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SYMBOLS

cross-sectional area, equation (35), m?

kinetic and strain energy boundary terms, equations (39) and (59),
N-m

reference frame which rotates with speed Q with respect to the
stationary inertial frame R

blade cross-section integral, equation (35), mb
blade cross-section integral, equation (35), m®
blade chord, m

blade cross-section integral, equation (35), m®
blade cross-section integral, equation (35), m®

mass centroid offset from elastic axis, positive when in front of
the elastic axis, equation (56), m

tensile axis (area centroid) offset from elastic axis, positive
when in front of the elastic axis, equation (35), m

Young's modulus, N/m?
shear modulus, N/m?2

unit vectors associated with undeformed beam coordinate system,
figures 1-3

unit vectors associated with deformed beam coordinate system,
figures 2, 3

. . . > . . . . .
"fixed" unit vectors with K in direction of rotation of £ 1in
R, figure 1

blade cross-section moment of inertia from y' axis,
equation (35), m*

blade cross-section moment of inertia from =z' axis,
equation (35), m"

torsional rigidity constant, equation (35), m"
I|+I|
radius of gyration of blade cross section = -JL—7T—E; s
equation (35), m
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km mass radius of gryation of blade cross section = / k% + k% ,
equation (56), m 1 2

km1 blade cross-section integral, equation (56), m

km2 blade cross-section integral, equation (56), m

Lu,Ly,Ly components of generalized nonconservative forces in x, vy, and z
directions, equation (60), N/m

m mass per unit length of the beam, equation (56), kg/m

ﬁ internal structural moment

My, My * twisting moment about the x and x' axes, figure 4, N-m

ﬂx- Syr - (Px+)', equation (93), N-m

My,My. bending moment about y and y' axes, figure 4, N-m

M, M, bending moment about =z and z' axes, figure 4, N-m

My generalized nonconservative moment about x' axis, N-m/m

0 fixed point in B and R at the root of the blade, figure 1

px,py,pz inertial and aerodynamic forces

P warp term in strain energy expression, equation (34), N-m?

qx,qy,qZ inertial and aerodynamic moments

T distance along the deformed elastic axis

R length of blade, m

R inertial frame

Syt twisting moment arising from shear stress, equation (34), N-m

t time, sec; also blade thickness, m

T tension (same as Vx'), equation (62), N

T kinetic energy, kg-m?/sec

[T] transformation matrix

Ty a twisting moment arising from longitudinal stress, equation (34),
N-m

u,v,w elastic displacements in the Xx,y,z directions, respectively,

figures 2, 3
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strain energy, N-m

axial force (tension) in the x, x' directions, respectively,

N

shear force in the directions, respectively, N

Y, ¥y’
shear force in the 1z, z' directions, respectively, N

vector velocity of point P in R, m/sec; also internal

structural force, N

mutually perpendicular axis system with x along the
undeformed blade and y toward the leading edge,
figures 1-3, m

axis system tangent to the deformed body, figures 2, 3, m

coordinates of a point in the undeformed blade, m

coordinates of a point (which was at xgq, Yor 2Zg in the

undeformed blade) in the deformed blade, m

notation for writing the energy expressions in a concise form,
equations (38), (53), and (55)

precone angle, figure 1, rad
variation of ()

virtual work of the nonconservative forces, equation (29),
N-m

small parameter, equation (4)

tensor strain components, equation (5)

engineering strain components, equation (27)

sectional coordinate normal to n axis at elastic axis,

figure 3, m
A .
z + 3 equation (32), m
sectional coordinate corresponding to major principal axis
for a given point on the elastic axis, figure 3, m
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n - %% , equation (32}, m

Euler angles, see appendix and figure 5, rad
pretwist angle, figure 3, rad
warp function, m?

Poisson's ratio

density of the homogeneous model material, kg/m3

tensor stress components, N/m?

engineering stress, N/m?
elastic twist about the elastic axis, figure 3, rad
dimensionless (by ) uncoupled rotating torsion frequency

blade rotational speed, figure 1, rad
2
ax °’
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NONLINEAR EQUATIONS OF MOTION FOR THE ELASTIC
BENDING AND TORSION OF TWISTED
NONUNIFORM ROTOR BLADES
D. H. Hodges and E. H. Dowelll

Ames Research Center
and
U. S. Army Air Mobility R&D Laboratory

SUMMARY

The equations of motion are developed by two complementary methods,
Hamilton's principle and the Newtonian method. The former is more mathemati-
cally rigorous and systematic, while the latter provides more physical insight.
The resulting equations are valid to second order for long, straight, slender,
homogeneous, isotropic beams undergoing moderate displacements. The ordering
scheme is based on the restriction that squares of the bending slopes, the
torsion deformation, and the chord/radius and thickness/radius ratios are
negligible with respect to unity. All remaining nonlinear terms are retained.
The equations are valid for beams with mass centroid axis and area centroid
(tension) axis offsets from the elastic axis, nonuniform mass and stiffness
section properties, variable pretwist, and a small precone angle. The strain-
displacement relations are developed from an exact transformation between the
deformed and undeformed coordinate systems. These nonlinear relations form an
important contribution to the final equations. Several nonlinear structural
and inertial terms in the final equations are identified that can substanti-
ally influence the aeroelastic stability and response of hingeless helicopter
rotor blades.

INTRODUCTION

The dynamic response and aeroelastic stability of helicopter rotor blades
can be determined in many cases from linear equations of motion. Much work
has been done with linear analyses - notably the work of Houbolt and Brooks
(ref. 1), which contains a systematic derivation of the partial differential
equations for the coupled bending and torsion of twisted nonuniform blades.
These equations are not sufficient, however, in cases where nonlinear struc-
tural or inertial effects are important. Nonlinearities can be important in
determining the dynamic response of both articulated and hingeless (cantilever
blades) rotors, and they are especially important in determining the aeroelas-
tic stability of torsionally flexible hingeless rotors.

IConsultant, Professor, Department of Aerospace and Mechanical Sciences,
Princeton University.



This report develops a more complete and general nonlinear theory with
particular emphasis given to the fundamentals of the nonlinear behavior. The
theory is intended for application to long, straight, slender, homogeneous,
isotropic beams with moderate displacements and is accurate to second order
based on the restriction that squares of bending slopes, twist, t/R, and c¢/R
are small with respect to unity. Radial nonuniformities (mass, stiffness,
twist, etc.), chordwise offsets of the mass centroid and tension axes from the
elastic axis, precone, and warp of the cross section are included. Other more
specialized details are not considered, such as blade root feathering flexi-
bility, torque offset, blade sweep, and droop; nor are configurations
considered in which the feathering bearing is replaced with a torsionally
flexible strap.

The equations of motion are derived by means of two complementary methods:
the variational method based on Hamilton's principle, and the Newtonian method
based on the summation of forces and moments acting on a differential blade
element. Both methods used together help ensure a more accurate and consist-
ent treatment of the nonlinear terms. The important nonlinear strain-
displacement relations, required for both methods, are developed from a clas-
sical definition of strain and simplified in accordance with the premise of a
long, slender beam subject to moderate displacements. Applications of the
equations of motion to rotor blade aeroelastic problems and development of the
aerodynamic loads are not included in this report.

