from Buckley [14], who first
considered the beam as being composed ‘‘of a
number of consecutive fibers, parallel to the length
of the strip.’’ Differences in material anisotropic
properties for different specimens were correctly
ascribed to experimental discrepancies. It was
stated in his work that the ‘‘bifilar effect’’ (the term
for ‘‘trapeze effect’’ at the time of the paper) is
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independent of the fibrous structure of the material
of the strip, whereas the torsional rigidity strongly
depends on it. It is also known that both depend on
the cross-sectional geometry but in complementary
directions: when one increases the other decreases.

In his work, Wagner [15] also uses the hypothe-
sis of longitudinal material fibers, but he primarily
treats increases in the torsional rigidity due to
restrained torsion of thin-walled open section con-
figurations, the so-called ‘‘Vlasov effect’’. He also
considers the trapeze term in his equations for
torsional buckling, but the derivation is similar to
Buckley’s, as also observed by Goodier [16]. The
hypothesis of longitudinal fibers is based on intui-
tive arguments, and counter examples have been
noted [8]. In the absence of more powerful ana-
lyses, the domain of validity cannot be determined.
There is also the need to consider the possible
redistribution of stresses on the cross section due to
non-linearities.

Another approach was offered by Biot [17]. He
uses second-order rotation effects in conjunction
with a state of prestress of the beam in order to
capture the trapeze term. Biot’s analysis also
pointed out that the effect is significant for ‘‘sec-
tions having a low torsional rigidity in their natural
state’’. Goodier’s approach [16] is similar to Biot’s
method but considers Trefftz’s stress components
and also attempts to determine the influence of
bending on torsional rigidity.

Houbolt and Brooks [18] developed equations
of motion for rotating beams which included the
trapeze stiffening and pretwist terms. They impli-
citly used Buckley’s hypothesis, which allows for
a correct determination of the increase in torsional
rigidity but turns out to give incomplete results
when used for the determination of the pretwist
effect as pointed out by Hodges [8] and Rosen
[19]. Both of these references consider the role of
curvilinear coordinates, and the former along with
[20] treat the problem with a non-linear definition
of the strain, both of which are necessary ingredi-
ents toward a consistent treatment of the problem.

Trapeze effects were considered in specialized
helicopter blade dynamics analyses (see [3, 21, 22])
and in turbomachinery applications (see [23, 24]).
As a general trend, it seems that Buckley’s hypothe-
sis is quite popular in spite of the controversy that

has surrounded it. Nevertheless, the method has
been improved (see [25] for an analysis) over the
years but a certain degree of arbitrariness still re-
mains.

It is with this in mind that the present analysis
was developed. So, a non-linear, numerical cross-
sectional analysis is developed herein in an asymp-
totic fashion to treat cross sections of arbitrary
geometry and made of generally anisotropic mate-
rials. As seen from the literature survey, this type of
analysis is particularly important in rotating struc-
tures, such as helicopter rotor blades. Results from
this model will be compared with those available in
the literature, both theoretical and experimental.

3. Beam kinematics

We consider an initially straight and untwisted
beam undergoing extension, torsion, and bending
in two directions. Initial curvature and twist, shear
deformation and restrained warping effects need
not be considered here in light of the following
reasoning: introducing h as a characteristic dimen-
sion of the cross section, l as the characteristic
wavelength of deformation along the beam, R as
the maximum radius of curvature/twist, and e as
the maximum strain in the beam, one can charac-
terize the strain energy of an elastic beam as an
asymptotic series. The leading terms of this series
contain the so-called classical theory, which is
a quadratic form in terms of extension, twist, and
bending generalized strain measures [26, 2]. All
other terms in the series are multiplied by some
small paramter(s). Initial curvature and twist are
refinements of the order of h/R, (h/R)2, etc., treated
in [10], for example. Non-classical effects such as
transverse shear and the Vlasov effect are refine-
ments with respect to the leading terms of the order
of (h/l)2, which will be presented in later papers.
The trapeze effect can be considered as a subset of
the terms present in the correction that is O(e)
relative to the leading terms.1 It is fortunate indeed

1 It should be noted that the terms of interest are formally O(e)
relative to the leading terms, but a portion of these terms have
numerically large coefficients for some cross-sectional configura-
tions.
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that other small parameters can be ignored in the
calculation of the O(e) refinement, because it would
be practically impossible to consider still higher-
order refinements, such as those of order eh/R for
example.

