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axes, respectively, equations (6), m"

torsional stiffness constant, equations (6), m*

dimensionless parameter, equations (B2)

modal stiffness matrix, equation (28)

reduced frequency, wc/2V

blade cross—section polar radius of gyration, equations (6), m
blade cross-section mass radius of gyration, equations (6), m

principal mass radii of gyration, equations (6), m

aerodynamic 1lift per unit length, equations (l1), N/m
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generalized aerodynamic forces per unit length, equations (2)
and (23), N/m

number of rotating coupled modes; also, aerodynamic pitching
moment per unit length, equations (11), N-m/m

modal mass matrix, equation (28)

generalized aerodynamic moment per unit length, equations (2)
and (23), N-m/m

mass per unit length, equations (6), kg/m

number of nonrotating modes for each of the flap bending,
lead-lag bending, and torsion deflections

matrices whose eigenvalues determine stability, equations (30)
and (35)

flap~lag structural coupling parameter
blade length, m

aerodynamic force per unit length tangent to blade airfoil
chordline, figure 6, N/m

blade tension, N; also, aerodynamic force per unit length
normal to blade airfoil chordline, figure 6, N/m

time, sec
kinetic energy, equation (2), kg-m?/sec?

transformation matrix relating deformed and undeformed blade
coordinate systems, equation (A2)

blade airfoil wvelocity with respect to the fluid, component
normal to spanwise x' axis, equations (13), figure 5,
m/sec

matrix of eigenvectors for free vibration of blade about its
equilibrium position, equation (33)

velocity components of blade airfoil section with respect to
the fluid, parallel to the y' and z' axes, respectively,

figure 5, m/sec

displacements of the elastic axis in x, y, z directions,
figure 3, m

strain energy, equation (2), N-m
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free-stream velocity component of two-dimensional airfoil,
figure 5, m/sec

velocity of a point in the blade, equations (2), m/sec

lead-1lag bending and flap bending generalized coordinates,
equations (25)

induced downwash velocity, equation (24), m/sec

column vector of perturbation modal generalized coordinates,
equation (29)

undeformed coordinate system, figure 3, m

deformed coordinate system fixed to blade, figure 3, m
airfoil section angle of attack, figure 5, rad

rotation matrix for angular velocity components, equation (A4)

components of angular velocity for blade airfoil section,
equation (A4)

constants for assumed mode shapes, equations (26)

precone angle, figure 3, rad

Lock number, 3 pwacR/m for blade with uniform mass distribution

Kronecker delta

virtual work of nonconservative forces, equations (2), N-m

small parameter of the order of bending slopes; also airfoil
section pitch angle with respect to free-stream velocity,
figure 5, rad

strain components, equations (3)

blade cross section principal axes coordinates, figure 4, m

nonrotating torsional mode shape, equation (26)

blade pitch angle, rad

blade pitch angle where motion is neutrally stable, rad
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dimensionless torsional rigidity, equations (B2)
warp function, equation (3)

dimensionless bending stiffnesses, equations (B2)
dimensionless mass radii of gyration, equations (B2)
structural density, kg/m3

air density, kg/m3

solidity be/mR; also, real part of eigenvalues, made
dimensionless by Q

engineering stress components, N/m
torsion generalized coordinates, equations (25)

elastic torsion deflection about x'

axis, figures 3 and 4, rad
nonrotating flap and lead-lag bending mode shapes, equations (26)

dimensionless time, Qt

fundamental lead-lag, flap, and torsion natural frequencies,
made dimensionless by

imaginary part of eigenvalue, made dimensionless by @
rotor blade angular velocity, sec”!
3/3x (3/8% din appendix B)
/3t (3/9¢ 1in appendix B)

equilibrium and perturbation components of generalized
coordinates

circulatory aerodynamic term
noncirculatory aerodynamic term
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length quantity made dimensionless by R, or velocity made
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STABILITY OF ELASTIC BENDING AND TORSION OF UNIFORM CANTILEVER
ROTOR BLADES IN HOVER WITH VARIABLE STRUCTURAL COUPLING
Dewey H. Hodges* and Robert A. Ormiston%*

Ames Research Center
and
Ames Directorate
U.S. Army Air Mobility R&D Laboratory

SUMMARY

The stability of elastic flap bending, lead-lag bending, and torsion of
uniform, untwisted, cantilever rotor blades without chordwise offsets between
the elastic, mass, tension, and aerodynamic center axes is investigated for
the hovering flight condition. The equations of motion are obtained by simpli-
flying the general, nonlinear, partial differential equations of motion of an
elastic rotating cantilever blade. The equations are adapted for a linearized
stability analysis in the hovering flight condition by prescribing aerodynamic
forces, applying Galerkin's method, and linearizing the resulting ordinary
differential equations about the equilibrium operating condition. The aero-
dynamic forces are obtained from strip theory based on a quasi-steady approxi-
mation of two-dimensional unsteady airfoil theory. Six coupled mode shapes,
calculated from free vibration about the equilibrium operating condition, are
used in the linearized stability analysis. The study emphasizes the effects
of two types of structural coupling that strongly influence the stability of
hingeless rotor blades. The first structural coupling is the linear coupling
between flap and lead-lag bending of the rotor blade. A structural coupling
parameter & is introduced to simulate variations in flap-lag structural
coupling that arise for blades having nonuniform stiffness distributions. The
second structural coupling is a nonlinear coupling between flap bending, lead-
lag bending, and torsion deflections. Results are obtained for a wide variety
of hingeless rotor configurations and operating conditions in order to provide
a reasonably complete picture of hingeless rotor blade stability characteris-
tics. The stability of torsionally flexible blades is strongly influenced by
the effects of the bending-torsion structural coupling. Without precone,
typical configurations are usually stable except for low values of ® or low
torsion frequencies. Addition of precone is strongly destabilizing for a wide
range of configurations. Except for very low torsion frequencies, the results
also indicate that the structural terms in the torsion equation dominate the
torsion inertia and damping terms which permits the use of an approximate,
but simplified, system of equations with fewer degrees of freedom. Finally,
the accuracy of the results is sensitive to the number and type of mode shapes
used in the analysis.

*Ames Directorate, U.S. Army Air Mobility R&D Laboratory



INTRODUCTION

The general problem of helicopter aeroelastic stability involves coupling
between the motion of the individual blades and coupling between the rotor and
the body of the helicopter; control system dynamics may also be involved. The
complexity of the general problem poses a considerable challenge to the ana-
lyst, both in developing an analytical model of the system and in understand-
ing its physical behavior. An important part of the general rotor-body dynamic
system is the single blade rotating about an axis fixed in space. For many
problems of practical interest, blade-to-blade and rotor-body couplings are
not significant and the analysis of a single rotor blade constitutes an impor-
tant problem by itself. Even when coupling with other blades and the body is
significant, the single blade behavior usually remains recognizable and can be
helpful in understanding the behavior of the more complete system. For this
reason, the dynamics of a single blade forms an important fundamental building
block in the study of helicopter dynamics.

Helicopter rotors with cantilever blades are commonly termed hingeless
rotors. In contrast with the more conventional articulated rotor, the canti-
lever blades of the hingeless rotor are attached directly to the hub without
flap or lead-lag hinges. This configuration reduces mechanical complexity and
improves helicopter flying qualities by increasing rotor control power and
angular rate damping. The lack of hinge articulation also alters the struc-
tural characteristics of the rotor blade and can significantly influence aero-
elastic stability.

Aeroelastic stability of the articulated rotor blade is primarily deter-
mined by the relative chordwise position of the aerodynamic center, center of
mass, and elastic axes. When these are unfavorable, an instability may occur
that is usually characterized by coupled flap bending and torsion deflections
with & frequency near the torsion natural frequency.

In the case of the hingeless rotor blade, another type of instability is
possible because of the structural coupling between bending and torsion deflec-
tions of cantilever blades. This type of instability is usually characterized
by coupled flap bending, lead-lag bending, and torsion deflections of the
blade with a frequency near the lead-lag bending natural frequency. The struc-
tural coupling of cantilever blades is significantly dependent on the specific
configuration parameters of the rotor blade. The magnitude and variability of
this coupling make the analysis of cantilever rotor blades a complex and impor-
tant subject. Moreover, the stability characteristics of hingeless rotor
blades are still not well understood, even though considerable work has been
devoted to this problem recently. The present investigation is intended to
provide an improved understanding of the basic structural aspects of these
problems; therefore, the effects of chordwise offsets between the elastic,
mass, tension, and aerodynamic center axes are not included in this report.

The general equations of motion for a torsionally flexible cantilever
rotor blade contain important nonlinear inertial and structural terms. These
nonlinearities may be expected to cause nonlinear blade motion behavior, such




as limit cycles or nonlinear instabilities. For the present report, this type
of behavior is not considered, and only the linear stability characteristics
are treated. This does not mean, however, that nonlinear terms in the equa-
tions are ignored. 1In the present analysis, perturbation equations are
obtained by linearizing the nonlinear equations about a suitable equilibrium
condition. The influence of the nonlinear terms is then manifest in the
coefficients of the linear perturbation equations.

If it is necessary to treat the complete nonlinear equations, more elab-
orate analyses must be used such as numerical integration of the equations or
asymptotic expansion techniques. However, these methods are more difficult to
apply than the standard eigenvalue methods used for linear equations and they
are not as well suited to investigations where extensive numerical results are
desired for a broad range of system parameters. Furthermore, an analysis of
the nonlinearities cannot be justified logically until the linear behavior of
the system is sufficiently well understood. For these reasons the scope of
the present report is restricted to a linear stability analysis based on
linearization of the general nonlinear equations of motion found in reference 1.
Before briefly describing the procedure used in this report, it will be useful
to review previous related research.

Discussion of Previous Research

Recent investigations of flap-lag-torsion stability of elastic canti-
lever rotor blades were preceded by simpler analyses of flap-lag stability
of torsionally rigid blades. These flap-lag investigations revealed some
of the complexities of nonlinear aerodynamic and inertial flap-lag coupling
terms of cantilever rotor blades. The early flap-lag analyses usually
relied on an approximate representation consisting of a rigid blade with
spring restrained hinges at the hub to simulate bending flexibility. At
that time, the most comprehensive equations applicable to rotating elastic
beams were the linear equations developed by Houbolt and Brooks in refer-
ence 2.

In the early flap—-lag analysis of reference 3, Young investigated the
possibility that nonlinear aerodynamic and inertial coupling terms could be
destabilizing for hingeless rotors. Subsequently, Hohenemser and Heaton
(ref. 4) showed that linearized equations of motion for the spring restrained,
hinged, rigid blade approximation could be used to investigate flap-lag insta-
bility in hover and forward flight. Further investigations in hover by
Ormiston and Hodges (ref. 5), again using the rigid blade approximation,
showed that the distribution of flexibility inboard and outboard of the pitch
bearing (the degree of flap-lag structural, or elastic, coupling) was an
important factor influencing stability. Flap-lag stability of elastic canti-
lever blades with uniform properties was studied by Hodges and Ormiston
(refs. 5 and 6), based on a derivation of nonlinear partial differential equa-
tions suitable for elastic hingeless rotor blades. The results confirmed that
the approximate rigid blade model could accurately predict lead-lag damping
provided that the flap-lag structural coupling was properly represented.
Similar equations were studied by Friedmann and Tong (refs. 7 and 8), except
that flap-lag structural coupling was not included. The stability



characteristics were determined by using an asymptotic expansion procedure
with multiple time scales. The results indicated that certain configurations
shown to be unstable from a simple linearized stability analysis would exhibit
large amplitude limit-cycle behavior with the more elaborate analysis.

Concurrently with the restricted flap-lag stability analyses, efforts
were also made to investigate the complete problem including torsional blade
deflections. Torsion deflections of hingeless rotor blades are strongly influ-
enced by nonlinear structural moments caused by flap and lead-lag bending.
This bending-torsion structural coupling, discussed by Mil' et gl. (ref. 9) is
proportional to the product of the flap and lead-lag bending curvatures and
the difference between the two bending flexibilities. Other investigators
have also noted the importance of bending-torsion structural coupling
(refs. 10-13) and it has been approximated in some stability analyses using
the rigid, hinged blade approximation (refs. 14-16). The latter analyses also
include fuselage degrees of freedom as well as rotor blade deflections.

One of the first efforts toward the nonlinear flap-lag-torsion problem
for a fully elastic blade was a derivation of nonlinear equations of motion
for elastic flap bending, lead-lag bending, and torsion of rotating beams by
Arcidiacono (ref. 17). The equations were derived in a reasonably detailed
and complete manner; however, some small nonlinear inertial terms were not
included.

Friedmann and Tong (ref. 7) and Friedmann (ref. 18) also developed flap-
lag-torsion equations. Elastic flap and lead-lag bending of a uniform blade
were considered, but the torsional deflections were approximated by rigid body
pitching motion (root torsion). The results of reference 7 indicated that
torsion motion was important and that the stability characteristics were sen-
sitive to the number and type of assumed bending mode shapes used. Flap-lag
structural coupling was not included in these reports, however, and only a few
numerical results were presented.