Several previous studies have included nonlinearities in the equations of
motion and identified their importance in forced response and aeroelastic
stability analyses. A brief discussion of this work should help to acquaint
the reader with the nonlinearities of interest, the extent to which they are
treated in previous work, and the rationale for the present development.

Several approximate analyses have represented the elastic cantilever
blade with a rigid blade and a spring restrained hinge. Reference 2 showed
that inertial (Coriolis and centrifugal) nonlinearities were important even if
only the flap and lead-lag degrees of freedom were retained. Reference 3 (also
based on the rigid blade representation) showed that structural bending-
torsion nonlinearities were important when blade torsion was included. The
flap and lead-lag nonlinear inertial terms were derived for an elastic blade
in reference 4; however, the radial displacement and an intermediate
equation for radial force equilibrium were required.

The extensive treatment of the elastic bending-torsion equations of
motion in reference 1 retained only linear terms in the final equations,
although nonlinear terms were included in certain intermediate stages of the
derivation. In particular, the present equilibrium equations in terms of
force and moment resultants are identical to those of reference 1. The pres-
ent inertial terms are also identical to those of reference 1 prior to simpli-
fication therein. The present work includes a more complete development of
the strain-displacement relation, and this is required to obtain the elastic
bending-torsion coupling terms. Reference 5 discusses a simplified form of
the bending-torsion coupling in the torsion equation - that is, the elastic
torque due to the product of flap and lead-lag curvatures. The present deri-
vation includes a more general formulation of these terms as well as the
corresponding terms in the bending equations.
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Reference 6 gives a relatively complete derivation (by the Newtonian
method) of the nonlinear equations for rotor blade bending, torsion and rota-
tion about flap and lead-lag hinges. Certain second-order nonlinear inertial
terms due to elastic deformations of the blade are not included, however, and
these can be important for stability of cantilever blade configurations.
Reference 7 contains a derivation (also by the Newtonian method) of a system of
nonlinear equations for the elastic bending and rigid pitching motion of a
cantilever rotor blade. Most of the nonlinear terms are included, but certain
inconsistencies in the discarding of higher-order terms resulted in nonself-
adjoint inertial and structural operators; that is, the stiffness matrix and
mass matrix are not symmetric, and the gyroscopic matrix is not antisymmetric.
The nonlinear bending-pitch coupling does not appear explicitly as a struc-
tural nonlinearity (as in refs. 5, 6, and the present report) since pitching
moments were derived in terms of the aerodynamic forces.

Reference 8 presents an earlier and less rigorous version of the
derivations given in the present report. The earlier derivation was based on
a simpler development of the strain-displacement relations and several extra-
neous terms were present in the final equations of motion. Preliminary
results for the aeroelastic stability of hingeless rotor blades using the
present equations have been reported in reference 9.

After a brief discussion of the coordinate systems, transformations, and
the ordering scheme to be used in this report, the strain-displacement rela-
tions are developed for an elastic blade. This theory is then simplified to
second order for long, slender beams. The derivation of the equations of
motion is divided into two parts. Part I gives the derivation of the equa-
tions of motion for a rotating beam based on Hamilton's principle. Part II
outlines the derivation using the Newtonian method. Both derivations reduce
to the results of reference 1 when the nonlinear terms are omitted.

The authors have closely collaborated on the entire report. However,
Part I is largely the work of the first author and Part II that of the second
author. Both have benefited substantially from D. A. Peters' contributions to
the transformation laws and strain-displacement relations. Numerous useful
discussions with R. A. Ormiston are also gratefully acknowledged.

COORDINATE SYSTEMS AND TRANSFORMATIONS

Several coordinate systems will be used in the present analy is, The
orthogonal axes system X, Y, Z and associated unit vectors T, %, K (fig. 1)
are fixed in an inertial frame R. Orthogonal axes Xp, ¥ Z are fixed in a
reference frame B which rotates with respect to R at constant angular
velocity oK. Point O, a common fixed point of R and A, is located at the
root of the beam. The plane containing X, xp, Y, and y 1is called the refer-
ence plane, or plane of rotation. The x axis, which lies along the elastic
axis of the undeformed beam, is inclined to the plane of rotation (and to the
Xp axis) at the precone angle +BP£' The orthogonal axes x, y, z, and the

. . > . .
corresponding unit vectors 1, j, k, therefore, are also fixed in #. Beam
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Figure 1.- Undeformed coordinate systems.

bending deformations shown in figure 2 for 6 = 0 are described by the

. . . T T > .
displacements of the elastic axis u, v, w, parallel to 1, jJ, k, respectively.
A point on the elastic axis that is located at x, 0, 0 in the x, y, z
coordinate system before deformation is located at x + u, v, w after
deformation.

’ -
x(orr), i’

Figure 2.- Elastic displacements.



The beam cross section is shown in figure 3 before and after deformation.
The point of the cross section through which the elastic axis passes (the
shear center) is shown at the intersection of the y and z axes before defor-
mation. The n and ¢ axes are the principal axes of the cross section for the
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Figgre+3.- Cross-section coordinates befgrg and after deformation. (Note:
j',k' are not in the same plane as j,k. Their projections are shown in

the plane.)
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shear center. The cross section is assumed to be symmetric with respect to
the n axis. The n and £ axes are inclined relative to the y and z axes
at the 'built-in" pitch angle 6(x). When the beam is deformed, the shear
center for the cross section located at x is displaced an amount u in the
x direction (not shown), v in the y direction, and w 1in the z direc-
tion. The angle of twist of the cross section changes from 6 about the x
axis to 6 + ¢ about the x' axis.

The deformed beam is shown in figure 4 with force and moment resultants
acting on the face of a cross section. At any point along the deformed beam,
x' is tangent to the deformed elastic axis. (Note that the distance along
the deformed elastic axis is also denoted by r, in addition to x'.) The y'
and z' axes are identical to th n+and+c axes, respectively, when the beam
is deformed. The unit vectors 1', j', k' are parallel to the deformed beam
coordinate system axes x', y', z', respectively. Stress resultants and
moments are subscripted with x', y', z' to associate them with the deformed
beam; for example, Mx: is a moment about the x' axis.

Figure 4.- Beam with resultant forces and moments.