3.1. Beam in the undeformed state

In order to carry out this development, we orient
the beam along the x

1
-axis of a Cartesian system x

i
,

i"1, 2, 3. Here and throughout the paper, Latin
indices take values 1, 2, and 3, while Greek indices
take values 2 and 3; repeated indices are summed
over their ranges. The x

1
-axis passes through the

area centroids of each normal cross-sectional plane.
Consider xa to be the coordinates parallel to the
cross-sectional plane. Finally, let the corresponding
orthogonal unit vectors bª

i
be along x

i
.

From the framework defined in [27], the unde-
formed state is described by the position vector of
a particle belonging to the actual cross section.
Thus, we can write

r6 (x
1
, x

2
, x

3
)"x

i
bª
i
. (1)

The covariant and contravariant base vectors for
the undeformed state are simply equal to bª

i
.

3.2. Beam in the deformed state

The position vector of a point in the deformed
structure may be defined as

R1 (x
1
,x

2
,x

3
)"R(x

1
)#xaBª a (x

1
)

#w
i
(x

1
, x

2
, x

3
)Bª

i
(x

1
), (2)

where Bª
i
"CBb

ij
bª
j
are the unit basis vectors for the

cross section of the deformed beam, R(x
1
) is the

position vector to points on the reference line of
the deformed beam, and w

i
(x

1
, x

2
, x

3
) represents

both inplane and out-of-plane warping compo-
nents. The nature of the constraints imposed on the
warping below dictate the nature of the deformed
beam reference line and reference cross sections, i.e.
the specific definitions of CBb

ij
and R. The choice of

constraints is not unique; we will use integral con-
straints which cause the resulting 1-D strain energy
functional to be simple. These constraints are

chosen to be

SR1 T"S1T R, Ba · R@"0,

B
2
·SR1 x

3
T"B

3
·SR1 x

2
T (3)

with the notation

SfT"P
S

fJg dx
2
dx

3
. (4)

This means that the deformed beam reference line is
the average position of the material points in the
deformed beam which made up the reference cross-
sectional plane of the undeformed beam. This also
implies that the warping is constrained so that

Sw
i
T"0,

Sx
2
w
3
!x

3
w
2
T"0. (5)

It follows that

R@"(1#c)Bª
1
, (6)

where c is the 1-D extensional strain measure of the
beam. The other 1-D strain measures are

i"Mi
1

i
2

i
3
NT (7)

which are the elastic twist measure and the bending
measures in the two directions, respectively. The
curvature vector is defined so that Bª @

i
"i

j
Bª
j
]Bª

i
.

This will facilitate the writing of the covariant basis
vectors in the deformed state, which are given by

G
1
"R@#xaBª @a#w

i
Bª @
i
#w@

i
Bª
i
,

G
2
"Bª

2
#w

i,2
Bª
i
,

G
3
"Bª

3
#w

i,3
Bª
i
. (8)

The underlined term contributes O(h/l) terms
relative to the leading terms of the 1-D energy, so
we need not consider it here.

4. Green strain formulation

The deformation gradient can be expressed using
the covariant base vectors of the deformed beam
and the contravariant base vectors of the unde-
formed beam

A"G
i
bª
i
. (9)
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For non-linear analysis the Green strain tensor is
given by (see [28])

C"1
2
(AT )A!I). (10)

As pointed out above, the leading terms in the
strain energy constitute the classical theory of pris-
matic beams. The terms being derived here can be
regarded as an O(e) refinement of the leading terms
of the order of the strain. In light of the definition of
the maximum strain book-keeping parameter

e"max(c, hi
1
, hi

2
, hi

3
) (11)

the expression for the matrix of 3-D strain compo-
nents must contain all terms up through O(e2), viz.,

!"(!ee#!
h
w)#(%ee e

nl
#%ew w#%

ww
w), (12)

where the underlined terms are O (e2). Note that
!"x!