Hodges (ref. 19) developed a system of nonlinear flap-lag-torsion equa-
tions for an elastic torsionally flexible cantilever blade and applied them to
a cantilever blade stability analysis. The equations contained some small
erroneous structural terms later shown to be due to incorrect shear strain-
displacement relations. Numerical results illustrated the importance of elas-
tic torsional flexibility and the possibility of omitting, for some configura-
tions, torsional dynamics from the equations of motion and retaining only the
structural (kinematic) effects of torsion.

Hodges and Dowell (ref. 1) corrected and extended Hodges' derivation of
the nonlinear flap-lag-torsion equations using both Hamilton's principle and
the Newtonian method. Prior to formal publication of reference 1, Hodges and
Ormiston (ref. 20) applied these equations to a uniform rotor blade of solid
cross section. Without blade precone, most hingeless rotor configurations
with uniform blade properties and typical bending and torsion frequencies were
found to be stable. Positive precone was found to be destabilizing in the
range of typical lead-lag and torsion frequencies. The main destabilizing
factors were shown to be the bending-torsion structural coupling and, for
configurations of low torsional stiffness, torsional dynamics.

4



Additional numerical results were presented by Friedmann in refer-
ences 21-23. 1In references 21 and 22, flap-lag structural coupling was
omitted and an error in the equations led to incorrect conclusions regarding
the importance of blade droop (as mentioned in the discussion of ref. 22). 1In
reference 23, flap-lag structural coupling was included and thus the problem
treated was similar to that of reference 20, except for the representation of
torsion motion.

With the possible exception of reference 20, the work cited above does
not furnish extensive numerical results for the stability characteristics of
elastic cantilever rotor blades. This report is intended to provide results
for a broad range of system parameters and to illustrate the general stability
characteristics of hingeless rotors. It is an extension of reference 20 and
incorporates the following changes: (1) the assumption of a blade model with
a solid cross section is discarded, thereby permitting the stiffness and
inertial parameters of the blade to be specified independently; (2) a suffi-
ciently large number of assumed mode shapes is used to ensure convergence;
(3) along with some notational changes, the blade configurations are defined
in terms of rotating natural frequencies rather than nonrotating frequencies;
and (4) blade configurations with various degrees of flap-lag structural
coupling are represented by introducing a structural coupling parameter &.

Procedure

The derivation of the general nonlinear equations of motion for an elastic
rotating cantilever beam (ref. 1) is summarized in this report and specialized
to a basic cantilever blade configuration without twist, nonuniformities in
mass and stiffness, or chordwise offsets. A detailed derivation of the aero-
dynamic forces is given based on strip theory and on a quasi-steady approxima-
tion of unsteady aerodynamic theory for a two-dimensional airfoil. The non-
linear partial differential equations are transformed into a system of ordinary
differential equations by Galerkin's method. These nonlinear equations of the
generalized coordinates are linearized for small perturbation motions about
the equilibrium operating condition. An iterative solution of the nonlinear
algebraic equilibrium equations enables the coefficients of the perturbation
differential equations to be determined. Finally, the eigenvalues of the per-
turbation equations that determine the dynamic stability of blade motions
about the equilibrium are obtained. Coupled mode shapes, determined from free
vibrations (Zn vacuo) of the blade about the equilibrium operating condition,
are used.

The equations are solved for a variety of practical hingeless rotor con-
figurations with emphasis on the variation of torsion frequency, lead-lag fre-
quency, precone, the structural coupling parameter, and the collective pitch.
Results are presented in the form of plots of equilibrium tip deflection,
locus of roots, lead-lag damping, and stability boundaries.



GENERAL HINGELESS ROTOR CONFIGURATION PARAMETERS

A comprehensive study of hingeless rotor stability is a formidable task

because there is a large number of important configuration parameters.

The

purpose of the present report is to investigate the primary parameters of a
somewhat simplified configuration in a systematic manner; the remaining param-

eters are not considered.

In order to place the present simplified configura-

tion in proper perspective it is appropriate to describe the physical charac-
teristics and define the parameters of a typical hingeless rotor blade.

Rotor
hub

Inboard
segment

Pich chonge bearing

Outboord segment

Swoshplate

Figure l.- Primary elements of a typical
hingeless rotor blade (not all these
elements are considered in the
present analysis).

The general cantilever blade
structure, shown in figure 1, is
composed of two flexible beam seg-
ments joined by the pitch change
bearing. The inboard hub segment is
fixed to the hub at the root end of
the blade, while the outboard seg-
ment can be rotated about the pitch
change bearing by vertical movement
of the pitch link from the swash-
plate controls. Pitch link flexi-
bility, represented by a spring ele-
ment, will permit rigid body pitching
motion of the outboard blade segment
(i.e., root torsion). In general,
both the inboard and outboard seg-
ments of the rotor blade will have
large nonuniformities of mass, bend-

ing stiffness, and torsional rigidity, and both segments will bend and twist.
These nonuniformities contribute to the important and complex structural
coupling between the flap bending, lead-lag bending, and torsion of hingeless

rotor blades.

Some additional configuration parameters of importance are pre-

cone, droop, torque offset, and sweep, all of which are illustrated in

figure 2.

These geometric parameters are usually tailored to minimize the

steady state rotor blade stresses or to improve rotorcraft flying qualities,
but they can also have an important influence on rotor blade stability.

The above features may differ for certain special hingeless rotor con-

figurations.

For example, it is not uncommon for the inboard beam segment to

be eliminated entirely by placing the pitch change bearing in the hub itself,

thus leaving only a single outboard blade segment.

Or the pitch bearing may

be eliminated by making the inboard segment very flexible in torsion so that
pitch change of the outboard segment is accommodated by twisting the inboard

segment.

The blade structure itself may also influence the stability characteris-

tics.

A rotor blade may consist of several spar, skin, stiffener, and balance

weight components, or it may be molded from many layers of composite materials

bonded together.

aerodynamic, strength, and stiffness properties.

These materials must all be tailored to provide acceptable

Additional parameters



e

influenced by these construction

details are the positions of the mass
center, tension center, elastic axis

(shear center), and the aerodynamic

center. If these are not coincident, Torque
additional structural, inertial, and offser
aerodynamic coupling between bending l ‘514

and torsion deflections will be intro- t ’ T
duced and may strongly influence rotor
blade stability, as in the case of an
articulated blade. The rotor blade
may also be specially designed to
produce desirable structural coupling
effects; these effects may include
equivalent pitch-flap and pitch-lag
coupling, both of which can improve
both rotor blade stability and rotor-
craft flying qualities. Similar
coupling effects may result from the
kinematics of the pitch-~link connec-—
tion between the outboard blade seg- Side view
ment and the swashplate control system.

If the inboard blade segment is espe-

cially long or flexible, this kine-

Sweep

Top view

Precone

matic coupling may be particularly Figure 2.~ Configuration parameters
significant because the motion of of a hingeless rotor blade (of

the pitch bearing due to blade bend- these parameters only precone is
ing is increased. considered in the present analysis).

As noted above, not all the rotor blade details described here are con-
sidered in this report. The present analysis treats the elastic flap, lead-
lag, and torsion deflections of a simple untwisted uniform blade with precone,
but excludes pitch link flexibility, droop, sweep, or torque offset. Further-
more, mass, tension axis, and aerodynamic center offsets from the elastic axis
are all zero. The equations of motion are written for a single outboard blade
segment without a flexible hub segment inboard of the pitch bearing. However,
the effects of variable structural coupling due to the inboard and outboard
segments are simulated by introducing the structural coupling parameter &
to arbitrarily vary the structural coupling in the uniform blade equations.

EQUATIONS OF MOTION

The equations of motion are taken from reference 1 and specialized for
the present simplified blade configuration having uniform mass and stiffness,
no twist, and no chordwise offsets of the elastic axis, tension axis, or
center of mass. A brief outline of the derivation is given for completeness,
and one modification to the equations is made to accommodate an approximate
structural coupling parameter for expanding the scope of the numerical results.
The expressions for aerodynamic forces are not included in reference l; they



are derived in detail below on the basis of two-dimensional unsteady aerody-

namic theory.

Coordinate Systems

Consider the undeformed beam in figure 3 with its elastic axis coincident

with the x axis of the x, y, =z

angular velocity about a fixed point at the origin. The vy

Axis of
rotation

Figure 3.- Rotor blade coordinate sys-
tems and deflections.

Figure 4.- Rotor blade cross section
before and after deflections; note
that y' and z' are projections on
the y, z plane.

coordinate system rotating with a constant

axis lies in the
plane of rotation and the x axis
is rotated through a small angle

Bpc from the plane of rotation.
Bending deflections of the beam are
defined by the displacements u, v,
and w of the elastic axis parallel
to the x, y, z coordinates,
respectively. A second coordinate
system, x', y', and z', fixed to the
blade with y', z' axes parallel to
the beam cross section principal
axes, moves with the blade as it
undergoes bending displacements,
torsional displacements, and pitch
angle rotation, 6. The projection
of the beam cross section in the vy,
z plane is shown before and after
deformation in figure 4. Before
deformation, the blade principal axes
are rotated with respect to the
undeformed coordinates by the pitch
angle. After deformation, the elas-
tic axis is displaced by u, v, w
and the blade twisted through the

A

angle ¢. Although the deformed
y', z' axes do mot lie exactly in
the vy, z plane, their projection

in that plane is shown in figure 4.

A small apparent twist, discussed in
reference 24, is neglected by ignor-—
ing the difference between the actual
and the projected twist angle ¢,

but this must be accounted for in
deriving the blade aerodynamic
forces.



Structural and Inertial Terms
The equations of motion are derived using Hamilton's principle
ty
f 7 v - 87 - swar =0 (1)
t

where the strain energy U, the kinetic energy I, and the virtual work of
external forces G&W are given by

1 R W
v=x5 -g .[£ (Oxx®xx t OxnExn T IxrExg)dn dg dx
T=lj'Rﬂ'$-?7’dddx > (2
2 A Ap n dg
R
§W = _£ (L8 + L8V + L sw + M,6¢)dx

For the strain energy, the stresses are proportional to the strains:

Oxx = Bexxs Oxpy = Gexn» and oyxp = Gexy. In the kinetic energy, V is the
velocity vector of an arbitrary point in the blade. The loads Ly, Ly, Ly,
and M are of aerodynamic origin and are treated below. The strain displace-
ment relations as derived in reference 1 are:

12 12 12
] v + W + (9'4)' + ¢2>(n2 + CZ) _ Ad)n

™

Il
[=
+

XX 2 2
- v'"[n cos(® + ¢) - ¢ sin(6 + ¢)]

- w'[n sin(® + ¢) + ¢ cos(6 + ¢)]
AP
xn - "(% + 5%>¢
(-2

where A 1is the warp function for the cross section. The function i(n, )
may be determined by solving Laplace's equation for the specific cross section.

(3

m
|

€xz

The remaining details of the derivation of the equations of motion are
given in reference 1. An essential feature of the derivation is the introduc-
tion of an ordering scheme in which €, a small parameter of the order of mag-
nitude of the bending slopes, is introduced. The assumed order of magnitude
of all quantities used in the equations appears in table 1. Within any equa-
tion, terms of O0(e3) are ordinarily dropped unless, for example, they



contribute to damping. The resulting dimensional equations are as follows,
where the radial aerodynamic force component L, 1is neglected as a higher
order term.

Su equation: -T' - mQ2x - 2mQv = O (4a)

8v equation:

~(Tv') '+ [EI,r - (EI,r - EIg1)sin? 8]v"™ + (EI,r - Eva)[§l%rgg W

- sin 26(¢v'")" + cos 26(¢w")"] + 2mQ(a - chﬁ) + m¥ - Q%v) = Ly (4b)

Sw equation:

~(Tw')' + [BIyr + (EI,r - EIgn)sin? 6]w" + (EI,r - Elyv)[§i%rgg v

+ cos 20(¢v'")" +sin 26(¢w”)"] + 2mQBL v + mw = L - meCQZX (4c)

§¢ equation:
(EI,» - EI ,)[ "2 _ "2) 5%%;%9 + v”w”cosiZé]— GI¢" — K2(To')"
mk%$ + mﬂz(k%Z - k%1)¢ cos 20 = My - mszz(kg-l2 - k32 )-§1%739 (4d)

1

TABLE 1.- ASSUMED ORDERS OF MAGNITUDE FOR PHYSICAL QUANTITIES

c_ v oW
R_ O(E) R’ R O(E)
c
dO 5 vy
P 0(e?) R 0(e)
d d _ B
dt * N ax T () Bpe = 0(e)
EA -
m2RZ 0(e™2) o = 0(g)
Eva Elzv 7
7RF 0 mzre’ mazre 0D ® = 0C1)
k, k k, Kk
m m
7? s _il ,'—iz s R 0(e) 8 (aerodynamic = O0(g)
forces only)
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where the tension is given by
12 12
T = EA(u' + L+ W—) (5)

and

Iyt = ﬂ' z2 dn dg
S

Iy = ff n2dnac
S

P
>
1]

i= f <n —%2—>Z+ <¢+%>2 dn dg L (6)
m = J]; p dn dzg
X ‘*l-.f.!.npcz dn dg

=18
BIl

1
2 - 2
= = dn d
k,m2 m IJ:H PN n g
k.2 = k2 + k2
1 2 J

These cross—sectional integrals in equation (6) define the structural and mass
properties of the rotor blade cross section. The subscripts s or m refer
to integration over the portion of the cross section which contributes struc-
tural or mass characteristics, respectively. These properties are the radial
stiffness EA, the flapwise and chordwise bending stiffness ET,' and EI,',
the polar radius of gyration kp, the torsional rigidity GJ, the mass per
unit length m, the flapwise and chordwise principal mass moments of inertia
mkl%1 and mk%z, and the torsional mass moment of inertia mk%.