Several coordinate transformations are used, including the simple

. > + > . ops .
transformation from Y, 1, 5 to ?, 3, k, A more difficult transformation

> >
(appendix) is one from i, j, k to ?', j', k', which is given to second
order by
- > > >
it = (1 - %—v'z - %-w'z)i +v'j + w'k (1a)



* > 1,2 - T
j' = -[v' cos(® + ¢) + w' sin(6 + ¢)Ji+ (1 —E-v' )cos(6+ d+v'w')j
1,2\ a7
+ (1—«§-w )51n(8 + ¢k (1b)
> : > 1,2\ . A >
k' = -[-v' sin(6 + ¢) + w' cos(® + ¢)]i - (1 -5 V! )51n(6 + b+ V'w')j
+ (1-—%—w'2)cos(6 + $)E (1c)

where & (consistent to second order in v', w', ¢) is given by

X
A dw 3%v
¢ =96 - J.O 9x axz dx

The transformation used in equations (1) may be simplified further in many
(but not all) parts of the analysis by replacing ¢ by ¢ and dropping the
squares and products of 3v/3x and 3w/3x. The summation of 6 and ¢ repre-
sents the total pitch angle (built-in pitch plus torsion deformation) with
respect to the x' axis; w 1is the bending deformation (flapping) in =z
direction; v is the bending deformation (lead-lag) in y direction; and
dv/3x, dw/3x are small rotations about the =z and y axes, respectively. It
is convenient to carry 6 + ¢ through the analysis without making the small-
angle approximation until the end of the derivation.

It will be necessary to transform vector components from one coordinate
system to another. For example, a resultant moment vector M may be written
as

=+
{

> > >
= Myi + MyJ + M,k (2a)
or

=¥
!

—?l _?' +'
= Mx'1' + MY'J + lek (Zb)

in terms of components measured in the undeformed or deformed coordinate sys-
tems, respectively. The relations between My, MY" M, and My, My, M, are
determinated by using the unit vector relations of equations (1) and taking
appropriate dot products of equations (2). Thus



5.7 T, 7 > .7
= Myri'- 1 + My|J' -1+ Myik' -1

=
»
1

|2 |2
Mx,(l - V—z- - %—) - Myv[v' cos(® + ¢) + w' sin(6 + ¢)]

- My [-v' sin(8 + ¢) + w' cos (8 + ¢)] (3a)
and, similarly,
Vlz ~
My = Mevt o+ (1 -—2—)[Myv cos(8+¢+v'w') -Myr sin(8+$+v'w')] (3b)
w'? . .
My, = My W'+ 1——2—>[My| sin(6+ ¢+ v'w') +Mzr cos(8+¢+v'w')] (3¢)

where the primed notation is introduced for subsequent use.

V' o= vV | W' = ow
= = ; = W

aXx

> >
Other vectors, such as resultant force V and acceleration a, obey the same
transformation laws.

ORDERING SCHEME

In deriving a nonlinear system of equations, it is necessary to neglect
higher-order terms to avoid overcomplicating the equations of motion. When
neglecting terms within a large system of equations, care must be exercised to
ensure that the terms retained constitute self-adjoint structural and inertial
operators. These self-adjoint operators lead to symmetric stiffness and mass
matrices and an antisymmetric gyroscopic matrix in the modal equations.

A systematic self-consistent set of guidelines has been adopted for
determining which terms to retain and which to ignore. The dimensionless
axial deflection u/R is generally taken to be of the same order of magnitude
as the square of Vv/R or w/R and thus is small with respect to unity. The
elastic twist ¢ is a small angle in the sense that sin ¢ = ¢ and cos ¢ = 1.
The axial coordinate x is of order R and the lateral coordinates are of
the same order as the chord ¢, and thickness t, respectively. Both ¢ and t
are assumed to be at the same order of magnitude as v and w. The warp func-
tion A 1is taken to be of order ¢ times t so that the actual warp dis-
placement will be an order of magnitude less than the axial displacement u.
These assumptions can be systematized by introducing €, a parameter of order
v/R or w/R. Hence



X = 0(e?) %= 0(e) |

x = 0(e) -ﬁ- = 0(e)

LIRS RL?_ = 0(e2) } (4)
p=0(e) LN g

X=o) 2L g

Within the energy expressions, terms of order e? are ignored with respect to
unity. Thus, if the largest terms of the energy expression are 0(e"), then
all terms of O0(e") are retained (first-order terms), all terms of 0(e5) are
retained (second-order terms), and generally terms of 0(e®) are discarded.
There are conditions under which certain 0(e®) terms should be retained.
These exceptions will be noted below. Since the physical quantities involved
in the strain energy and the kinetic energy are fundamentally different, a
scaling parameter for their respective orders of magnitude is introduced in
the text. This is done so that the ordering scheme may be consistently
applied to both strain energy and kinetic energy terms.

In the application of the above guidelines, it is important that the
ordering be done within the total energy context, or equivalently within the
virtual work expression (e.g., the w equation times &w). Ordering differ-
ently in one equation than in another without regard to this consideration can
lead to the above-mentioned symmetry problems, and introduce dissipative and
circulatory forces into the final equations that are linearized with respect
to an equilibrium position. Also, the scheme implies that the same order
terms should be retained in the v, w, ¢ equations, but terms of one order
less should be retained in the u equation.

STRAIN-DISPLACEMENT RELATIONS

The development of a nonlinear strain-displacement relation is central to
both the variational and the Newtonian methods for developing a nonlinear sys-
tem of equations. The use of this relation, together with the generalized
Hooke's law, permits the strain energy, the force resultants, and the moment
resultants to be expressed in terms of deformation quantities. Although the
primary goal of this paper is to develop a second-order nonlinear theory, we
first develop a general nonlinear strain-displacement relation, which is then
simplified consistent to second order for deriving the equations of motion.
This approach is necessary to ensure that a valid approximation for the



W

nonlinear strain-displacement relation is obtained. The general strain-
displacement relation would also be useful for future development of a more
accurate theory.

Derivation of a General Strain-Displacement Relation

Several different classical definitions of strain may be found in the
literature, depending on the mathematical formulation, reference states (based
on deformed or undeformed positions), and coordinate systems used. The influ-
ence of the definition of strain is considered in the present development. In
particular, for nonlinear strain-displacement relations accurate to second
order, there is no distinction between two commonly used definitions of strain.

. . . > >
The classic strain tensor ejj 1n terms of r, and rj, the vector
positions of the same point on the deformed and undeformed blade, respectively,
may be expressed as (ref. 10)

dr
d¥; - dT) - dfg - dry = 2ldr dn dg[ej5]dn (5)
dg

where dr, dn, dz are increments along the deformed elastic axis and two
cross-sectional axes, respectively.

The vector position of a generic point Qn 3he+undeformed beam is given by
(x, v, z) with respect to the unit vectors 1, J, k where (x, 0, 0) is the
elastic axis. The corresponding point on the deformed beam is given by
(1) the position of the efgrmed elastic axis (x + u, v, w) with respect to
the undeformed axes 1, j, k, and (2) the position of the point relative to
the elastic axis [-A(8 + ¢)*, n, ¢] with respect to deformed axes T‘, §', kr.
Note in particular that -A(6 + ®)*, where ( )* = 3/3r( ), represents an

axial position where A is the warp function; A(0, 0) = 0.

Let us now express the above mathematically. After deformation, the
vector position of a generic point is

N L j(xtu -x(0 + ¢)+
r1=t?3‘k1‘v]+mT n (6)
W z

where the transformation matrix [T], given in the appendix, relates the
> >
deformed axes (T', }', K') and the undeformed axes (i, J, i).z

2This derivation is simplified if [T] is retained in abstract form
throughout. A first-order approximation of [T] introduced at this point could
result in an incorrect expression for the shear strain component.