11
/2!

12
/2!
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D!
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D2!
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D!

33
yT. The op-

erators are given by
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where c*"c!i
3
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2
x
3

and

%
ww

"
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The subscript a following the comma in w
i,a repre-

sents the partial derivative taken with respect to xa,
and La"L/Lxa. Finally, the column matrices for 1-
D strains, the non-linear 1-D strains, and the warp-
ing are given by

e"xci
1
i
2
i
3
yT, (18)

e
nl
"xc2i2

1
i2
2
i2
3
ci

2
ci

3
i
2
i
3
yT, (19)

w"xw
1
w
2
w
3
yT. (20)

5. Finite element formulation

Considering a finite element formulation for the
warping field one can write

w"[S]», (21)

where [S] is the matrix of shape functions and » is
the column matrix of nodal values of the warping.
In order to obtain the strain energy per unit length
of the beam, one has to integrate the strain energy
density over the cross-sectional area. The strain
energy density is given by

º"1
2

S!TD!T, (22)

where D is the 6]6 symmetric material matrix.
Since we are interested in only the O(e) refinement
relative to the leading terms, one needs to retain
terms only up to O(e3) in the strain energy. This
yields

2º"eTDeee#2»TD
hee#»TE»#2 eT

nl
Seee e

#2»TS
wee e#2»TS

wwe e#2 eT
nl

Seeh»

#2»TS
weh»#2»TS

wwh
» , (23)

where » is the column matrix that contains all the
nodal values of the warping and expressions for the
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material matrices are given in the appendix, Eqs.
(A.1). The O(e3) terms in the strain energy are
underlined. The first approximation for the warp-
ing is obtained by considering the principal part of
the strain energy (i.e. only second-order terms). The
first-order warping field is the solution of

D
hee#E»"Ht

#-
k (24)

where the column matrix k contains the Lagrange
multipliers which impose the constraints on warp-
ing. They are given by

k"tT
#-

D
he e, (25)

where t
#-

forms the null-space of matrix E so that

Et
#-
"0 (26)

and H is a matrix defined as

H¢S[S]T [S]T. (27)

Due to the indeterminacy introduced by the
warping field, the matrix E is singular. The indeter-
minancy is removed by considering constraints in
the warping field. To solve the system given by Eq.
(24) the matrix E`

#-
must be introduced such that

EE`
#-
"I!Ht

#-
tT

#-
, (28)

where t
#-

contains the four columns corresponding
to the vectors that span the null space of E.

6. Asymptotic approach

Suppose now that the warping for the non-linear
problem is given by

w" w
0hij

he

# w
1hij

he2
, (29)

where w
1

is the perturbation of the warping field of
order e2, and w

0
represents the solution of Eq. (24)

and is therefore O(e). We require that the entire
warping satisfies the same constraints (5). Since the
initial warping already satisfies these constraints, it
follows that the warping perturbation must satisfy
them as well. Consider the finite element discretiza-
tion

w"[S] »
0
#[S] »

1
. (30)

This determines that only O (e2) terms need to be
kept in the strain expression so that

!"!e e#!
h
»
0
#!

w
»
1
#%ee e/-#%ew»

0

#%
w0w

»
0
#O(e3), (31)

where %
w0w

is the %
ww

operator in Eq. (17) with
only the first component of the warping. The
underlined terms are O(e2). Now let us substitute
this expression into the energy, keeping only terms
up to O(e3). The strain energy becomes

2º"eTDee e#2»T
0

D
he e#»T

0
E»

0
#2»T

1
D

he e

#2 eT
nl

Seee e#2»T
0

S
wee e#2»T

0
S
ww0e e

#3»T
1

E»
0
#2 eT

/-
Seeh»0

#2»T
0

S
weh»0

#2»T
0

S
ww0h

»
0

(32)

where the underlined terms are O(e3) and

S
w0we"S[%

w0w
S]T D !eT,

(33)
S
w0wh

"S[%
w0w

S]T D [!
h
S]T.