The present nonlinear equations may be compared directly with the well-
known linear equations of Houbolt and Brooks (ref. 2). When specialized to
untwisted beams with uniform mass and stiffness and with no chordwise offsets,
the equations of Houbolt and Brooks are identical to the present equations
with the exception that the underlined terms in equations (4) are not present.
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The underlined nonlinear terms arise from both inertial and structural effects
and they are important for dynamic analyses of cantilever rotor blades. (The
underlined terms due to precone ch are linear, but precone was not consid-
ered by Houbolt and Brooks.)

The various terms in the present equations will now be briefly described.
We first discuss the inertial terms, and in particular the nonlinear flap-lag
inertial coupling terms. In the ©&u equation, the term -2mQ)v represents
the centrifugal force of lead-lag deflection velocity. This dependence of
tension on lead-lag deflection produces nonlinear products when T dis substi-
tuted into the (Tv')' and (Tw')' terms in the lead-lag and flap bending equa-
tions. A similar nonlinear expression for the 2mQu Coriolis term in the
lead-lag equation may be obtained by solving for u din terms of v, w, and T
in the nonlinear strain relation, equation (5). As discussed in reference 6,
these terms must be included to properly represent the Coriolis and centrifugal
coupling between the flap and lead-lag equations. 1In the torsion equation, the
tension-torsion coupling term -k 2(T¢ )', has a small coefficient and only the
linear contribution -—kAZ(m,QZ/Z)[(R2 - x2)¢ 1" is retalned. Inertia terms in
the torsion equation include the torsional inertia mkpy 2% and the tennis
racket effect; the tennis racket effect is proportlonal to the difference
between the principal mass moments of inertia. We next discuss the structural
terms.

In addition to the familiar torsional rigidity term -GJ¢'", there are the
nonlinear bending-torsion structural coupling terms underlined in the torsion
equation, (eq. (4d)). These terms are probably the most important ones for
hingeless rotor stability because they are large and sensitive to many config-
uration parameters. They are actually moments proportional to the difference
between lead-lag and flap bending stiffness EI,: - Eva, and products of the
flap and lead-lag curvatures. These terms are discussed by Mil' (ref. 9) as
noted in the introduction; the present equations also include the correspond-
ing nonlinear bending-torsion terms in the flap and lead-lag bending equations
(eqs. (4b), (4c)). The flap~lag structural coupling terms in equations (4b)
and (4c), with coefficients proportional to EI,r - EI,r  are linear and are
included in the equations of Houbolt and Brooks. These terms couple flap bend-
ing and lead-lag bending elastically when © # 0 and, like the bending-torsion
coupling terms, they are proportional to the difference between the lead-lag
and flap bending stiffnesses. In some analyses, such as those of references 7,
18, 21, and 22, these terms have been discarded, although they strongly influ-
ence the stability characteristics of some hingeless rotor blade configurations.

In general, the flap-lag structural coupling terms are also dependent on
blade twist and on bending stiffness distributions in the case of nonuniform
blade configurations. In particular, the flap-lag structural coupling is
dependent on the relative stiffness of the blade segments inboard and outboard
of the pitch bearing. This is because the principal elastic axes of the out-
board blade segment rotate through an angle 6 as the blade pitch varies
while the inboard segment principal axes do not. The resultant effective
orientation of principal axes depends on the blade geometry and distribution
of bending stiffness inboard and outboard of the pitch bearing. Although the
variations in these coupling effects significantly influence stability, they

12
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are not present in the case of a simple single segment uniform beam; they are
difficult to include exactly without resorting to a more general blade con-
figuration and a more sophisticated analysis. However, an approximate repre-
sentation of these effects may be introduced in the present equations with no
increase in complexity. This is accomplished by arbitrarily assuming that the
average inclination of the principal elastic axes of a nonuniform blade is
equal to some fraction of the inclination of the principal axes of a uniform
single segment blade. This entails replacing 6 by &8 in the structural
terms in the equations while the mass and inertial terms are unchanged. The
factor & 1is called the structural coupling parameter. When & = 1, the
original equations are retained, but as ® is reduced to zero, the flap-lag
structural coupling terms diminish and eventually wvanish. The structural cou-
pling parameter ® also influences the bending-torsion structural coupling
terms, but to a lesser degree.

As defined here, the structural coupling parameter & 1is nearly equiva-
lent (for small pitch angles) to an analogous parameter R used in refer-
ence 5 to characterize the variable flap-lag structural coupling of the
approximate rigid, hinged blade representation of an elastic blade. Additional
discussion of flap-lag structural coupling is given in reference 5.

In their present form, including the nonlinear strain relation, there are
five nonlinear equations in u, v, w, ¢, and T. These equations can be sim-
plified by substitution to eliminate wu and T as dependent variables, follow-
ing the procedure given in references 1, 6, 19, and 20. First, the ©&u equa-
tion is integrated to obtain the tension:

mQZ R
T=—2—(R2-—x2)+2m§2f v dx (7)
X

This equation is substituted into the §&v, 8w, and 8¢ equations to eliminate
R

T. When equation (7) is substituted into the &¢ equation, the 2mQ .f v dx
X

term is discarded because it is O0(e3). The 2mQt term in the 6&v equation
is replaced as follows, solving first for u' from equation (5) and substitut-

ing equation (7) for T.

, _ mR2R2 <1 - x2/R2> N 2mR2R2 fR vdx v'? w'2
u = -

EA 2 EA orR?2 2 2 (8)

X

This is integrated with respect to x and differentiated with respect to t
yielding

dx dx - f v'v' + w'w')dx 9
0

While not essential, it is convenient to discard the first term of equation (9)
since mQ?R2/EA = 0(e?) where e is of the order of magnitude of the bending
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slopes. This is equivalent to postulating that the rotor blade is inexten-
sional for perturbation bending deflections; that is, radial shortening of the
beam is a purely geometric consequence of the transverse bending deflections
of the blade. This assumption is sometimes made on the basis of intuitive
reasoning; however, it is strictly valid only for sufficiently large values of
the dimensionless radial stiffness, EA/mQZRZ.

After substituting equation (9) into the &v equation (4b), three equa-
tions for v, w, and ¢ remain. In the structural terms, 6 has been replaced
by &6 according to the discussion above.

dv equation:
2 [ R2 - %)) - 2ma v o ax) + [ in? (R0) Tv"""
- [v - x - 2mQ (v v dx [EI,r - (EI,v - Eva)31n (®8) Jv
X

+ (EIZ' - EIy') §12%§§§2,WHH + (EIz' _ Ech)[—Sin(Zﬁe)(¢V”)” + COS(2@6)<¢W”)”]

x
- ZmQBpCW - 2 mf .g W'V + w'w)dx + m(v - Q%v) = L, (10a)

Sw equation:

R
Q2 . '
- EE_ [w'(R2 - x2)]" - 2m9<;' .£ v d%) + [Eva + (EI,v - Eva)sinz(ﬁe)]w”"

sin (2619)

+ (EIzy - Eva) 5 '+ (EIz' - Eva)[cos(Zﬁe)(¢v")”

+ sin(2R0) (¢w')"] + 2mABLV + mw = L, - mR2B,.x (10b)
§¢ equation:
mQZ 2 2 2 1" " "o Sin(ZQS)
- 5 k%o (RP - x )]T - GI" + (BI,r - EIy ) | (v 2 y"2y =
+ v''w" cos(ZRe)] + mkmzi + sz(kT%2 - k%1)¢ cos 26

= My - mQZ(kT%12 - k1%1) §—l~nz(2—e) (10c)

These equations are nonlinear, integro-partial differential equations with
variable coefficients in x. In the next section, expressions for L, Ly,
and M¢, the aerodynamic loading terms, will be derived.
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Aerodynamic Loading

The aerodynamic lift and pitching moment acting on the blade in hover are
based on Greenberg's extension of Theodorsen's theory (ref. 25) for a two-
dimensional airfoil undergoing sinusoidal motion in pulsating incompressible
flow. The rotor blade aerodynamic forces are formulated from strip theory in
which only the velocity component perpendicular to the blade spanwise axis
(the =x'-axis in the deformed blade coordinate system x', y', z' in fig. 5)
influences the aerodynamic forces. A quasi-steady approximation of the
unsteady theory for low reduced frequency k is employed in which the
Theodorsen function C(k) is taken to be unity. The steady induced inflow for
the rotor is calculated from classical blade element-momentum theory. These
simplifying assumptions are judged to be adequate for low frequency (mainly
determined by the blade bending frequencies) stability analyses of a hovering
rotor.

In Theodorsen's theory (ref. 26), y
a two-dimensional airfoil is assumed ////"
to be pivoted about an axis which may
be distinct, in general, from the
aerodynamic center axis. The airfoil
is pitched at an angle e(t) to the
free stream flowing at constant
velocity V. The airfoil is verti-
cally displaced with velocity h(t)
positive downward as shown in fig-
ure 5. Greenberg has extended
Theodorsen's theory for pulsating
free-stream velocity V(t). The -Up

relations for 1ift and pitching

moment per unit length may be

expressed in terms of the circulatory Figure 5.- Rotor blade airfoil section
and noncirculatory components in general unsteady motion.

L = LC + LNC

MC * MNC

With the airfoil pivot axis (analogous to the rotor blade elastic axis) at the
airfoil quarter chord (the airfoil aerodynamic center) these components are

(11)
M

[l

PudC . /.. .. c W
Lec = 3 Z<h+V€+Ve+Ze>
pooac . C
LC = 2 V(h + Ve + 5 )
(12)
PL3C /.13
__cqp _P=TreNE
MNe i 'ne T T2 (4) 2
PL3C /o2
R N ) S
Me = 2 (4) v 1
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The Theodorsen function C(k) has been set equal to unity in the circulatory
lift. Tt should be noted that € 1is the angular position of the airfoil with
respect to space; ¢ and € are the angular velocity and angular acceleration
of the airfoil. The instantaneous angle of attack of the airfoil

o = tan‘l(UP/UT) is the angle between the airfoil chord line and the resultant
fluid velocity U of the airfoil. The airfoil velocity components in the
principal axis system y', z' are Ur and Up shown in figure 5. It is
desirable to express the aerodynamic forces and moments in terms of Up and Ur.
Assuming that the angles € and o are small yields

Up = - h - Ve

-2 1+ 1.2 (13)
U= VU2 +0p?2=v
Substitution of equations (13) into equations (12) yields
p_ac
_ [ee) E _. —C_.,
Iye = 72 A(UP+4€>
pac c (14)

Next we consider the total aerodynamic forces in directions parallel and
perpendicular to the airfoil chord line. The noncirculatory 1lift is taken to
act normal to the chordline, and the circulatory 1lift is taken to act normal
to the resultant blade velocity U. An aerodynamic profile drag force per
unit length, acting parallel to the resultant blade velocity, is included

based on a constant profile drag coefficient cdo.

€4

pac 0
—— (U + Up?) (15)

D = 7

The force components and directions are shown in figure 6. The force compo-
nents T, normal to the airfoil chord line, and S, parallel to the airfoil
chord line, are therefore

)

]
i

L. cos a + L + D sin a
C NC (16)

wn
Il

—LC sin oo — D cos o

From figure 5,

cos O - I o
U 2
/UT + Up
. Up Up
sin o = ‘ﬁ_ = “‘é_
/UT + Up
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Figure 6.- Orientation of components of aerodynamic loading.

Substitution of equations (14), (15), and (17) into equations (16), with
cq /a neglected with respect to unity, yields
0

Pedc c c - c 2
T = > I:—-UPUT + 5 UT€ - Z UP + (Z) €
p ac o Cd0 ) (18)
- .= 2 = b 2
S = 2 UP -3 UPE . UT

The expressions for aerodynamic pitching moment components may be written from
equations (12) and (13) as

P2 c 2. 3c
e T 732 (z) (‘UP s E)
0uaC /. 2 . (19)

where U has been approximated by Up in M. The total pitching moment is
then given by

poc:aC c 2 . 3c .