10



Before deformation,

> >
Ty =T, (7)
u=v=w=¢=0
Thus, using equation (6)
X -Ag6
> -»> 0
To= 11 3 %if{o} + M7 ng (8)
0 u=sv=w=¢=0 Zo
where
Mg = T.l|u=v=wz¢=0 CO = Clu=V=w=4)=0 )‘O(NO’ C0) = x(n, C)Iu=v=w=¢=0
The coordinates n and ¢ may be regarded as functions of ng, and CO’
respectively.
From equation (A2),
1 0 0
[T]]u=V=w=¢=0 =10 cos 8 sin 6 9)
0 -sin 6 cos 8
Thus
X - Aoe'
> > > .
T, = 1 ] k| N, cos 6 - g, sin © (10)

ng sin 6 + ¢ cos ©
The position vector differentials are given by

*(1 - 2g8")dr - (2 M0 4n v ad d )e'
XT(1 - Ao0M)dr - \Any 7~ ”dCod ¢

dt, = 11 7 xiderxt in 6 8)dr + =0 5 dn - 20 6 d
Tg = |1 ] J§-6'x"(n, sin 6+ g, cos ) r-fjﬂT cos n-—— dC sin I

dng
dn

dg
e'x+(n0 cos 8-z, sin 8) dr+ sin 6 dn + d; cos 8 dg

(11)
11



x* +ut SYCEDOM

> > > -+ T+
dry = [i' §'  k'I|ITly V' gdr + [TI[T]" n T

+

ﬁ
Ll

w

A8+ ¢)Hrdr- (g dn+ g do) (@ + )]

+ dn (12)
dg .
where
_ dx A 5A 3rg g
+ - =2 = == - 2 - —
XFEgrs M Egp s Ao Fagd no E g ‘o = 3z,
Note that
AN
(r1rrl’ = [ 1 ]
N
Thus
+ A
r1m’ o+ T’ [ o\]
and

0 -Wk w

j
T s T [ 0 -y (13)
—u)j w4 0

where explicit expressions for wj, wj, wgx are given in the appendix. Hence,

12



x*t +ut 0 W W SYCEXIN
af, = |1 7 Rt v fare [ e 0 -ws n dr
wt -0 wi 0 4
-8+ 9) Tdr - (A dn o+ Ag dE) (e + )Y
+ dn 14

dg

The expressions for the position vector derivatives can be simplified by
eliminating x* in equation (11) and [T] in equation (14). On the elastic
axis n=dn=1¢=dg =1 =}, = XC~= 0. Thus,

-5
drl

d

* n=g=0

=i 3 oxmd v (15)

-> > > > >
However, dr;/dr at n =1¢ =0 must be i' by definition of the i', j', k'
system. Therefore,

1 xt +ut
> > > > -+ >
lit3'  k'Jqogp= 11" j' k'J[T] v* (16)
0 w*
The first component of this vector equation yields:
/& N (x* + u*) + v e wt? o
Hence,
2
x* = /1o vttt (17)

13



Equation (14) for d;l may be now simplified, by using equation (16}, to
yield

dr 0 —wg Wj SYCEEOM

> e T >

dr; = i ' k'] 0 2+ | wk 0 -wj n dr
0 -wj wy 0 z

A6+ )THdr - (A dn v A dR) (0 + )7
+ dn (18)

dg
With equation (17), equation (11) for d?o becomes

>
dI‘O =

1
_

(

(/1—v+2—w+2-u+)(1—)\ o")dr - 8' (A il I ﬂdg

0 ne dn N7 %o Tdg

> > > / dn dg

11 3 kj<-e'(1—v+2-w+2—u+)(n0 sin 8+, cos e)dr+—d—n‘—)— cosedn-—dg—osinedc

/ dn
LG'( 1- v+2-w+2-u+)(n0 cos 6 -1z, sin 6)dr + d$

v

in6dn+ 20 s d
Sin n‘}“a‘ECOS C

/
(19)
Equations (18) and (19) can now be substituted into equation (5) to solve
for the components of the strain tensor e€jj.
2eq = (-nug + Lw)2 + Dok (8 + )F +2wg 12+ [uj (8 +9)" + nuy]?
2
#2080+ )"+ 2(-nuy + Twj) - 22 (8 + ¢)TT(1 - nuy + Tuj)

2 2 2 2 2 2 2
vt e wt ot e 2ut 1 - vt Wt o xtTe (n02-+g02)

ex*2 (218" - Ag20"%) (20a)
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2e1p = Mo+ ) 6+ )t - An(8+ )* (1 - nwy + cwj) - [Py (8 +¢)* + zwy]
rxter I [An, (1-2g8") +2,] 20b
X dn ﬂo( A ()] CO ( )
2e13 = Mg(8+9)7(8+¢)™ - A (0+ 8 (1 - nuy + Zwj) + [y (8+ ¢)* + nw; ]
dg
+xtor &2 [hgo(1-2g8") = n,] (20¢)
2
dn, 2 2 2 {dny\?
- 2 + 0
dn dzg
- 2 0 0 2
2823 = )\n)\C(G + ¢)+ - )\no)\co (F) (d—l;—> o' (206)
dz,\? 2 22 2 .2 (45, ¥
2833 =1 - (‘ac—> +}\C (9 + ¢) - ACOG' ?C— (ZOf)
where
8* = 6'xt 0%t = gxt? 4 grgtt

Equations (20a)-(20f) are the classical strain components in terms of
displacements u, v, w, and ¢; the warp function X; the curvatures Wis Wy,
and wy; the cross-section coordinates n, nNgs &, and ¢ ; and the pretwist "6,
The warp function is determined through Laplace's equagion for the cross sec-
tion. The curvatures and twist are known (appendix). A relationship between
Ng> &g, and n, ¢ 1is needed to express the strain components entirely in terms
of displacement variables. This relationship will only be determined for the
second-order approximate theory.

Second-Order Approximation for the Strain Components

Equations (20) form the basis for a general nonlinear strain-displacement
theory. This theory will now be reduced to second order. First, dny/dn and
dz,/dz must be expressed in terms of the elastic displacements and the known
parameters. The assumption of uniaxial stress, valid for long slender beams,
(022 = 033 = 023 = 0) and Hooke's law gives

€22 = —v€11} (21)

€33 = -ve]

15



Equations (20d) and (20f) are now

dng\2 2 2 2 _.2fdng 2
-2\)811 =1 - ﬁ) + An (6 + ¢)+ - Ance' (—d—)
(22)
dzg)\? 2 L2 .2 2(dgg\?
-2ve1; =1 - (—d—c—) + )\C (6 + ¢) - XCOQ (FC—)
and solving for (dny/dn) and (d;o/dc) gives
dn0>2 1+ 2ueqy ¢+ An2(8 + $)*?
dn 1+ Ang®'”
Z 1 (to second order) (23a)
(dr,o)2 1+ 2veyy + 2200 + 9
de 1+ 22 012
0
Z 1 (to second order) (23b)

Thus to second order n and ¢ are equivalent to N, and oo respectively, and
)\=)\0.