According to the results from the variational-
asymptotic method (see [29, 30]), the part of the
strain energy containing the perturbation terms
must vanish. This means we get the equation

»T
1

D
he e#»T

1
E»

0
"0. (34)

According to the warping constraint equation,
»T
1
Ht

#-
"0. Thus, using Eq. (24) this equation is

identically satisfied.
This result is crucial because it proves the re-

markable result that only the first (i.e. the classical)
approximation for the warping is sufficient in order
to deliver the 1-D strain energy asymptotically cor-
rect up to the third order in strain. However, it is
noteworthy to remark that this proof does not
imply the calculated warping is exact since we miss
the contribution of »

1
. Theoretically, it can be

calculated, but practically it requires a tremendous
effort and provides little added benefit. One has
to do so only if higher-order corrections to the
displacement, strain and/or stress fields are needed.

7. Mathematical realization

In order to carry out further calculations to ac-
tually determine the constitutive relation for the
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cross section, it is necessary to somehow pull out
the unknown 1-D strain from inside the matrices
where they are buried (i.e. %ew and %

ww
) and the

1-D strain measures contained in the warping.
The first approximation of the warping is written

for an element

w
0
"S»]

0
e, (35)

where S is the matrix of the shape functions, and
»] is determined by the solution of Eq. (24). For
simplicity of notation the index ‘‘0’’ will be dropped.
The ith component of the warping can be written
using the summation rule over repeated indices as

w
i
"cS

ij
»]
j1
#i

1
S
ij
»]
j2
#i

2
S
ij
»]
j3
#i

3
S
ij
»]
j4

"e
k
S
ij
»]
jk

(36)

which helps us to write the strain components,
which are non-linear functions of the 1-D strain
measures, in a more convenient form.

One can express the components of the 3-D
strain due to part %ew as

!ew"(c!(c)ew#i
1
!(iÇ)ew #i

2
!(iÈ)ew #i

3
!(iÊ)ew ) e, (37)

where
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!(iÇ)ew "

0

(x
3
S
2j,2

#x
2
S
3j,2

!S
3j

)»]
j~

(x
3
S
2j,3

#x
2
S
3j,3

#S
2j

)»]
j~

0
~3

, (39)
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0
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2
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!x
2
S
1j,3

»]
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0
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, (41)

and where the notation »]
j~

means the jth row of
matrix »] .

The components of the 3-D strain due to part
%

ww
can be cast in the same form, so that

!
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"(c!(1)
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1
!(2)
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2
!(3)
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3
!(4)
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where
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1
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S
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Finally, the %ee part of the strain can take a simi-
lar form (but not unique) if we consider

!(c)ee "C
1
2

0 x
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0
5]4
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2
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Hence,

!ee"(c!(c)ee #i
1
!(iÇ)ee #i

2
!(iÈ)ee #i

3
!(iÊ)ee ) e. (48)

Considering the symbols e
k
and k equivalent and

interchangeable, then

!
k
"!(k)ee #!(k)ew#!(k)

ww
(49)

which enables us to write the strain over the ith
element as

!(i)"(!
#-
#c!c#i

1
!iÇ

#i
2
!iÈ

#i
3
!iÊ

) e, (50)

where !
#-

is the classical strain field.
The strain energy is then found by integrating

over all elements and can be cast in a form involv-
ing four more non-classical stiffness matrices

º"eT (1
2

A
#-
#cAc#i

1
BiÇ

#i
2
CiÈ

#i
3
DiÊ

) e,
(51)

where A
#-

is the classical stiffness matrix.
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The cross-sectional stiffness matrix is obtained
by expressing the resultant forces on the beam cross
section as

R¢ G
F
1

M
1

M
2

M
3
H"G

Lº
Lc
Lº
Li

1
Lº
Li

2
Lº
Li

3

H . (52)