In appendix A, Up, Up, and ¢ are expressed in terms of v, w, and ¢ to
the appropriate order of magnitude. From equations (A3) and (A9) we have

17



X
U, = -0x|{6 + ¢ + viw' dx)| - (0 + v+ v, +w+ QB +w') )
i pc

0

Up = Qx + ¥ > (21)

I

me

b+ s, + ') |

where v; 1is the induced inflow velocity. The underlined terms in Up pro-
duce second order terms in the angle of attack; they are discussed in detail in
reference 24. These terms have been shown to influence significantly the flap-
lag-torsion stability of cantilever rotor blades (ref. 20). The transformation
[T] may also be used to resolve the blade forces § and T into Ly and Ly
parallel to the y and z axes of the undeformed blade coordinate system.
Retaining terms to the appropriate order of magnitude yields

L, =S - T(8 + ¢)

L,

Substitution of equations (21) into equation (20) and equations (18) and (21)
into equations (22) yields the following expressions for Lys Ly, and M:

(22)

T 4+ S(6 + ¢)

c c \
p_ac d, dy
L, = 5 viz - 2x2 - - vai(e + ¢) - | 20x —E—'+ (6 + ¢)vi4§

+ [2v; - ax(o + ¢)]&}

2

pac X
L, = {—vai + 02x2 <6 + ¢ + J(; v’w”) - QZXV(BPC + w')

r (23)

/

Nonlinear rate product terms vw, V2, and w? are neglected since they do not
contribute in a linearized stability analysis. Also, all 0(e3) terms, except
those that contribute to lead-lag or torsion damping (double underlined), are
neglected (including ¢ terms). The single underlined terms are the second
order angle of attack terms noted above. The induced inflow wv4 1is taken to
be steady and uniform along the blade radius equal to the value of nonuniform
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inflow given by blade element momentum theory at the radial station x = 0.75R
(ref. 27). The blade angle at x = 0.75R 1is set equal to the blade collec-
tive pitch plus the equilibrium elastic twist ¢, at x = 0.75R. Thus

v; = sgnf6 + ¢4(0.75R) Jar 12 (1/1 + 22l 4 ¢0(0.75R)l - 1) (24)

where o 1is the blade solidity bc/7R.

Solution of the Equations of Motion

In this section we describe the solution of the final flap-lag-torsion
equations of motion obtained by combining equations (10) and (23). These non-
linear, variable coefficient, integro-partial differential equations are
solved by Galerkin's method using six coupled, rotating mode shapes to evalu-
ate the stability of small perturbation motions about the equilibrium operating
condition. These coupled, rotating mode shapes are determined by first calcu-
lating the equilibrium position and formulating the stability analysis in
terms of standard, uncoupled, nonrotating cantilever beam mode shapes. The
coupled mode shapes are then determined from an approximate free vibration
analysis (im vacuo) of the rotating beam about the deformed shape of the equi-
librium operating condition.

We begin by first reducing the equations of motion to ordinary differen-
tial equations by Galerkin's method. The dimensionless bending (¥ = v/R,
w = w/R) and torsion deflections are first expressed in terms of a series of
generalized coordinates and mode shape functions:

)
N
7 = 2_) Vi)Y )
j=1
N
w2 W)Y () . (25)
j=1
N
o= 2, 03105 (%)
j=1
)

where ¢ = Qt and X = x/R. This operation yields 3N modal equations in
terms of modal generalized coordinates V., wj, and ¢: (appendix B contains
the results of this operation). The assumed mode shapes for the bending and
torsion deflections are the standard nonrotating, uncoupled mode shapes for a
uniform cantilever beam:

Wj(i) = cosh(Bji) - cos(Bji) - aj[sinh(Bji) - sin(Bji)]
(26)

0;(®) = V2 sin(yji)
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The constants o+ and Bs; are tabulated in reference 28 and Yj = (3 - 1/2).
Nonrotating mode shapes are used because of computational ease. Since they
depend only on the fixed constants a3 and B4, and not on EIy' and EIz', the
modal integrals that result when Galerkin's method is applied need to be cal-
culated only once (see refs. 6 and 19, for example). Furthermore, many of the
modal integrals have closed form solutions in terms of oy and Bj (ref. 29).

The 3N nonlinear, nonhomogeneous, constant-coefficient ordinary dif-
ferential equations are then linearized for small perturbation motions about
the equilibrium operating condition by expressing the time-dependent general-
ized coordinates in terms of steady equilibrium quantities and small unsteady
perturbation quantities.

A
Vj W) = VOj + AVj W)
Wy (9) = Wos + AWy (D) » (27)
o5 () = og5 + 404 (Y)

Two sets of equations are obtained from this operation. TFirst, substituting
only the steady equilibrium quantities into the nonlinear modal equations
yields 3N nonlinear algebraic equations in Vg3, Woj, and ®05 (given in
appendix B) which define the equilibrium deflections. These equilibrium equa-
tions are solved by the Newton-Raphson method. The second set of 3N
equations is obtained by substituting equations (27) into the modal equatioms,
subtracting the equilibrium equations, and discarding all nonlinear products
of perturbation quantities. The coefficients of these linearized perturbation
equations are functions of the equilibrium solution. The perturbation equa-
tions define the unsteady blade motion near the equilibrium operating condition
and the stability of this motion is determined using standard techniques. The
perturbation equations are linear, homogeneous, constant-coefficient ordinary
differential equations of the form

[M]{X} + [C]{X} + [K]{X} =0 (28)

where [M] is symmetric, and where [C] and [K] are asymmetric and depend on
Vos,Wgs, and ®p;. Each matrix is 3N x 3N (these matrices are given in appen-
dikx B) and the vector {X} is of length 3N and is given by

AV,
VJ

A®j

The stability of motion about the equilibrium operating condition is deter-
mined by the eigenvalues of the 6N x 6N matrix [P] where
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X ) 1 |lx X
AT - 4= [Pl]. (30)
X Mk M| X X

Since we are primarily concerned with lower frequency instabilities (first
lead-lag, first flap, and first torsion frequencies), there is a wvalue of N
for which any increase in N will not appreciably change the eigenvalues
associated with these lower frequencies. It is at this wvalue of N that the
eigenvalues are considered to be converged. For practical hingeless rotor
configurations, N = 5 gives suitably converged eigenvalues; the matrix [P]
is thus 30 x 30. By a change of modal coordinates, the size of the matrix [P]
may be greatly reduced without significantly changing the eigenvalues of
interest. Such a transformation may be found by first considering free vibra-
tions (Zn vacuo) of the blade about the equilibrium deflected state. The
equation of motion, analogous to equation (28), is

[MI{X} + [GI{X} + [K J{X} = 0 (31)

where the subscript v dimplies the vacuum case. Both [M] and [KV] are
symmetric; [K,] 1is equal to [K] with all aerodynamic terms set equal to
zero, and [G] is antisymmetric and equal to [C] with all aerodynamic terms
set equal to zero. The presence of the matrix [G] causes the eigenvectors
of the free vibration to be complex. This may be avoided for computational
efficiency by approximating equation (31) as

[M]{X} + [K,]{X} = 0 (32)

The matrix of eigenvectors [U] for equation (32) is orthogonal with respect
to [M]. Thus,

w1t = (1] (33)

According to Meirovitch (ref. 30) a so-called principal coordinate transforma-
tion for equation (28) may be determined by replacing {X} by [U]{X}. We
may then pre-multiply equation (28) by [U]T to take advantage of the form of
equation (33) yielding

[T1{&} + [UTcul{X} + [UTRUI{X} = O (34)
Hence,

X 0 I )ix X

2 L-uTko —UTCQ] x| e X )

The matrices [P] and [P*] have the same eigenvalues. However, because of
the nature of this modal coordinate transformation from [P] to [P*], the rows
and columns corresponding to high frequency modes of both [UTKU] and [UTCU]
may be removed without affecting the eigenvalues of the low frequency modes of
interest. These 3N x 3N matrices are thus reduced to M X M matrices whose
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rows and columns correspond to the M low frequency modes that are retained.
The rows and columns that are retained in [UTKU] and [UTCU] may be chosen in
two ways: (1) the M rows and columns that correspond to the M Ilowest fre-
quency modes of the blade may be retained, or (2) the M rows and columns that
correspond to M modes selected arbitrarily from the lowest lead-lag, the
lowest flap, and the lowest torsion frequency modes are retained. For the
second case, under certain conditions, M = 3, 4, or 5 will result in converged
eigenvalues. In either case, suitably converged results do not require M > 6.

The reduced matrices are analogous to stiffness and damping matrices
generated from M coupled, rotating modes. Since the analysis is formulated
in terms of standard cantilever mode shapes, however, repeated numerical
integration of modal integrals is not necessary for different values of beam
stiffnesses. Instead, the matrix operations described above lead to a
net savings in CPU time. For all results given in this report, M = 6 unless
otherwise noted. Thus [P*] is reduced from 6N x 6N (30 x 30) to 2M x 2M
(12 x 12). Eigenvalues may be calculated from a 12 x 12 matrix in less than
10 percent of the time required for a 30 x 30. The total savings in CPU time
is about 60 percent for each case including the equilibrium solution, the
above modal analysis, and the eigenvalues for the perturbation equations.

Approximate Equations of Motion

The flap-lag-torsion equations may be considered as an extension of the
earlier flap-lag equations of reference 6. They permit the amnalysis of tor-
sionally flexible rotor blades, but also introduce additional equations and
degrees of freedom for the torsion generalized coordinates. It is possible to
reduce the flap-lag-torsion equations to an approximate set of modified
flap-lag equations and still retain the most important effects of torsional
flexibility. This is possible because the structural terms in the torsion
equation are usually large compared to the inertial and aerodynamic damping
terms. Based on order of magnitude considerations, the $: and 93 terms are
small in comparison to the ¢; terms when wy 1is suffigiently large. The
approximation simply consists of discarding the ¢; and ¢y terms in the
torsion modal equations leaving (in addition to the tension-torsion and tennis
racket terms) the torsion rigidity term proportional to @4 and the bending-
torsion structural terms proportional to products of the bending generalized

coordinates V3 and W3;. This permits ¢y to be expressed in terms of V3 and
W3 and permits ®; to be substituted into the flap and lead-lag modal equa-
tions. This reduces the number of equations and eliminates the torsion gener-

alized coordinates &3 as independent degrees of freedom. The accuracy and
limits of validity of the resulting modified flap-lag equations will be
examined below.

SELECTION OF CONFIGURATION PARAMETERS

A few brief comments are in order to explain clearly the choice of the
blade configuration parameters. These consist of the structural and inertia
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parameters Eva/mQZR“, EIZl/mQZRu, GJ/mQ2R*, ka/ky, kyp/R, kml/kmz’ and ®, and
the geometric and aerodynamic parameters c/R, ch, and ¢, and the Lock number
Yy = 3pmacR/m. The pitch angle 6 idis considered to be the countrol parameter
defining the rotor operating condition; that is, the rotor thrust.

Beginning with the geometric and aerodynamic parameters, typical values
are chosen as follows: the Lock number vy = 5.0 and the solidity o = 0.10.
Since o = be/7wR, the choice of a four blade rotor (b = 4) yields the dimen-
sionless chord ratio ¢/R = w/40. The geometric blade precone angle ch has
an important influence on stability, and thus a range of values will be
investigated.

The structural and inertial parameters mainly determine the natural fre-
quencies of the blade which in turn serve as rotor blade configuration param-
eters. In general, explicit expressions do not exist for the structural and
inertial parameters in terms of the blade natural frequencies, and it is
necessary to solve for these parameters iteratively if the natural frequencies
are specified. 1In this report, the following procedure is used. For
an untwisted cantilever beam with uniform mass and stiffness, the structural
and inertial parameters are first expressed explicitly in terms of the uncou-
pled natural frequencies for the nonrotating condition. These relationships

are
2 2 2
w w, w
EIz' B VNR EIy' _ wNR oI ) ¢NR 36
228 o & ° ool ’ 2122
m2eR By mQ“R B, " mQ“kZR le

where the subscript NR refers to 22
frequencies of the nonrotating beam. (
The nonrotating frequencies are then
used as an intermediate step in deter- I8
mining the uncoupled (at 6 = 0),
rotating natural frequencies. For an
untwisted uniform cantilever beam, the
rotating bending frequencies may be
accurately expressed in terms of the e
nonrotating frequencies using the
approximate analytical relations
developed in reference 31. These 8
relationships are shown in figures 7
and 8. An analogous relationship for
the rotating and nonrotating torsion 4%
frequencies, also derived in refer-
ence 31, depends on the intensity of
tension-torsion coupling that is | o |

20

. 2 5 0 2 4 6 8 0o 12 14 16 s 553
proportional to kp“/kp“, and the . 0 e
inertia ratio kp /ky,. This result T
is shown in figuré 9 "based on a
choice of kAZ/km2 = 1.5 and Figure 7.- Rotating lead-lag fre-
kml/km2 = 0.0. The remaining torsion quency versus nonrotating lead-lag
inertia parameter, the mass radius of frequency: 6 = 0.0.
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- gyration ky/R, is taken to be 0.025.
Therefore, any choice of the three
fundamental rotating frequencies,
together with the values for

ka /kmz, kml/kmz’ and kp/R given
here and the frequency wvariations of
figures 7-9, will yield the appro-
priate values of EI,'/mQ2RY,
ET, ' /mR?R%, GJ/m2RY, kp%/kp?,
kml/kmz’ and ky/R for the equations
of "'motion.