The strain components €11, €12, and €13 in equations (20) may now be
reduced to second order. The expressions for (dng/dn) and (dco/dc) are sub-
stituted in equations (20), higher-order terms are eliminated and ( )' 1is
substituted for ( )* since dx/dr = 1 to second order (eq. (17)).

12 12 12
€11 = u' +V2 +W2 - AN+ (n2+c2)(ev¢| +¢’2 )

-v"[n cos(8+¢) -Z sin(8+¢)] -w"[n sin(6+¢) + ¢ cos(6+¢)] (24)

€12 = % (g + Ay)e! (25)

S

€13 (n - Ag)¢' (26)

Although the ¢‘2 term in equation (24) is formally negligible, since it is
of 0(e") compared to other terms of 0(52), it leads to a tension term pre-
viously identified in reference 1 that contributes to the elastic torque Ty

16



about the x' axis (see eqs. (33) and (34) in Part I). Hence, it is retained
here although for certain applications it could be dropped without loss of
accuracy.

The shear strain component €53 1is now considered. Equation (20e) shows
that €p3 is not identically zero, contradicting the previous assumption that
023 = 0. However, ey3 1is two orders of magnitude smaller than the shear
strains €1, and ;3. Therefore, neglecting €23 and hence 0,3 is well
justified. This completes the reduction to second order of the classical
strain components in equations (20).

The relationship between the simplified classical strain tensor and
engineering strain is now discussed. Since the uniaxial stress assumption has
been invoked (o035 = 033 = 033 = 0), the expression for strain energy in terms
of the classical strain components is equivalent to the more familiar form of
strain energy based on engineering strain (the latter form is used in Part I).
Thus, the engineering strain components can be written in terms of the
simplified classical strain components.

Exx = €11
exn = 261 (27)
€xg = 2e13

There are other possible definitions of strain that could have been used
in this development. Here the strain has been defined on the basis of an
increment of deformed length dr. The most frequently used alternative
employs the original length dx. By appropriate transformation, the two
definitions can be compared. For example, examining the case of longitudinal
displacement only, u # 0, v = w = ¢ = 0, the present definition of strain
gives

du 1 fdu\?
€11 = 37 - j(d—;) (28a)
From the definition of r
E‘-:l-{-d_u
dx dx
and
du
du _ dx
dr ~ du
1 + H;
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Thus, the alternative definition of strain gives

A dr\2 _ du _ 1 {du}?
€11 T €11 g;) =ix 77 g;) (28b)

which is the more familiar result. To second order, however, the two results
are equivalent.
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PART I
DERIVATION OF EQUATIONS BY HAMILTON'S PRINCIPLE

The equations of motion and boundary conditions for a cantilever beam
rotating at constant speed are obtained from Hamilton's principle. These
equations are valid for rotor blades that can be represented by a long,
slender, homogeneous, isotropic beam. This representation includes spanwise
variations in the mass and stiffness properties, variable mass centroid axis
and area centroid axis offsets from the elastic axis, variable built-in axial
twist, and a small precone angle. The external forces acting on the beam are
characterized by a set of generalized distributed loads. The use of an actual
helicopter rotor blade as a model would be a more formidable task because of
the nonhomogeneous, anisotropic structures found in typical blades. The
present structural representation is similar to that of reference 1.

Hamilton's principle may be expressed as
ty
f [S(U - T) - sW]dt = 0 (29)
t
where U 1is the strain energy, T is the kinetic energy, and 6W 1is the
virtual work of the external forces. Suitable expressions for &U, 8T, and W
are now determined and then combined to give the desired equations.
Strain Energy Contributions

The usual expression for strain energy in terms of engineering stresses
and strains, defined in equation (27) in terms of the classical strains, is

R
1
v= 5.’; fA(Oxxexx * Oxn€xn * Oxgexg)dn dg dx (30)

The first variation is

R
8 = f f (oxx8€xx * OxnSexn * OxgSexz)dn dg dx (31)
0 A

where

Oxx = Eexx

xn = Gexn

Q
1

Oxz = Gexc
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and

where

Sexx = Su' + v'6V' + w'éw' + (n2 + £2)(8 + ¢)'6¢" - A3¢")

-[n cos(8+¢) - T sin(8+¢)](8v" + w''6¢)

~[n sin(0+¢) + ¢ cos(8+ ¢)](sw" - Vv'"8¢) . (32)
Sexn =-C6¢" S
Seyy = N4 )

we introduce the notation n=n- Ags LT =107+ An. Since the strains

(and hence the stresses) are composed of the sum of terms of order €2 and €3,
any product of stress and strain consists of terms of 0(e"), 0(e®), and 0(eb).
Consistent with the ordering assumption (82 << 1), 0(e®) terms are neglected
because of the presence of 0(e*) terms. In terms of stress resultants and
moments, the strain energy variation becomes

where

<
=
i

9]
~
1

-
”
1

o
i1

=
<&
il

=
N
1
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2 2
=ffoxx dn dg = EA{u' +V; +w—;——+kA28‘¢' - eplv" cos(6+¢) +w" sin(6 + ¢)]
A

= J‘J:\(ﬁoxc - ioxn)dn dg = GJ¢'

= j];coxx dn dg = EIyu[v" sin(® + ¢) - w" cos(® + ¢)] - ECy*¢"

R
§U = j. {Vxr (Su' + v'6v' + w'éw') + (Sxr + Tx')8¢' + Pxr8¢"
0

+ [Mzr cos(8 + ¢) + My sin(8 + ¢)](Sv" + w'"d¢)

+ [My+ sin(6 + ¢) - My 1 cos(® + ¢)](Sw" - v'"8¢) }dx (33)

the stress resultants and moments are defined by

12
(6 + 9) "oxx (n? + £2)dn dr = EAKZZ(0+ 8) " [u' + T+ T
A XX A = 2 2
+ EBy*0' 29! - EB,*8' (V"' cos B+w" sin )

—Jj;koxx dn dg = ECy¢" + ECy*(w" cos 8 - V' sin 6)

—ffnoxx dn dg =EI i [v'" cos(8+ ¢) +w" sin{(6 + ¢)]
A

1 V|2 W'2 *xQgtat
- EAep(\u’ + 5 * - EBy*8'¢ (34)




Three third-order linear terms (doubly underlined) are retained in these
equations although, consistent with the present ordering scheme, they could be
neglected. These terms (and two subsequent inertial terms) contribute to the
final torsion equation. In the special case of rotor blade configurations of
very low torsional rigidity, these terms may contribute substantially to the
magnitude of the torsion natural frequency; hence, they will be retained. The
linear term EC,¢" in Pyx+ is usually neglected for beams of closed cross
section.