8. Applications

8.1. Isotropic beams

The classical test case is given by a beam made of
isotropic material, which is expected to give the
basic idea about the impact of the non-linearities.
For the isotropic case the matrices are obtained in
the form presented in the appendix, Eqs. (A.2)—
(A.6). Hence, according to Eq. (52) the non-linear
loads are obtained as follows:

F
1
"cEA#2i2

1
B
12
#2i2

2
(A

33
#C

13
)#2i3

2
D

14
,

(53)

M
1
"i

1
(GJ#4B

12
c), (54)

M
2
"i

2
[EI

2
#4(A

33
#C

13
) c], (55)

M
3
"i

3
(EI

3
#4D

14
c). (56)

The doubly underlined term represents the increase
in torsional rigidity due to axial tensile load. The
singly underlined terms are similar terms represent-
ing the increase in bending stiffness due to the axial
load. These last terms are usually small and are
neglected, but it not possible to say that they never
turn out to be important. The only place in the
literature where we found a derivation containing
terms of this type is [16].

8.2. Composite beams

Another illustrative case is provided by
Winckler’s system (see [31]) consisting of an

antisymmetric composite strip with extension-twist
coupling. The resulting linear and non-linear stiff-
ness matrices are given in the appendix, Eqs.
(A.7)—(A.11). For this case the relations for the
resultant interior forces will have more non-linear
contributions:

F
1
"c[A

#-ÇÇ
#i

1
(4A

12
#2B

11
)#3cA

11
]

#2i
1
A

#-ÇÈ
#i2

1
(2B

12
#A

22
)

#i2
2
(2C

13
#A

33
)#i2

3
(2D

14
#A

44
), (57)

M
1
"i

1
[A

#-ÈÈ
#c (4B

12
#2A

22
)#3i

1
B

22
]

#2
#-ÇÈ

#c2(2A
12
#B

11
)#i2

2
(2C

23
#B

33
)

#i2
3
(2D

24
#B

44
), (58)

M
2
"i

2
A

#-ÊÊ
#ci

2
(2A

33
#4C

13
)#i

1
i
2
(2B

33
#4C

23
) ,

(59)

M
3
"i

3
A

#-ËË
#ci

3
(2A

44
#4D

14
)#i

1
i
3
(2B

44
#4D

24
) .

(60)

The underlined terms are non-linear contributions
to the linear stiffnesses, and the doubly underlined
term is the main effect which gives the increase in
torsional rigidity.

8.3. A **rotor blade++ problem

One case of interest is given by an axially loaded
beam free to twist and bend which represents a typ-
ical rotating blade configuration in vacuum

F
1
O0; M

1
"0; M

2
"0; M

3
"0. (61)

Eq. (51) is accurate, but for existing 1-D codes some
extensive reprogramming may be needed since it
involves non-linear terms in the 1-D strain
measures. A somewhat more desirable expression
for finding the column matrix of interior forces R to
accomodate existing analyses would be

R"Ae (62)

which preserves the form of the classical expression
but where the elements of the stiffness matrix A
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may be functions of the interior forces, in particular
for our case, the stretching force F

1
. This is moti-

vated by the fact that for rotating beams, this force
is known a priori as the centrifugal force. This is the
idea in Rehfield’s model (see [3]), which alters the
torsional rigidity term by adding a contribution
proportional with the applied stretching force

A
22
"A

#-ÈÈ
#A

A
#-ÊÊ

#A
#-ËËA

#-ÇÇ
B FM

1
, (63)

where FM
1

is the equilibrium value of the axial force.
To obtain the coresponding increase in torsional

rigidity requires a separate analysis in which the
general relations, Eqs. (51) and (52), are trans-
formed in order to accomodate Eq. (61). This is best
done using symbolic computation, where advant-
age should be taken of neglecting certain small
terms which appear due to the structure of the
non-linear contributions. This process yields results
which are specific to each application, and it seems
that no general expression can be given a priori.

8.4. Numerical results

The theoretical development described above
has been implemented in the existing code VABS
(variational-asymptotic beam section); see [2]. The
code can handle arbitrary cross-sectional geo-
metries of initially curved and twisted composite
beams [10].