Values for the blade natural
frequencies will be chosen as fol-
lows. The dimensionless flap natural
frequency typically lies between 1.1
and 1.2; for the present results
wy 3Is taken to be 1.15. The dimen-
sionless lead-lag natural frequency
wy typically falls into one of two
ranges: 0.5 to 0.75 for soft inplane
(wy, < 1.0) configurations and 1.2 to
1.7 for stiff inplane (wy > 1.0) con-
figurations. Two typical wvalues,
wy = 0.7 and 1.5, are chosen here.
Since EIy'/EI, v = 0(1) was assumed
from the outset in deriving the
equations, the validity of the equa-
tions is limited to wy £ 3 (i.e.,
the practical range). To analyze
configurations with larger wy, one
should refer to reference 1 and
rederive the equations based on a
different ordering scheme, such as

Figure 8.- Rotating flap frequency
versus nonrotating flap frequency:
6 = 0.

’ Ly e e EI,'/mQ%R* = 0(e”1). This will
" introduce additional terms and the
equations will then be valid for
Figure 9.- Rotating torsion frequency larger values of wy. The dimension-

versus nonrotating torsion frequency; less torsion natural frequency we

6 = 0.0, ky,/kp, = 0.0, and usually ranges from 2.5 to 8.0. We

ka?/kp® = 1.5. will use 5.0 as a typical value and
include results for other values as
well.

The structural coupling parameter ® will arbitrarily be given various
values between 0.0 and 1.0. It is not possible to relate this parameter in a
simple way to the stiffness distribution characteristics of actual rotor
blades and the results can only indicate the range of behavior that may be
encountered.

In solving the equations using assumed mode shapes, the modal parameters
are important. Unless otherwise specified, six coupled rotating mode shapes
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(M = 6) will be used, thus producing six degrees of freedom. These are based
on the free vibration analysis using 15 (3N) uncoupled nonrotating mode shapes.
The six coupled rotating mode shapes retained are the six lowest frequency
modes. The various parameter values discussed above are summarized in table 2.

TABLE 2.- VALUES OF CONFIGURATION AND OPERATING CONDITION PARAMETERS
USED FOR NUMERICAL RESULTS

Baszeline values Additional values
Wy 0.7, 1.5 Variable
Uy 1.15 _—
W 2.5, 5.0, 8.0 Variable
(kp/ky)? 1.5 o
9, rad 0.0 Variable 0.0 - 0.5
Bpe» rad 0.0, 0.05, 0.1 Variable
K 0.0, 0.4, 1.0 Variable 0.0 - 1.0
k,/R 0.025 ——
kmllkm 0.0 —
v = (3p_acR/m) 5 _—
o 0.10 _—
c/R /40 -
b 4 ——
cdo/a 0.01/27 -—
M 6 2-5

RESULTS

Steady State Deflections

The steady state equilibrium deflections of the rotor blade must be deter-
mined because they contribute to the coefficients of the linearized perturba-
tion equations. The equilibrium deflections are required also to define pre-
cisely the operating condition of the rotor. This is because the total blade
angle, which determines the rotor thrust in hover, is equal to the blade pitch
angle 6 plus the equilibrium elastic torsional deflection of the blade ¢g-

A few results are given to indicate the general behavior of the equilibrium
deflections and the influence of several configuration parameters. The results
are given in terms of the dimensionless tip deflections that are related to

the equilibrium generalized coordinates by the following relations:
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Vo| =2 2 Vo3(¢-D
tip j=1
N
— _ j+1
Wl =2 ) Woi(-D . (37)
tip j=1
X j+1
bo| =2 X 2p5(-D)
tip j=1 )

The blade pitch angle 6 is varied throughout the nominal range of thrust
including very high thrust conditions (8 > 0.3 implies that Cgp/oc > 0.17).

The results given in figures 10 and 11 show the equilibrium deflections
of a soft and a stiff inplane rotor blade as a function of the pitch angle 8
for several values of the structural coupling parameter ®&. Increasing 0
increases the aerodynamic forces acting on the blade and generally increases
the magnitude of the equilibrium deflections. The structural coupling param-—
eter ® has little direct effect on the equilibrium flap deflection §0|tip’

although the variation of ¢0itip does change the blade angle and thus
indirectly influences ﬁO‘tip' The lead lag deflection is directly influenced

by & as a result of the flap-lag structural coupling. When & # 0 and
EI;' > ELy', the blade tends to bend in a direction normal to the airfoil
chord so that negative vOltip deflections are produced by positive ﬁo}tip

deflections when © > 0. This is evident in figures 10 and 11 by the increas~
ingly negative values of vo‘tip as ® wvaries from 0 to 1.0.

The equilibrium torsion deflection ¢O tip depends on a combination of

inertial and structural moments. First the inertial term, or tennis racket
effect, that is independent of ® dominates the torsion moments at small pitch
angles. This term produces a negative equilibrium torsion deflection propor-
tional to © at small pitch angles that is clearly evident in figures 10
and 11. Second, the structural torsion moments strongly influence the equi-
librium torsion deflection, but in a complex manner. In the torsion equation,
the bending~torsion structural coupling terms are nonlinear products of the
bendinT deflections. Thus, parameters that influence the equilibrium values

t

of GO and W, tip similarly influence the equilibrium torsion
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8, rad -

(a) Flap bending.
(b) Lead-lag bending.
(¢) Torsion.

Figure 10.- The effect of pitch angle
and & on the equilibrium deflec—

tions of a soft inplane rotor blade:

w, = 0.7, m¢ = 5.0, ch = 0.0 rad.

v0[t|p

qbo’hp’ rad

(a) Flap bending.
(b) Lead-lag bending.
(¢) Torsion.

Figure 11.- The effect of pitch angle
and ® on the equilibrium deflec-
tions of a stiff inplane rotor
blade: w_= 1.5, w, = 5.0,

8 = 0.0"rad. ¢
pC
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deflection. To help explain the structural coupling terms that influence the
equilibrium torsional deflection, the structural terms of equation (10) are
written below.

in (2R
[EI,+ - (EI,r - EI;1)sin2(R8)]v"" + (EL,v - EIy1) Eiﬂ%%—gl-w""

+ (EI, - Eva)[—sin(Z(Re)(¢v")" + cos(2Re) (pw")"] + . .

sin(280) Jun 4 [EIyr + (EI,r - EIyt)sin?(R6)]w"" > (38)

(EIzv - Eva) 2

+ (EI,r - EIy')[cos(Zﬁe)(¢v")" + sin(2R6) (¢w')"] + .

~GJ¢" + (EI, = EIg1) [w"z - v"'?) il%‘ﬁe) + v cos(Z(RG):l +..

Consider first the case where & = 0 and the flap-lag structural coupling
terms vanish. In the torsion equation, the bending-torsion structural moment
(singly underlined in eq. (38)) is proportional to the product of the flap and
lead-lag bending curvatures. This is a positive torsion moment that counter-
acts the equilibrium torsion deflection due to the inertial tennis racket
effect shown in figures 10 and 11. Furthermore, since the bending-torsion
structural coupling is proportional to EI, v - Eva this effect is larger for
the stiff-inplane than for the soft-inplane configuration. In fact, for suf-
ficiently large 6 or wy, the structural torsion moments can produce a static
divergence for low values of ®. TFor the case when ® # 0, there is another
torsional moment (doubly underlined in eq. (38)) that is proportional to
squares of the bending curvatures. This moment generally acts to reduce the
effect of its companion term; this is evident in figures 10 and 11 as &
varies from 0 to 1.

The two terms together are equivalent to a single product term
(EI,» - EIy1)v,"wy'" where Vp and wp are blade bending deflections in the
direction of the glade principal axes. This axis system is obtained simply by
rotating the v,z axis system through an angle ®&6. Alternatively, the non-
linear structural torsion moment can also be shown to be proportional to the
angle between the resultant direction of the blade bending deflection and the
principal elastic axis angle ®6. As & increases, this angle, the positive
structural torsion moment, and ¢0Itip are all reduced.

The effects of precone on the equilibrium deflections for a soft inplane
and a stiff inplane rotor blade are shown in figures 12 and 13, respectively.
Positive precone reduces the elastic flap deflection of the blade because of
centrifugal force. For this example, & = 1.0 and flap-lag structural coupling
with positive precone generates a positive lead-lag deflection increment due
to the negative increment of elastic flap deflection. Similarly, the
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(a)
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8, rad

(a) Flap-bending.
(b) Lead-lag bending.
(¢) Torsion.

Figure 12.- The effect of pitch angle
and precone on the equilibrium

deflections of a soft inplane rotor
blade: w_ =

o = 0.7, w, = 5.0, & = 1.0.

-0.05

0,05

0.1

Bpe, rad

Bpe. rad
-0.05

-.04

-.08 !

8, rad '

(a) Flap-bending.
(b) Lead-lag bending.
(c) Torsion.

Figure 13.- The effect of pitch angle
and precone on the equilibrium

deflections of a stiff inplane
rotor blade: w = 1.5, w, = 5.0,
& = 1.0. v ¢
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structural torsion moments, and hence the equilibrium torsion deflections, is
influenced by precone.

As noted above, the nonlinear equilibrium equations were solved by the
Newton—-Raphson method. 1In some cases, multiple equilibrium solutions were
found, but in all cases only the physically relevant solution was statically
stable. At high pitch angles, care was required to insure that the numerical
scheme converged to the proper solution. This was done by using a previous
solution at a lower pitch angle as the initial condition for a solution at a
slightly higher pitch angle.

Mechanism of Bending-Torsion Structural Coupling

The equilibrium results showed that the torsion deflection ¢O!tip is
dependent on vOltip and WO'tip because of nonlinear structural bending-
torsion coupling. This coupling also influences the linearized perturbation
equations, producing perturbation torsion deflections proportional to pertur-
bation flap and lead-lag bending deflections. This type of coupling is known
(ref. 5) to have a strong influence on hingeless rotor blade stability and,
therefore, a brief discussion of the equivalent kinematic pitch-flap and pitch-

lag couplings generated by the structural coupling is included here.

For simplicity, we consider the perturbation torsion equation for one
flap, one lead-lag, and one torsion mode (N = 1), neglecting torsional inertia
and damping:

m m -K (EI_+ - EI_.)

2 1 111 Z

02 - |——5—] (0 - cos 20) a0, = Y [y, bW,
ky m 2k, 2R2

- VOlAVI)Sin(Zﬁe) + (VOlAwl
+ WOIAVI)cos(Zﬁe)] (39)

where

2 my ky cyn2

YT T T 2 k2 N + tm2k_7R?

and the modal integrals defined in appendix B are

1
f 0,¥}2 dx = 5.03911

K111
0
1
— 1_}—{2 2 g o~
Nll = '[ <~—7?——)Oi dx = 1.07247
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Taking the ratios of torsion deflection to flap and lead-lag bending deflec-
tions yields, for kml =0,

_ 8ad ~Kyq, (BT, = ELgr) . )
eB = = 2w, = [V01 cos(2608) + Wi, sin(288) ]
V2 /EmkaQZRz(w¢2— 1+ cos 26)
s (40)
oAdD -K (EI_+ - EI_v)
6c ~ L 8AV1 = e Y [-V51 sin(266) + Wo1 cos(ZRB)]J
V2 1 /EmkaQZRZ(w¢2— 1+ cos 26)

where 6g and 6 are defined as the equivalent kinematic pitch~-lag and pitch-
flap couplings due to the structural properties of the blade. They depend on
the equilibrium bending deflections of the blade, the difference in lead-lag
and flap and bending stiffness EI,» - EI v, the torsion frequency Wg 5 and
the structural coupling parameter ®&. TFor matched stiffness (EI, v = Ely 1)
configurations, these couplings vanish. For soft- and stlff—lnplane rotor
blade configurations, they are small and large, respectively. Both torsion
frequency and precone influence these coupling terms. For very high torsion
frequencies (wy > 20) the couplings are normally small and unimportant, but
for typical vaTues of torsion frequency (5 2 wgy < 10) they are important.
Precone affects the couplings via the equilibrium bending deflections of the
blades as discussed previously. At low pitch angles, positive precone can
make ﬁO'tip negative and change the sign of the pitch-lag coupling. For

many rotor blade configurations this will produce instability. Figure 14 shows

20[- T

b

! l
05 10 15

Bpc, rad

Figure l4.- The effect of torsion frequency and precone on the equivalent
pitch-lag coupling for zero pitch angle: w, = 0.7, ® = 0.0, 6 = 0.0 rad.
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typical changes in the sign of 0y at 0 = 0 and its linear dependence on
precone. Finally, the structural coupling parameter ® affects 0, and O¢

by altering the orientation of the principal elastic axes of the blade. Varia-
tion of ® from O to 1.0 can change the sign of 6g. The quantitative varia-
tion of the equivalent kinematic pitch~flap and pitch-lag coupling is shown in
figures 15-18.