The section integrals in equations (34) are defined as follows:

Az [f dnd: Aep = [fin dn dt
Iy, = Jf, t% dn dt I, = ffin? dn dg
Aky? = ff (2 + ¢2)dn dg J= ff, G2+ $2)dndg § (35)
Bi* = Jfym? + )% dndz By* = [fin(n? + ¢2)dn dz

C; = JJAAZ dn dg Ci* = ffzx dn de J

These integrals are to be evaluated only over the portion of the blade cross
section that is structurally effective. The blade cross-section area effec-
tive in carrying tension is A; Iyr and I,+ are the flapwise and chordwise
moments of inertia, respectively; AkA2 is the polar moment of inertia; and J
is the torsional constant including cross-section warping. Without warping,

J 1is equal to the polar moment of inertia. The tension axis offset from the
elastic axis is ep. C; 1is the warping rigidity, and B;* and B,* are sec-
tion constants equivalent to those found in reference 1. Cj;* is not included
in previous references.

Because of the antisymmetric character of A and the assumed symmetry of
the cross section about the n axis, the following integrals involving n, ¢
are set equal to zero and hence do not appear in equation (34):

Jrdndc=0  Jfamn? + ¢2)dn dz = 0
Jfc dndz = 0 Jfnt dn dz = 0 (36)
Sficn? + ¢2)dndg = 0 Sfinx dn dz = 0
A A

These integrals would be nonzero if the cross section were asymmetric.
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Integration by parts of the strain energy yields
GU-fRYs + Yo 8v + Y, 8w + Yu80)dx + b(U 37
= J, (Yudu v&v ww $89)dx ) (37)

where
T o= - (Vgn)! }

Y, = [M,+ cos(8 + $) + My' sin(8 + ¢)]" - (Vyxrv")!

T, = [Myr sin(6 + ¢) - Myr cos(® + ¢)]" - (Vxrw')' b (38)

Y

Yo = (Pxt)" - (Sx' + Tx)!' - v'[Myr sin(® + ¢) - My. cos(6 + ¢)]

-w'"'[Mzr cos(8 + ¢) + My sin{(e + ¢)]
and
b (V) =vx-5ul§+ {Vgiv' - [Myr cos(6+¢) +Myr sin(®+ ¢)]'}5v|§
+[Mgr cOS (8 + ) + My sin(6 + $)16v' |5+ [Myr sin(0 +9) - My cos(e+¢)]aw'|§
: (V! - My, Sin(0 + ) - Myr cos (8 +8)] }ow| T+ [Sxr + Ty - Py 184

+PX.6¢>'1§ (39)

It is generally essential to include b(U) in equation (37) when using
modal solution methods, as discussed below.

Kinetic Energy Contributions

The position of an arbitrary point after the beam has deformed is given
by (x1, Yy, Zz1) where

Xy =x+u-A¢' - v'[n cos(8+¢) -t sin(0+¢)] -w'[n sin(8+¢) + T cos(6+¢)]
y1=v + ncos(6 + ¢) - ¢ sin(® + ¢) (40)
zy=w + n sin(@ + ¢) + T cos{0 + ¢)
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or

X1 =X+ U - A" - V(y - V) - w(zg - W)
Yy =v+ ({y; - v) . (41)
Zy =W+ (z1 - W)

where -1¢' is an axial displacement due to warp. The velocity of this point
on the blade with respect to .#, the inertial frame, is

(42)

> Eg T > . . . . .
where 1 = x;i + y;3 * z1k, and §/6t 1is the derivative in the rotating frame

B. The 0K x T term is the velocity contributed by the rotating coordinate
system. The velocity in % is

6’1.* > > >

5t x1i + y,j + 21k (43)
and the rotating coordinate system contribution is
> g . 7 . >
QK xr = -le cos ch1-+(9x1 cos ch-Qzl sin BpC)J-+Qy1 sin chk (44)
Thus, the total velocity V ois given by
& + . . Y . . e
V= (%1 -Qy, cos ch)1_+ (y1 + QX cos ch - Qz1 sin BPC)J + (21 + Qy, sin ch)k (45)
The kinetic energy 7 is the volume integral of (I/ZJpV-V, or
-1 pR V.-V
’I——Z-J; SLoV -V dn dp ax (46)

and the variation is simply
R > >
8T = fo fj:\pV §V dn dz dx (47)

where

>
6‘7 - (le - R cos ch6y1)1 + (6)"1 + 0 cos BPCGXI

>
-% sin Bpc621)] + (821 + @ sin By8y )k (48)
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The integrand of equation (46) then becomes
V- 6V==i16i1-9k1 cos ch6y1-ﬂy1 cos ch6k1-+92y1 cos ché'y1
- 2 . »
+02x1 cos? Bpbxy - 92x) sin Bpc cos Bpcdzy + Axy cos BpcSYy
-92z1 sin Bpe cos chéxl-rﬂzzl sin? Bpcdz1 - ©iz1 Sin Bpc8y; + @y cos Bpedxy

-Qy, sin ch521 + ylay1-+92y1 sin? ch6y14-9y1 sin chéil

+Qz) sin Bpcdy, + 2162y (49)

According to the variational method, equation (49) must be integrated in time
between two arbltrary points in time, t; and tp. The initial and final values

(e.g-, xlaxll 2) are taken as zero. Hence, we may anticipate integrating by
parts and comblne various terms in equations (47) and (49) to obtain

R v . i
5T = J; J];[(’Xl'*Zle cos ch'*gle cos?2 ch..QZZl sin Bpc cos Bpc) X1
+(22y, - ¥ - 29%; cos ch-+29i1 sin Bpc)dyy

+(-92x; sin ch cos ch+-9221 sin? ch-Zle sianc-il)Gzl]p dn dg dx

(50)

where
. . \

Ry = 0- (VW) (y, - V) - (W' - pv') (2 - W) - AG!

1=V - d(z1 - W)

3= w4 d(yp - V)

%y 0z G- (V7w 280) (g - V) - G- V' - 2090) (2 - W) - e

¥, 2V - 8(z1 - W) ' (51)

B 2 by - V)
8xy = Gu-(yl-v)(év'-Fw'6¢)~—(zl-w)(aw'-v'5¢) - A8¢!

8y, = 8v - (z1 - w)$¢

8z = 8w + (y; - V)8¢
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These expressions have been truncated consistent with the ordering scheme
(e2 << 1). Assuming that ch = 0(e) the variation of the kinetic energy
becomes

8T = foRf.c\(Zu“ + Zy8V + 20w + Zy66

+Zya vt o+ Zoa 6w o+ Z¢|6¢')p dn dz dx (52)
where

= Q2x + 20v

N
=1
1

Zy = Q2[v+ (y; - V)] -V + $(z1 - w) + 208, W
-20fu - V'(yy - V) - w'(z; - w)]

Zuy = —QZchx - 208peV - W - §(yy - V)

Zy = -22x(y; - VIw' + @2x(z] - WIV' - Q2[v + (y; - V)](z] - W) (53)

+V(zy - W) - W(y; - V) - QZBPCX(Yl - V) -8y - M2+ (21 - w)?)

Zp = - (@%x + 200) (yy - V)
Zp = -(2%2x + 2V) (27 - w)
Zgr = -02xx J

The doubly underlined higher-order term could be dropped consistent with the
ordering scheme, but this would eliminate torsion inertia from the torsion
equation. As discussed previously, this term is important for small values of
torsion rigidity and hence is retained.