A well-documented test case is provided with
both experimental and theoretical results by Ar-
manios et al. [32]. They considered two specimens
with the same material properties, given in Table 1
and a pretwist of !5°. The layup for specimen 1 is
[20

2
/!70

4
/20

2
/!20

2
/70

4
/!20

2
]
T

while for
specimen 2 it is [30

2
/!60

4
/30

2
/!30

2
/ 60

4
/!30

2
]
T
.

For the case of the first specimen the resultant
interior forces are determined according to Eq. (52).
These results are presented together with the ex-
perimental results of [32] in Figs. 1 and 2, where
the tip twist angle h was represented as a function of
the axial force F. A mesh of 160, six-node
isoparametric finite elements was used. The results
show excellent agreement with experiment, and the
present results are right on top of those from [6].

Table 1
Geometrical and material characteristics for the extension-twist
coupling experiments

¸"254 mm
2b"25.4 mm
h"1.168 mm
E
11
"135.6 GPa

E
22
"E

33
"9.9 GPa

G
12
"G

13
"4.2 GPa

G
23
"2.3 GPa

l
12
"l

13
"0.3

l
23
"0.5

Fig. 1. Extension—twist coupling in specimen 1.

Fig. 2. Extension—twist coupling in specimen 2.
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Fig. 3. Trapeze effect variation with the aspect ratio.

As the cross section departs from a strip confi-
guration, the trapeze effect becomes less and less
important compared to the overall torsional rigi-
dity. For the layup given by specimen 1 above, the
thickness of the strip was gradually increased while
the area was kept constant. The parameter

L2M
1
/LcLi

1
LM

1
/Li

1
DiÇ/0,c/0

"

4B
12
#2A

22
A

#-ÈÈ

(64)

is taken as a measure of the contribution given by
the trapeze effect. Its variation as the cross section
gradually changes from a thin strip to a square
configuration is represented in Fig. 3 as a function
of the aspect ratio (h/b) of the cross section. It can
be seen that for (h/b) larger than approximately 0.2
the effect rapidly becomes less significant. For
example, taking a limit axial strain c

11
"0.01, the

trapeze effect will account of about 25% increase in
torsional rigidity at h/b"0.2 while for h/b"0.3
the contribution is of about 15%. This is down
from 100% at h/b"0.1 or 500% at h/b"0.05
where the torsional rigidity due to the trapeze effect
is dominant.

For cases in which an axial force is involved
(such as in the case of the centrifugal force in
rotating blades), Rehfield’s model provides an ad-
equate way to easily accomodate the trapeze effect
contribution without extensive modification of
a linear cross-sectional analyses. For the two lami-
nates presented above the results were indeed in

Fig. 4. Trapeze effect variation with the aspect ratio (boxbeam).

very good agreement with the present results. To
further test the validity of Rehfield’s model a couple
of other geometries departing from a strip-like con-
figuration have been considered. As a closed cross
section configuration, the ‘‘symmetric 4’’ bending-
twist coupled box-beam of [33] was selected. The
aspect ratio has been varied while the thickness and
width were kept constant. For numerical values,
the analysis is carried out considering an axial force
corresponding to the limiting case of an axial strain
of c"0.01. The absolute increase in torsional rigi-
dity was found to differ by as much as 200% of the
value predicted by Rehfield’s formula. However,
because the torsional rigidity is significantly larger
for closed cross sections, the results indicate that
Rehfield’s formula overpredicts the total torsional
rigidity by approximately 2% for higher aspect
ratios. This is presented in Fig. 4. Finally, I-beams,
a circular tube with a cutout and a semicircle have
been considered as other examples of open cross
sections. For all these the differences observed be-
tween Rehfield’s formula and the present model
were minimal.

9. Conclusions

The modeling capability of a recently developed
cross-sectional analysis [2] was increased to in-
clude non-linear phenomena, such as the trapeze
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effect. Based on the variational-asymptotic method
it was possible to show that the first approximation
of the warping, derived for the classical problem, is
sufficient to render the strain energy correct up
through the third order in the 1-D strain measures.
For the problem of small strain and moderate local
rotations this is sufficient.