4 { 4[_
w¢=3
21 2F
8 5
A 7
0] 9
_'2 b—
a1 |
0
w¢=9
7
_2 — 5
-4
s
3
_.6 —
_.8 —
- 1 I I | | -10 - ! ! | ]
-0 ! 2 .3 4 5 0 | 2 3 4 5
8, rad 8, rad

Figure 15.- Equivalent pitch-flap and Figure 16.- Equivalent pitch-flap and

pitch-lag coupling for a soft pitch-lag coupling for a soft
inplane rotor blade: w, = 0.7, inplane rotor blade: w, = 0.7,
® = 0.0, Bpc = 0.0 rad. f=1.0, Bpc = 0.0 rad.
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ch- rad =
-0.05
0.10

8, rad

Figure 17.~ Equivalent pitch-flap and Figure 18.- Equivalent pitch-flap and

pitch~-lag coupling for a stiff pitch~-lag coupling for a soft
inplane rotor blade: w_, = 1.5, inplane rotor blade: w, = 0.7,
/! = 0.0, Bpc = 0.0 rad. wy = 5.0, & = 0.0.

General Stability Characteristics, Locus of Roots

A general overview of hingeless rotor blade flap-lag-~torsion stability
characteristics is next provided by a series of figures showing the locus of
roots of each fundamental mode as the blade pitch angle ©6 1is increased from
zero to 0.5 rad. The main configuration variables of interest are the torsion
frequency, the lead-lag frequency, and the structural coupling parameter ®&.
Before presenting these results, it will be useful to review the flap-lag
stability characteristics of a torsionally rigid blade, based on the results of
reference 6 extended here to include variations in & (in ref. 6, & = 1 only)
and the second order angle of attack terms. The locus of roots for typical
soft and stiff inplane configurations are shown in figure 19.

At zero pitch angle the flap and lead-lag modes are uncoupled. The flap

mode is highly damped due to the large aerodynamic damping produced by 1lift
forces associated with flapping velocity. The lead-lag damping, however, is
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very small. This is because the aero-
dynamic drag forces associated with
lead-lag velocity are very small. 1In
the present analysis, structural lead-
lag damping is not included. Accord-
ing to results of reference 5, struc-
tural damping acts like aerodynamic
profile drag damping, and for weak
flap-lag instabilities, structural
damping can eliminate the instability.

As the blade pitch angle increases
from zero, the flap and lead-lag modes
become coupled and the motion may be
destabilized. The flap mode remains
stable for both the soft and stiff
inplane configurations; the lead-lag
mode is stabilized for the soft
inplane configuration only, and
it may become unstable for the stiff
inplane configuration for values of
R between 0 and 1. The effects of
flap-lag structural coupling are
larger for the stiff inplane than the
soft inplane configurations because
this coupling is proportional to
El,r - EI,'.

The flap-lag stability charac-
teristics will be altered when tor-
sional flexibility is introduced.

The changes are expected to be large
when the torsion frequency is low.
Figure 20 shows the locus of roots

for the soft inplane configuration

for three values of & and fig-

ure 21 shows the corresponding locus
of roots for the stiff inplane config-
uration. As expected, the effects of
torsional flexibility are largest
when wg 1s low and the stiff inplane
configuration shows larger variations
in frequency and damping than the

soft inplane configuration, again due
to the difference in EI, v - EIy'.

The soft inplane lead-lag mode damping
is generally increased by torsional
flexibility while the flap mode damp-
ing is reduced. There is little
influence of torsion frequency on the
torsion mode damping. Furthermore,
the effects of the structural coupling
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(b) Stiff inplane, wy = 1.5.

Figure 19.- Locus of roots for tor-
sionally rigid rotor blade:
Bpc = 0.0 rad.
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parameter & are not large for the soft inplane configuration. The increase
in lead-lag damping, as torsional flexibility increases, is due to the equiva-
lent kinematic pitch-lag coupling produced by bending-torsion structural

coupling.

The stability of the stiff inplane configuration in figure 21 is strongly
There is a lead-lag mode instability
that depends on both wg and ® and a flap mode divergence for small values of
& and Wg Depending on the particular values of & and w¢, either the flap
mode divergence or the lead-lag mode instability will occur at the lowest pitch
angle. Again, the effects of torsional flexibility can be attributed mainly
to the bending-torsion structural coupling and the associated kinematic pitch-
lag coupling. For example, according to the rigid blade flap-lag analysis of
reference 5, negative 0z destabilizes the lead-lag mode for small and moder-—
For the present results, O
17) as the torsion frequency is decreased

influenced by torsional flexibility.

ate values of ® and stabilizes it for ® = 1.

becomes increasingly negative (fig.
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Figure 20.- Locus of roots for a soft inplame rotor blade: wy = 0.7,
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= 0.0 rad.
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Figure 20.- Concluded.

and, analogous to the rigid blade flap-lag results, the lead-lag mode is
destabilized when & = 0 and stabilized when & = 1.0. At very low torsion
frequencies, wy < 2.5, this analog is not valid since torsional dynamics
terms begin to dominate stability.

Effect of Lead-Lag Frequency, Torsion Frequency, and Flap-Lag
Structural Coupling on Stability Boundaries

In the next series of results, stability boundaries are presented for a
wide range of parameter values with blade pitch angle 6 the dependent varia-
ble. At low blade pitch angles, the motion is generally stable, but as © is
increased, the blade motion may become less stable. If this trend continues,
a stability boundary is crossed at the critical pitch angle 6., and the
motion becomes unstable. In a few cases, the motion is unstable at zero pitch
angle and may be stabilized at higher pitch angles. Arrows are provided in
the figures to indicate the stable and unstable regions defined by the
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stability boundaries and, in some cases, crosshatching is included on the
unstable side of the boundary. In most cases, the regions of instability are
clear and the crosshatching is omitted to avoid obscuring the figures. In
general, an instability of the lead-lag mode is encountered when a stability
boundary is crossed. In some cases, however, modes other than the lead-lag
mode determine the stability boundary. In such cases an (F) or (T), for flap
mode or torsion mode, respectively, is placed next to the stability boundary.
The notation "Div" refers to a flap mode divergence.

The first result in figure 22 is for the flap-lag stability boundaries of
a torsionally rigid blade as a function of lead-lag frequency and for several
values of the structural coupling parameter &. The soft inplane configura-
tions are always stable, while most of the stiff inplane configurations
exhibit a lead-lag instability depending on the values of w, and & These
pure flap-lag instabilities cannot occur below a certain minimum pitch angle
which, in this case, is approximately 0.21 rad. As discussed in reference 5,
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Figure 21.- Locus of roots for stiff inplane rotor blade: w, = 1.5,

ch = 0.0 rad.
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Figure 22.- The effect of ® on the stability boundaries, 6., versus lead-lag
frequency, for a torsionally rigid blade: BPC = 0.0 rad.
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the value of this minimum pitch angle depends on the blade profile drag, rotor
solidity, and blade structural damping (not included in these results). The
main result to be noted is that as the lead-lag frequency increases, the value
of & must also increase to produce instability at a moderate pitch angle.
For ® 3 0.6, flap-lag instability is unlikely for practical lead-lag fre-
quencies (wy < 2.0).

Torsional flexibility greatly modifies the flap-lag stability boundaries
as shown in figures 23 to 28. 1In each figure, for a single value of &, Wg

w¢ =25
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|Matched stiffness
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Figure 23.- The effect of torsion frequency on stability boundaries, 6., ver-—
sus lead-lag frequency: ch = 0.0 rad, & = 0.0.
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Figure 24.- The effect of torsion frequency on stability boundaries, 8., ver-
sus lead-lag frequency: Bpc = 0.0 rad, & = 0.2.
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Figure 26.-— The effect of torsion frequency on the

stability boundaries, 8.y
versus lead-lag frequency: ch = 0.0 rad, & = 0.6.
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is varied from 2.5 to «. In general, soft inplane configurations are free of
instability for all combinations of & and wyg. A special limiting case of the
soft inplane configurations is the matched stiffness configuration where

EIp' = EIy', and all flap-lag and bending-torsion structural coupling vanishes.
For this configuration the torsion modes are uncoupled from the bending modes,
and the lead-lag damping may be obtained approximately, but with good accuracy,
from a flap-lag analysis. Since torsionally rigid soft inplane configurations
are virtually always stable, torsionally flexible matched stiffness configura-
tions may be expected to be stable for all values of ® and wg. This expecta-
tion is confirmed by the results. Figures 23 and 28 show that the stability
boundaries shift up and out of the practical pitch angle range as the lead-lag
frequency decreases to the matched stiffness frequency marked on the figures.

In contrast to the soft inplane configurations, the stiff inplane config-
urations again exhibit a variety of unstable behavior. For low values of &,
the region of instability occurs at increasingly smaller pitch angles as the
torsion frequency is reduced. This is directly attributable to the equivalent
pitch-lag coupling of the bending-torsion structural coupling. As &
increases, the region of instability shifts to larger pitch angles and higher
lead-lag frequencies. When & = 1.0, the motion is stable for all practical
configurations. For very low torsion frequency or high lead-lag frequency,
however, a small unstable region is present. This instability appears to be
associated with a coincidence of the lead-lag and torsion frequencies wvﬁfw¢.

The results of figures 23-28 are cross-plotted for wy = 5 1in figure 29
to show more directly the effect of the structural coupling parameter ®&.
Compared to figure 22 for a torsionally rigid blade, the effect of torsional
flexibility is to reduce significantly the pitch angle at which instability

occurs.
Q5(0m ~~Q8(ow
‘N

0 35(Div)
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Figure 29.- The effect of & on the stability boundaries, 6., versus lead-
lag frequency: Wy = 5.0, ch = 0.0.
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In summary, these results without precone indicate that typical hingeless
rotor blade configurations (w¢ > 5, wy < 2) operating at moderate pitch angles
(6 £ 0.3 rad) are stable, except when the structural coupling parameter & is
relatively small.

Effect of Precone on Stability Boundaries

The influence of precone on the stability of torsionally rigid rotor
blades is relatively small (refs. 5 and 6), but for torsionally flexible
blades its influence can be very large. This is due primarily to the bending-
torsion structural coupling terms in the torsion equation. As noted above,
the equivalent pitch-lag coupling produced by structural coupling is a func-
tion of the equilibrium flap and lead-lag deflections of the blade that are in
turn strongly dependent on precone. As clearly shown in figures 14 and 18,
positive precone produces a positive equivalent pitch-lag coupling, at small
pitch angles, that can be strongly destabilizing. The stability boundaries
without precone, given in figures 23-28, are repeated for three values of &
in figures 30-32 with 0.05 rad precone. A comparison between the two series
of figures clearly reveals the destabilizing effects of precone. For low and
moderate torsion frequencies, a new region of instability appears which begins
at or near zero pitch angle and terminates at a small positive pitch angle.
The range of pitch angles for which the blade is unstable increases as OF)
decreases because the pitch-lag coupling increases with decreasing wg. For
® = 0.0 this precone instability is limited to soft inplane configurations;
however, as & increases, the region of instability expands to include stiff
inplane configurations as well. At the low wy range, near the matched stiff-
ness configuration, the unstable region closes because the structural coupling
(EI,+ ~ EI,r) available to generate destabilizing pitch-lag coupling decreases

and then vanishes when El, = Eva.
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Figure 30.- The effect of precone and torsion frequency on the stability

boundaries, 8. Vversus lead-lag frequency: ch = 0.05 rad, & = 0.0.
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Figure 31.- The effect of precone and torsion frequency on the stability

boundaries, 6 versus lead-lag frequency: = 0.05 rad, & = 0.4.
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Figure 32.- The effect of precone and torsion frequency on the stability
boundaries, 0., versus lead-lag frequency: ch = 0.05 rad, & = 1.0.



In addition to the new region of instability at low pitch angles, precone
also influences the previous stability boundaries at higher pitch angles, but
the effect is not very large. Generally, these stability boundaries are
shifted to higher pitch angles. The effect of increasing precone to 0.1 rad
for & = 1 1is shown in figure 33; if the results of figures 33 and 32 are
compared, it will be noted that the regions of instability at low pitch angles
more than double in size when the precone is doubled.

Additional results are given for soft and stiff inplane configurations
where precone is taken to be the independent variable. TFor the soft inplane
configuration with wy = 0.7 (fig. 34) the motion is stable for wg 2 5.0, and
only the result for wy = 2.5 is shown. The effect of variations in & is

OJ¢= 35
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2.5
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w¢=25

rad

21~ | Matched
! | stiffness

cr?!

—— e ————

Figure 33.- The effect of precone and torsion frequency on the stability

boundaries, 0., versus lead-lag frequency: ch = 0.1 rad, & = 1.0.
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Unstable

ch , rod

Figure 34.- The effect of & on the stability boundaries, ©

cr Versus precone
angle: wy = 2.5, wy = 0.7.
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seen to be quite small. TFor the stiff inplane configuration in figures 35-38,
the motion is unstable for a wide range of precone, torsion frequency, and &.
For simplicity, only values for w¢y = 2.5, 5.0, 12.0 and <« are shown. At
lower values of Weh s the results show large variations with respect to B,
and &, while at high w4, the variations are small. As noted above, the
instabilities are primarily generated by the equivalent pitch-lag coupling
produced by bending-torsion structural coupling. This coupling varies roughly
in proportion to precone and inversely in proportion to torsion frequency.