Integrating over the blade cross section, equation (52) becomes

67 = [R (Zyou + Tyov + Zow + Z,60
. u v W )

+Zy1 v+ Z,,18w')dx (54)
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where
Z, = m(Q2x + 20v) 1
Zy = mQ2[v + e cos(0 + ¢)] + 2mR(BpcW - )
+2meQ(V' cos 6 + w' sin 6) - mV + me¢$ sin @
Zy = —meC(sz + 20V) - mW - me$ cos B

Zy = -mky2§ - me2(km, - kn )cos(8 +¢)sin(6+9) ¢ (55)

-meQ2x(w' cos 6 - v' sin 6) - meR?v sin 6

—meQZchx cos 6 + me(V sin 6 - W cos 8)

LT 1|

Zy' = -me[R2x cos(® + ¢) + 20V cos 8]

Tyt = -me[@%x sin(® + ¢) + 2qV sin 8]

and where the sectional integrals are defined by

m= p dn dz ; me = pon dn dg ‘

I A

7 mk;liijy;pcz dn dz ; mk;25 J];onz dn dz r o (56)
ké1+k§12=km2 ; fj;pc dn dc=fj;\onc dn dc=fj:\p?\ dn dc=0J

assuming cross-section symmetry about the n axis and an antisymmetric warp
function A. The terms involving (y; - v) and (z; - W), introduced for
convenience in equation (41), are given by

[fiptn - vdn
ﬂ:\o(zl - w)dn dg

Sl - v - wian e

me cos(8 + 9) W

me sin(6 + ¢)
> (57)

m(kh, - kn,)cos(0 + $)sin(0 + ¢)

2

Jlotom? + (21 - w2ldn &

mkp,



The blade mass per unit length is m; the center of mass offset from the
elastic axis is e; the polar mass moment of inertia is mky2.

After integration by parts, the variation of the kinetic energy becomes

8T =.GR[7h6u + Ty - Ty )8V + (Zy - Zy1)ow + 7$a¢]dx + b(T) (58)

where

b(r) = Zyi6v|s + Eﬁ.swlﬁ (59)

The kinetic energy contributions are equivalent to the inertial terms of

Part IT. The inertial terms of reference 1, before simplifications were made
therein (eqs. B.10-15 of ref. 1), are also equivalent to the present results
for Bpc = 0.

Generalized Nonconservative Forces

The virtual work &W of the nonconservative forces may be expressed as
oW = [R(Lysu + Lysv + Lybw + Mys¢)dx (60)
0 u v w )

where Ly, Ly, Ly, and My are the distributed loads that act in the x, vy,
and z directions and a twisting moment about the elastic axis, respectively.
The nonconservative forces include all forces other than the elastic and
inertial forces (e.g., aerodynamic or mechanical).

Summary of Partial Differential Equations of Motion
and Boundary Conditions

According to Hamilton's principle (eq. (29)), the strain energy and
kinetic energy must be combined into one variational statement. Thus, the
relative order of magnitude of the inertial terms with respect to the struc-
tural terms must be considered. The ratio of inertial terms to structural
terms can be expressed as a dimensionless scaling parameter whose order of
magnitude is assumed to be

mQ2R2
EA

= 0(e?)

Hence, the order of terms derived from the kinetic energy is, in effect,
increased by 0(e2) so that the largest terms of the kinetic energy that are
0(e2) become 0(8“), the same order of magnitude as the largest strain energy
terms. Note that the above scaling parameter is essentially the square of the
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ratio of the tip speed to the speed of sound in the blade material. For other
applications, the order of magnitude of this scaling parameter may be modified
accordingly. Now, for the total energy expression, the first-order terms in
either the kinetic energy or strain energy of 0(e") are retained along with
the second-order terms of 0(e5). 1In general, the third-order terms of 0(e®)
are discarded except for certain third-order linear terms as noted above. The
variational operations can now be performed on the energy expressions as they
are written with no further terms discarded.

By substituting equations (37), (58), and (60) into equation (29) and
using equations (34), (38), and (55), one can obtain the total varjational
equation in terms of wu, v, W, and ¢. For arbitrary, admissible variations
su, 8v, 8w, 8¢, the coefficients of the variations must vanish in the inte-
grand for all x from 0 to R and also must vanish in the remaining terms
evaluated at 0 and R. The former condition will yield four nonlinear partial
differential equations for u, v, W, and ¢. The latter will specify the
boundary conditions at the ends of the beam. The four equations are as
follows:

du equation:

ST - m(R2x + 20v) = Ly (61a)

§v equation:

1 2

(2
-(Tv')' +{-EAe u' + ¥ + ¥ cos (B + ¢)- EBp*6'¢' cos 6 - ECy*¢" sin ©
— A 2 2 2 1

+[EI, cosz(e-r¢)-+Eva sin2(6-+gp]v"-+(EIZ|-Ech)cos(6-+¢)sin(6-+¢)w"}
+2m00 + MV - me$ sin 6 - 2meQ(V' cos 8 +w' sin 8) -me2[v+e cos(® + ¢)]
-ZmQBpCW-{me[sz cos(8 +¢) +2ov cos 6]}' = Ly (61b)

Sw equation:

<

-(Tw')!' + {-EAGA(U' + T+L> sin(6 + ¢) - EBo*8'¢' sin 6 + ECy*¢" cos ©
+(EIZv-Eva)cos(e-+9)sin03+g)v"+[EIZ|sin2(6-+¢)-+EIy- c052(64-¢)]w”‘

+mw + med cos B + 2m2BpcV -{me[Q2x sin(6 + ¢) + 2QV sin 6] Y=Ly - mQZBpr (61c)
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8¢ equation:

2 2 '

] 1
-IEEAkAZ(e +2)'<u' + Y +w2 ) + EBl*e'2¢' - EBo*8' (v'" cos @ +w" sin G)J

2

'2 |2
-EAep (u' + V2 + 2/_2_> (w'cos 6-v'"sin®) - (GJ¢')' + [ECy¢" + ECy*(w'" cos 8-v"sin 8)]"

+(EIz - Elyn) [(w"z—v"z)cos 6 sin 6+ v'"w" cos 26] + mkp2¢ + m§22¢(k§12 - k%l)cos 20

+me[2x(w' cos 8 -v'sin 8) - (V - 2v)sin 6 +W cos 6]

= My - m02 (kh, - ki, )cos 8 sin 6 - mea2Bpcxcos 6 (61d)

where

'2 |2
T = Vxv = EAju' +V—+w—2——+ kA29'¢' -eplv'" cos(6 + ¢) + w" sin(0 + ¢)]} (62)

2
The boundary conditions, from equations (29), (37), and (58), become
b)) - b(f) =0 (63)

Equations (34), (39), (55), and (59) may be used to express the boundary
conditions in terms of the deformation:
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b (1) - b(7) =T6u|§+ (M' {[Elzu cos? (6 + ¢) +EIy sinZ (8 + ¢)Jv"