The principal correction to the classical theory
of the order of maximum strain, for the types of
structures investigated, is the non-linear extension-
twist coupling. This is especially the case when
thin-walled open cross sections or strip-like confi-
gurations are involved. Since for these cases the
torsional stiffness is relatively small, the trapeze
terms may become dominant.

The results for the two strip-like configurations
presented above were in very good agreement with
both experimental and theoretical results in the
literature. The finite element mesh is similar to that
used for the classical problem and the increase in
the computational effort is less than 6% primarily
due to the fact that the warping field does not need
to be recalculated. Also, the input data remains
practically unchanged. This makes the implementa-
tion quite easy to use for practical problems of any
complexity.

It should be noted that Rehfield’s formula pro-
vides a way to estimate the change in torsional
rigidity as a function of the applied axial force
which is in general a known quantity. For open
cross sections the formula gives an accurate estima-
tion, within a 2% error margin relative to the
overall stiffness value. For closed cross sections
departing from a strip-like geometry, the formula
performs poorly in assessing the trapeze effect, but
this is not a serious problem because the torsional
rigidity of the unloaded beam dominates the contri-
bution from the trapeze effect. This shows that, for
the case of a beam under axial force, Rehfield’s
model is a good substitute for torsionally soft be-
ams with simple cross-sectional geometries. How-
ever, when precision is important or when one is in
doubt about the actual values, as it may be the case
for some arbitrary cross-sectional geometry, the use
of the present method is recommended.

Finally, it is noted that, in addition to the trapeze
terms, which couple extension and twist, the non-
linear cross-sectional analysis gives rise to other

non-linear coupling terms in the 1-D constitutive
law. For all cases checked to date, these terms are
negligibly small. However, it cannot be ruled
out that these terms may turn out to be non-
negligible in certain applications. To determine
whether or not this is the case, additional research
is required.

Appendix

Definitions of system matrices:

Dee"S!Te D!eT,

D
he"S[!

h
S]TD!eT,

E"S[!
h
S]TD[!

h
S]T,

Seee"S%TeeD!eT,

Seeh"S%TeeD [!
h
S]T,

S
wee"S[%ewS]TD!eT,

S
weh"S[%TewS]TD[!

h
S]T,

S
wwe"S[%T

ww
S]TD!eT,

S
wwh

"S[%T
ww

S]TD[!
h
S]T. (A.1)

Stiffness matrices for the isotropic strip:

A
#-
"

EA 0 0 0

0 GJ 0 0

0 0 EI
2

0

0 0 0 EI
3

, (A.2)

Ac"

0 0 0 0

0 0 0 0

0 0 2A
33

0

0 0 0 0

, (A.3)

BiÇ
"

0 B
12

0 0

B
12

0 0 0

0 0 0 0

0 0 0 0

, (A.4)
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CiÈ
"

0 0 C
13

0

0 0 0 0

C
13

0 0 0

0 0 0 0

, (A.5)

DiÊ
"

0 0 0 D
14

0 0 0 0

0 0 0 0

D
14

0 0 0

. (A.6)

Stiffness matrices for anisotropic strip:

A
#-
"

A
#-ÇÇ

A
#-ÇÈ

0 0

A
#-ÇÈ

A
#-ÈÈ

0 0

0 0 A
#-ÊÊ

0

0 0 0 A
#-ËË

, (A.7)

Ac"

A
11

A
12

0 0

A
12

A
22

0 0

0 0 A
33

0

0 0 0 A
44

, (A.8)

BiÇ
"

B
11

B
12

0 0

B
12

B
22

0 0

0 0 B
33

0

0 0 0 B
44

, (A.9)

CiÈ
"

0 0 C
13

0

0 0 C
23

0

C
13

C
23

0 0

0 0 0 0

, (A.10)

DiÊ
"

0 0 0 D
14

0 0 0 D
24

0 0 0 0

D
14

D
24

0 0

. (A.11)
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