0 v

!

Unstable

JE =0 0.8 B
Unstable =70 —
Stable
0 | L I 1 ! 1 [ ! I
-.06 -.04 -02 0] .02 .04 .06 .08 .10 12 14
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Figure 35.- The effect of & on the stability boundaries, 6., versus precone
angle: wy = 2.5, wy = 1.5.
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Figure 36.— The effect of & on the stability boundaries, 8., versus precone
angle: Wy = 5.0, wy = 1.5.
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Therefore, the stability boundary variation with precone for a large torsion
frequency should be reflected in a similar stability boundary variation over a
smaller range of precone when the torsion frequency is small. This expecta-
tion is reasonably well confirmed by the results, particularly for the lower
values of ®. Also the small effect of precome for large w is what would
be expected from the equivalent pitch-~lag coupling effect.

Effect of Torsion Frequency

The results discussed above have clearly shown the important influence of
torsion flexibility. We will now consider this influence more directly by
showing the variation of stability boundaries as an explicit function of the
independent variable wg. These results are shown in figures 39-41 for three
values of the structuraf coupling parameter ® and several values of lead-lag
frequency. For low wg, an increase in torsion frequency is stabilizing for
all values of & and wy; at higher torsion frequencies, this reladtionship is
reversed for some configurations. This occurs, for example, when & = 0.0
near wy, = w, and at moderate # for certain stiff inplane configurations.
The flap divergence boundaries for low torsion frequencies described earlier
are shown in detail in the expanded scale portion of figure 40. 1In general,
it is difficult to classify the stability characteristics of torsionally flexi-
ble cantilever blades with respect to the effect of increased or decreased
torsional flexibility. At large values of w the stability boundaries
asymptotically approach the corresponding flap-lag stability boundaries (pro-
vided that a flap-lag stability boundary exists). It may be noted in fig-
ure 41 that without precone, lead-lag instabilities are not present at typical
torsion frequencies (w, > 5). Since there are no flap-lag instabilities for
® =1 and B, = 0.0, the results of figure 41 are consistent with the

results discussed above.
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Figure 39.- The effect of lead-lag frequency on the stability boundaries, 6
versus torsion frequency: ch = 0.0 rad, & = 0.0.
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Figure 40.- The effect of lead-lag frequency on the stability boundaries, §
versus torsion frequency: B

Figure 41.- The effect of lead-lag As w
frequency on the stability bound-
aries, 6,, versus torsion frequency:

ch = 0.0 rad, & = 1.0.

torsion structural coupling.
reverses its influence when

point, the equivalent pitch-lag coupling changes sign.

cr
= 0.0 rad, & = 0.4.

pc
A few results are also included
to show the effect of torsional flexi-
bility on lead-lag damping of canti-
lever rotor blades. This is of inter-
est because the lead-lag damping of
cantilever blades is inherently low
and may lead to problems, such as
high blade bending loads or coupled
rotor-body instabilities, even if the
motion of an isolated blade is stable.
Figures 42-44 show several examples
where the damping of stable configura-
tions is significantly increased or
decreased by torsion flexibility.
The damping is given by the dimension-
less real part of the lead-lag mode
eigenvalue at a pitch angle of 0.3 rad
plotted as a function of w,, for
5 several torsion frequencies. The
influence of torsional flexibility is
especially clear in these results.
is reduced, the influence of
torsional flexibility is magnified
whether the lead-lag damping is
increased or decreased. This again
is due to the influence of bending-
It is also clear that torsional flexibility
equals the matched stiffness value. At this
In general, for
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typical soft and stiff inplane configurations without precone, torsional
flexibility increases lead-lag damping except for stiff inplane configurations
of low & wvalues.

Effect of Approximations in the Analysis

The preceding results and discussion have demonstrated the importance of
the structural bending-torsion terms in the equations of motion. It is
natural to inquire, therefore, if the equations of motion could be simplified,
without significant loss of accuracy, by eliminating most of the terms in the
torsion equation except the structural terms. This procedure was described in
a previous section and results in a system of modified flap-lag equations
without independent torsion degrees of freedom.

The results using the modified flap-lag equations are compared to the com-
plete flap-lag-torsion results in figures 45-48. 1In general, the complete
flap-lag torsion equations are required for very low torsion frequencies when
inertial, aerodynamic, and structural terms are all important in the torsion
equation, At intermediate torsion frequencies, only the structural torsion
terms are required and the modified flap-lag equations are appropriate. At
very high torsion frequencies, torsion deflections become negligible and a pure
flap-lag analysis is adequate.

An indication of the range of torsion frequency where the three levels of
complexity are appropriate may be obtained from typical results for a config-
uration without precone or flap-lag structural coupling (] = 0) in figure 45.
For wy; > 20, the flap-lag equations without torsion are adequate; for
5 < Wy, < 20, the modified flap~lag equations including structural torsion

-— Flap-lag-torsion
- Modified flap-lag
- ---- Fiap-lag

T Unstable

1 Stable

0 ! [ L ! ! [ { 4
2 6 10 15 20 25 30 35 40V @
wg

Figure 45.- The effects of approximations in the analysis on the stability

boundaries, 6., versus torsion frequency: ch = 0.0 rad, ® = 0.0.
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boundaries,
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Ocy Versus torsion fre-

= 0.0 rad, & = 1.0.

terms are sufficient, and for

We < 5, the full flap-lag-torsion
equations are required, including
torsion dynamics. Figure 45 clearly
shows, however, that this division
of the torsion frequency range
depends on other parameters as well.
For example, with wy = 1.5, the
effects of torsion deflections due
to bending~torsion structural cou-
pling are significant for wy > 20.

Typical results for a configura-
tion having flap-lag structural cou-
pling (® = 1.0, fig. 46) are gener-
ally consistent with the observations
based on figure 45. That is, for
low torsion frequencies We < 5, the
complete equations are necessary, and
for higher torsion frequencies the
modified flap-lag equations are
adequate.

Figure 47 shows the variation in modal damping versus w for a stable
configuration for the three systems of equations. These results are again
consistent with the range of validity outlined above for the approximate

equations.
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Figure 48.- The effect of approximations in the analysis on the stability

Eoun?agies, 6.y Versus torsion frequency: ch = 0.14 rad, wy, = 1.2,

Figure 48 illustrates an example with precone where the modified flap-lag
equations are accurate to very low w for predicting the low pitch angle
precone instability. A high pitch angle instability at very low w is not

predicted by the approximate equations, however, because of the lack of torsion
dynamics.

Effect of the Number and Type of Mode Shapes on Accuracy and Convergence

The type and number of mode shapes used in the solution of the equations
has been described previously. It is of interest to examine the influence of
these factors on the accuracy and especially on the rate of convergence of the
results. A previous investigation, using uncoupled mode shapes of a nonrotat-
ing cantilever beam for flap-lag stability analysis (ref. 6), indicated that
results would be accurate with as few as one or two modes. The present
results for the flap-lag-torsion equations are not as simple. Figures 49
and 50 show stability boundaries as a function of precone for a soft and stiff
inplane configuration, respectively. 1In each case, the stability boundaries
are shown for an increasing number of mode shapes for two different calcula-
tions, the first using uncoupled mode shapes of a nonrotating beam, and the
second using coupled mode shapes from a free vibration analysis of the rotor
blade about its equilibrium operating condition (see discussion above in the
section on Solution of the Equations of Motion).

The results using uncoupled mode shapes of a nonrotating beam are given

in figure 49. These mode shapes yield poor convergence of the stability
boundaries, and for accurate results five (N) mode shapes are required for
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Figure 49.- Comvergence of stability boundaries with respect to number of
mode shapes for analysis using uncoupled nonrotating mode shapes; total
number of mode shapes and degrees of freedom equals 3N.

each bending and torsion deflection. This yields a total of 15 (3N) degrees
of freedom and is cumbersome computationally.

The results using coupled mode shapes obtained from a free vibration
analysis about the equilibrium deflection condition of the rotating beam are
shown in figure 50. Up to six (M) coupled mode shapes (6 degrees of freedom)
were used, and for each value of M, 15 (3N) uncoupled nonrotating mode shapes
were used in the free vibration analysis. It should be noted that a minimum
of 15 uncoupled nonrotating mode shapes was necessary as a basis for determin-
ing the coupled rotating modes, this minimum number having been established by
the results of figure 49. As explained previously, the truncation of the num-
ber of rotating modes from 15 to M was accomplished in two different ways.
For M= 5 or 6, the M lowest frequency coupled modes were retained. For
M= 5 or 6, these modes consisted of 3 or 4 flap bending modes, 1 or 2 lead-lag
bending modes, and 1 or 2 torsion modes, depending on the particular configura-
tion parameters. For M = 2, 3, and 4, the modes retained were chosen
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arbitrarily as follows. For M = 4, 2 flap, 1 lead-lag, and 1 torsion mode
were retained; for M = 3, one of each mode was retained; and for M = 2, the
lowest frequency flap and lead-lag modes were retained. Figure 50 shows
clearly that the convergence using coupled rotating mode shapes is quite good;
in this case as few as three coupled mode shapes provided very accurate results.

15~ 20—

3,4,5,6
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o) { J 05
.05 1 | | i 1 1 | ! 1 1 L | |
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ch rad ﬁpc, rod
(a) Soft inplane blade: w, = 0.7, (b) Stiff inplane blade: w, = 1.5,
wg = 2.5, & = 0.0. we = 5.0, & = 1.0.

Figure 50.- Convergence of stability boundaries with respect to number of mode
shapes for analysis using coupled rotating mode shapes; total number of
mode shapes and degrees of freedom equals M. TFor each value of M, the

coupled rotating mode shapes are derived from 3N = 15 uncoupled nonrotat-
ing mode shapes.

The two widely different configurations used for both figure 49 and fig-
ure 50 showed similar convergence trends. This indicates that the relative
effect of using uncoupled nonrotating or coupled rotating mode shapes is not
highly dependent on the rotor blade configuration.

In addition to the two ways of varying the number of mode shapes pre-

sented in figures 49 and 50, it is also possible to use a truncated set of
coupled rotating mode shapes and vary the number of uncoupled nonrotating mode
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shapes used as a basis for the rotating modes. Results were obtained holding
M constant at 6 with N wvaried from 2 to 5. Although not shown in the fig-
ures, the rate of convergence is virtually identical with the results using
uncoupled rotating modes in figure 49. This is because, for N less than 5,
the number of nonrotating mode shapes used as a basis for determining the
rotating mode shapes is insufficient for accurate results.

CONCLUDING REMARKS

In this report the stability of elastic cantilever rotor blades of uniform
mass and stiffness and without twist or chordwise offsets of the mass, elastic,
and aerodynamic center axes was investigated for the hovering flight condition.
Instabilities were found mainly for the lead-lag bending degree of freedom.
These instabilities were strongly dependent on lead-lag frequency, torsion
frequency, precone, and a structural coupling parameter @& that was used to
approximate the effects of nonuniformities in bending stiffness. The results
of the present investigation may be summarized as follows.

1. The stability characteristics of torsionally flexible blades are
mainly determined by the nonlinear structural coupling between bending and
torsion deflections. This coupling produces equivalent kinematic pitch-lag
and pitch-flap couplings that are generally proportional to the difference
between lead-lag and flap bending stiffness EI,v - Eva, precone, and tor-
sional flexibility.

2. Rotor blade configurations without precone, and with typical wvalues
for torsion and bending frequencies, are generally stable for all practical
blade pitch angles. Exceptions occur for stiff inplane configurations with
low values of the structural coupling parameter & or with low torsional fre-

quencies, or both.

3. Rotor blade configurations with precone exhibit lead-lag instability
for a variety of configuration parameters in practical ranges. This instabil-
ity exists at low pitch angles and is not present for stiff inplane configura-
tions when & is small.

4, Increasing torsion frequency is usually stabilizing at low values of
wyg, but the opposite is true at higher for some configuratioms. In gen-
eral, it is difficult to characterize the effects of torsional flexibility in

a simple manner.

5. The approximate modified flap-lag equations that neglect torsional
dynamic effects are usually accurate for torsion frequencies greater than 5.0.
For wg < 5.0, torsional dynamics should not be neglected. For torsion fre-
quencies above 20.0, torsional flexibility is rarely important and flap-lag
analyses are generally accurate.

6. The accuracy of the results is dependent on the mode shapes used in
the modal solution. When using coupled rotating mode shapes, no more than six
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are required. Using less accurate, uncoupled nonrotating mode shapes, a much
larger number is required for the same degree of accuracy.

A logical extension of the present investigation would be to increase the
scope to include two segment rotor blades with nonuniformities in mass and
stiffness, twist, and a rigid body blade pitch degree of freedom. Furthermore,
the effects of droop, sweep, and torque offset, as well as chordwise offsets
of the elastic, mass, and aerodynamic center axes could be included.

Ames Research Center
National Aeronautics and Space Administration

and
Ames Directorate, U.S. Army Air Mobility R&D Laboratory
Moffett Field, California 94035, December 30, 1975
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APPENDIX A

DERIVATION OF BLADE VELOCITY COMPONENTS Ur, Up, AND € FROM THE

DEFORMED BLADE COORDINATE TRANSFORMATION

In equations (18) and (20) blade aerodynamic loads are expressed in terms
of Ur, Up, and € where Up and Up are components of blade velocity along
the y' and z' axes, and € is the component of blade angular velocity along
the x' axis. In order to use the expressions for blade aerodynamic loads in
equations (10), U, Up, and € must be expressed in terms of the blade bending
and torsion deflections v, w, and ¢. The blade velocity is easily expressed
in the x, y, z coordinate system. The deformed blade coordinate transforma-
tion [T] relating the x, y, z and x', y', z' coordinate systems, derived
in references 1 and 24, is then applied to express the Ut and Up wvelocity
components in terms of v, w, and ¢. The angular velocity components of the
blade may be obtained by taking advantage of certain mathematical properties

of [T].

The vector velocity ﬁ of the blade may be simply written in the x, vy,
z coordinate system from equation (45) of reference 1, and with the addition

of uniform induced inflow vj becomes
> . -+ s . > -+ > >
U= (u- Qwi+ (Qx + v)j + (vi +w+ QVBPC)k.= Upi'+ Upl' + Upk'

. T T 7 T Ty T .
The transformation |[T] relates the i, j, k, and 1i', j', k unit wvectors

of the x, y, z and x', y', 2' coordinate systems, respectively. There-

fore, the blade velocity components in the deformed x', y', z' coordinate
system are
Ug u- Qv
Upp = [T] {ox + v (A1)
Up vy + W+ QvBse
where, valid to second order,
r - vi2  y'? o . ]

2 2

12

- 12 N
[T] = |-[v' cos(8 + ¢) + w' sin(6 + ¢)] ( - V—2—>cos(6 + ¢+ v'w') ( - ﬂz—)sin(e + ¢

12 R 2 N
[v' sin(® + ¢) - w' cos(6 + ¢)] ~(1 —-XE—)sin(e + ¢+ v'w') Q.— E%—-)cos(e + ¢)

L -
and X (A2)

b =9 - .f v'w' dx
0
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Thus, using equations (Al) and (A2)
. . R vv2
Up = —(u=-Qv) [v' cos(6+¢) +w' sin(6+¢) + (2x+V)cos(8+¢+v'w") (1 -5
. . W|2
+ (vi +w + QVBPC)sin(e + ¢)<1 - —E_)

o 12
(G- ) [v' sin(6+¢) - w' cos(84-¢)]-(Qx4—%)sin(6+-¢+—v'w')(1 - X§—>

[~
Lav]
I

. n W'2
+ (vy +w+ Qvac)cos(e + ¢)(1 - —E_)

For 6 = 0(e) we have sin 6 =2 6 and cos 6 = 1. With all terms of 0(e2)
neglected with respect to unity, the Up and Up velocity components are

Up = 0x + v

X (A3)
-—Qxe+¢+J; viw' dx )+ vy +w - (8 4+ 9T+ Qv(Bp + w')

UP i

The component of angular velocity along the x' axis, &, is now con-

sidered. First, an infinitesimal rotation [a] dt is defined where

0 oy —aj
[a] = |-oy 0 o, (A4)
o -o, 0
L ] 1 A
> >
and Xhere @i, 04, and o are the angular velocity components about 1', j',
and k'. Note that & = o4. By definition, the matrix |[T] satisfies the
relation
i' i
T T
't = [Tl
2 %
Differentiating this equation yields
ai Ed
.
di'} = [aT1{3
dk' k

which in turn can be written in terms of [a] as
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[ldes3'y = [dTKT
3 4
Thus,
[T] = [a][T] (A5)

The transformation [T] was originally derived in reference 24 by solving the
following differential equation, similar to equation (A5):

[T"] = [w][T] (46)

where [w] 1is of the same form as [0] and the elements wq, wy, wg are
rates of rotation with respect to the blade axial distance x, functions of
v', w', and ¢'. We now consider the derivatives of the tensor function

[T(v',w',9)]:

[T']=|:3T' PR +_a_ﬂ_:¢.]

ov ow 0¢
(A7)
< | BT ., , 3T ., AT
[T]-—[av, v' o+ St W + %% }

By comparing the two equations of (A7) and equations (A5) and (A6) it is
evident that, when v", w'", and ¢' in the expressions for w;, wy, and wp are
replaced by +v', w', and $, the exact expressions for Ui, O, and aj are
obtained for a nonrotating blade. Making this replacement in the expressions

. ) > >
for wj, w;, and wy 1in the appendix of reference 1 and adding the 1i', j', k'
components of the blade angular velocity § of a rotating blade yields

oy é ch
oy = v' sin(6 + ¢) - W' cos(6 + ¢)y + Q[TIK O (A8)
oy V'cos(B + ¢) + w' sin(6 + ¢) 1

The only component of interest here is oy = €. Thus, neglecting higher order
terms

E =9+ QB +w') (A9)
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APPENDIX B

MODAL EQUATIONS OF MOTION

In this appendix the nonlinear, variable coefficient, integro-partial
differential equations (10) and (23) are written in nondimensional form and
transformed into nonlinear ordinary differential equations. These modal equa-
tions are then linearized for small perturbation motions about the equilibrium
operating condition. Nonlinear algebraic equations, governing the equilibrium
operating condition, are written first, and the mass, damping, and stiffness
matrices, equation (28), for the linearized perturbation equation are then
expressed in terms of the equilibrium generalized coordinates.

First, equations (10) and equations (23) for the aerodynamic loadings are
combined and written in nondimensional form:

8V equation:

1 .
-[v' ‘!; z + 2‘;1)dxj|' AT~ (hy = A)sin? @D)T + (A, - Ap) SRR G
. }—< . -
+ (hy — ) [~sin(288) (47")" + cos(2R0) (43™)"] - 28,65 - 2 [ @'V +T'")az
0
“a

x4 (o + ¢)x7i]%r + [295 - %(8 + ¢)]w

= - Y )} ==
+V—V+€ XVldJ'l'[z—a—

C
dO
=3 <v12 - %% - '}i\—IiG>
6w equation: (Bla)
(! - _ PP sin(280) _
o @ aax|l @+ 4y - ADsIn?@)F + (h, - 4y) STREED. g
X
+ (A, ~ A) [cos(2R8) (47")" + sin(2R6) (45")"] + 28, ¥ + ;—;(1 + %%)
% . .
+L-=2(o + J; VIE" AR )+ RV(By + W) - 5 X - [2R(6 + 0) - 919
+ Xw - % %| = ~BpcR + ¢ <—}—<vi + %20 + - inc> (B1b)
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8¢ equation:

2 =12 =n2
"EEE [(1 - %2)¢']" - k" + (Ay ~ Al)[(ﬂ——7;ll—)sin(zae) + " cos(ZRG{]

=2 . .
F X Rh w2+ (1% - D6 cos(20) = ~(ny2 -y RO g
The dimensionless parameters are given by
2
o x I }
k 2 % R v R
™
kml ET_»
u = — Al = 4 w = —‘—J—
1
R mQ2RM R
kmz EIZv vy L
R T e UT® 2
k
m GJ d
W= K = ()' = 5% ()
mQ2R"
E=_C_ Y=_?fia§ (’)=_§_=i()
R m Y Qat )

Substitution of equation (25) into equations (Bl) and application of Galerkin's
method yields the following set of nonlinear ordinary differential equations:

N

C . 2 4
8V; equations: 2%. ViDyg + [y = (A - Ay)sin®(RE)]B; 655 — 8547
J=

N
sin (260) " \
+ Wj — (/\2 - Al)Bj (Sij + (A, - Al) kz_l Kjkiq)j [—Vk sin (289)

N N
+ Wy cos(2R0)] - 28,.8;55W; + 2 kz=:1 (Fipg - ].rjki)vkvj -2 k}=:1 F i
Y " - :
V, + L% o + L.+ T o H
8,0+ g [ TiT50 2 By 09855 Ty kZ L
N v ‘4
_ _ _ : Y524 -— ¢ -F =1,2 ., N
+ zviaij 8F, 5 kz;:l @kcljk W T\ v,%A,-—— ¢, -V,08B i=1,2, (B3’a)



s e SR

6Wi equations:
ZN:VM(A—A)B”S +w. {D,, + [A
“Z\5 T 2 e A Tt A Rt & 1

N

+ (A, - Al)sinZ((Re)]Sj’-F(sij} + (A, = A 1?;1 Koy

N L

. * .e _‘_Y_'c—i
+ Wk sin(266)] + ZBPCSijVj + 2 z Fikjwkvj + Wj(l + 24>Gij

N -

Y <
+ - 1-J..%., + L,..V.W, + E,.V., -5 0,.W,

6[ i3] 1?;1 1333 * Bpcfi3Vy T2 P13
- (20E., +2 Y oG, . -%8. |V, +E, W -1}

ij ~ Ckoijk ~ Viti3)'4 T M43t T h T13°3
= B B, + % (-v.B, +6C, +<p B i=1,2 N
i 76 \TVivi i7" 2 Ppety > e e

6@1 equations:

N
o, {u2KN,, + [ky.2 + 2 _ 2Ycos(26)]68..}
ng 5 LHORN, [ Y5 (u, u;%)cos(20)] i

+(A—A)NK M(ww—vv)+ s (280)V . W
2= M) X Kygy 2 i kT 3k

k=1 k
_2 .
2 ® YC p = _ 2 _ 2 .S_Jﬁ(z_e) i = 1. 2
+ u Gijéj + i8 Miij (uz Uy ) Ty i s 2,
i

in[Vk cos (2618)

(B3b)

, N (B3c)
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Here

1
1 3\
A, = f Y, dx J.. = f X%y 0, dx
i 0 i ij 0 i’j
1 1
B, = [ v ax k... = J o e" dz
i A i ijk 0 i3 'k
1 1
= 2 = '
Ci .{ Vv, dx Lijk _!)' x¥Y. ¥ ‘Pk dx
1 1 b
1-%2 — _ _
- y '\y \l d _ I 2 'f v LA o = pope
Dij 4. < 3 > i Yy X ) XYy ) Wj (xl)‘Pk (x,)dx, dx
1 1
e - [ wvv a w. = [ %00, ax (B4)
iy g i iy 4 i3
1 1 —
e f vy oty max N, = 1-%X")g 10" ax
ijk qu 0 i j 'k ij n 2 i 3
1 1
= = '
Gijk { XYY Ok dx Oij J; XY, ¥ dx
1 1
H, = [ vvoe ax s..= [ vy ax= [ o0, ax
ijk 0 i'jk ij 0 ij 0 i’j
1 0 i ?&j
.= [ ®ve a =
1J 0 +J 1 i=3 )

The equilibrium and perturbation equations are obtained by substituting
equations (27) into equations (B3) and performing the operations described in
the text. The resulting equilibrium equations are:

N
ions: P, - - inZ (R 8., - 8.
GVOi equations: & <V0j{Dij + [Ay (Ao A)sin“( 6)]BJ ‘513 613}
sin (260) _ N . R
+ WOj I (A, Al)Bj 6ij + - A ) E=1 Jkl 05 VOk sin (266)
Y Y CdO
— X7 o p= S 2 —_— - X7 1 =
+ Wok cos (2R89) ] + 6 ViIijq)OJ 6 \ ¥4 Ai ” Ci VieBi i=1,2,.. .(],SSNa)
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6W_. equations:

0i

N
sin(289) _ L
& vOj s (A, Al)Bj aij + wOj{Dij + [4
2 I 3
+ (A, - A))sin (&{e)]sj aij} + (A, - Ap) 1?‘—:1 Kjki@oj [Vy, cos(286)
: Y _c

+ ka sin(266)] + 6 <?PCEij 05 5 OijWOJ Jij 0

N _
+ 3 L..,V,.W =—sB+1<ec-x713 + = BB i=1,2

= Tiiki 03 ok pc®i T 6 i i’i T 2 Ppe®i

6@0. equations:

=

2 2 2 _ 2
jgl 205 THIRN, o + [y, % + (- wy®)cos(20) 18,

N
sin (289)
+ (AZ— Al) &Ei Kijk [*—Zr~—— (WOjWOk - VOjVOk) + cos(ZRG)VOjVOk]

sin(26)

= —(Uzz - Ulz) = 1, 2,

i

» N (B5b)

, N (B5c)

The perturbation equations, linearized in A-quantities, yield a set of
ordinary differential equations with constant coefficients that can be easily

expressed in the form of equation (28) where

5. . | 0 I o ]

3 |

Sl Tl St
Ml = | o : aij<1 + 24> : 0

e e

L A T

(B6)
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