2 2

1 1

+(EI v - EIy|)cos (6 + ¢)sin(® + pIw" - EAeA(u' +y2—+wT)COS(9 +¢)

' R
-EB,*08'¢' cos 6 - EC1*¢" sin 6} + me[sz cos(0 + ¢) + 20V cos 9]) le o
+ {[EIZ. cos2(6 +¢) +EIy sin2 (6 + ¢) Jv"

V2 |2
+(EI v -EIy')cos(8+$)sin(e +g)w"—EAeA(1'+V2 +W2 )cos(e +9)

EB,*8'¢" cos 6 - EC1*¢" sin e}av' B

+(H_'_— I(EIzv - EIyt)cos (6 + ¢)sin(0 + ¢)Vv'" + [EI sinZ(6 + )

12 12

+Elyr cos? (8 +¢)w" - EAeA(u' + Vz +w—2—> sin(6 + ¢)- EB2*6'¢' sin ©

]
+EC *¢" cos 8, +me[Q2x sin(6 + ¢)+ 2QV sin 9]>5W‘1;

+ {(EIZ| - EIyt)cos(® + ¢)sin(6 + o)V + [EIzr sin? (6 + $)

20,2

2 v w' .
+EIy 1 cos (6 +¢)]w" - EAeA(u' = +—2—> sin(6 + ¢)

-EB,*6'4"' sin 6 + EC;*¢" cos eléw' ]I;
12 2

+{GJ¢' + EAk,2 (6 + 9) '(u' "V_z_*T) + EBy*0'%¢"

-EB,*0' (v'' cos 8 +w' sin 8) - [EC;¢" + EC1*(w' cos 6 - v'' sin 8)] '6¢|I;‘

+[ECy¢" + ECy;*(w'" cos 8 - V' sin e)]ch'lg‘] (64)

In the equations as well as the boundary conditions, only the linear
expansion of cos(6 + ¢) and sin(® + ¢) should be used to avoid complicating
the equations with unnecessary small terms. The single underlined terms are
nonlinear terms and the double underlined terms are the third-order linear
terms discussed earlier. The tension-torsion term
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v'2 w2 '
- [EAkA2¢'<U' + T + —2—)]

may appear to be a nonlinear term. However, there is a third-order linear
approximation based on equations (6la) and (62) such that

\"2+1”'—ﬁ =k2¢'me522xdx
2 A X

EAkpZ0' (u' +

+ third- (and higher) order nonlinear terms

The equations of motion may be solved by Galerkin's method provided that
natural boundary condition terms in equation (64) that are not identically
satisfied by the assumed modal functions are added to the resulting modal
equations in the standard manner (ref. 11). This operation may be necessary
to insure symmetric structural and inertial operators. Thus, only the geomet-
ric boundary conditions (clamped end conditions for a cantilevered beam, e.g.)
must be satisfied by the assumed modes to obtain equations equivalent to the
Rayleigh-Ritz method (which deals directly with the energy expressions). By
incorporating aerodynamic forces into the equations, stability analyses can be
performed.

It is convenient to eliminate u' + (v'2/2) + (w'2/2) and @ from the dv,
6w, and 8¢ equations and the boundary conditions before applying a modal
solution procedure. From the definition of T in equation (62),

u' + (v'2/2) + (w'2/2) can be expressed in terms T, v, w, and ¢, while T
may be determined from equation (6la), thus expressing u'-+(v'2/2)<+(w'2/2)
in terms of v, w, and ¢ only. Solving for u', integrating over x, and
then differentiating with respect to t gives an expression for @ that may
be substituted.in equation (61b). The &u contribution to equation (64) must
be used in determining G and T; u=0at x=0and T =0 at x = R. Thus,

u may be eliminated from the system of equations. T and T' in equa-

tions (61b) and (61c) are replaced by equation (61a) for T' and the
expression

T = J'XR [n(@%x + 207) + Lyldx (65)

for T obtained by integrating equation (61a). Thus, there are now three
integropartial differential equations in terms of v, w, ¢, and modal func-
tions are only required for these three deformations. This procedure for
eliminating U and T is applied to simpler forms of the equations of motion
in references 4, 8, and 9.

The equations of motion contain the same basic linear terms as those of
reference 1 as well as several additional nonlinear terms. A brief discussion
of the terms should suffice to familiarize the reader with the equations.
Beginning with equation (65), the tension is composed of the centrifugal force
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terms m(Q%x + 2QV) and the applied load L;; which is often neglected for
helicopter applications. The 2mQV and Ly terms are underlined because they
appear as nonlinear terms in the bending equations (8v and dw) through the
centrifugal coupling terms (Tv')' and (Tw')'. The bracketed terms ({ }") in
the bending equations are bending moments. The

2 2\ cos (6+¢)
-EAep [u' + "; LA
sin(6+¢)

terms (in the gx equation) contain T" as do

_ 2_cos(8+¢) .cos 8]
me[” Xein(e+¢) * *sin o

and physically they show that the bending moment due to tension is propor-
tional to e - ep, the distance from the mass centroid axis to the tension
axis. The -EB2*6'¢'§2§ g and :EC1*¢"i;2 g terms represent special twist and
warp effect terms. The last terms in the brackets are the conventional bend-
ing moment terms modified in the sense that the cross section is inclined at
the angle 8 + ¢. The coupling of ¢ with V' and w" forms the counterpart
terms of the product of curvature terms in the torsion equation identified by
Mil' et al. (ref. 5). To help identify them, these terms are listed sepa-
rately below. Rearranging the terms with trigonometric substitutions shows
that the structural coupling terms are proportional to the difference of the
flap and lead-lag bending stiffness:

1"
Sv: {[EIzv— (EI;r - Eva)sin2(6-+¢)]v"-+%—(EIZ--Eva)sin 2(6-+¢)w”}
"
Sw: [%—(EIZ:-Eva)sin 2(9‘+¢)V"‘*[E1y|'*(EIz'"EIy')Sin2(9'+¢)]w”]
. Wy 1t 1 '!2 |12 1
§¢:  (EI v - EIys)|v"w" cos 26-%5-(w - v"%)sin 26

Consider now the remaining terms in the 6v equation. The Coriolis
term 2mQu 1is the counterpart to the -2mQV in the 6u equation. This term
combines with the nonlinear part of (Tv')' to produce Coriolis (gyroscopic)
coupling with (Tw')' in the 6w equation. With modal functions, these terms
form an antisymmetric gyroscopic matrix (ref. 8). The acceleration terms mv
and -me$ sin 6 are produced by translational and rotational accelerations of
the cross section, respectively. The offset Coriolis term,

-2meQ (V' cos 6+ w' sin 8), represents the longitudinal velocity of the cross-
section mass centroid due to rotation of the cross section during bending.
This term also combines with -{me[QZx cos(8 + ¢) + 2QV cos 6]}' to give an
antisymmetric gyroscopic counterpart and a symmetric stiffness counterpart to
the -{me[02x sin(® + ¢) + 2@V sin 6]}' term in the &w equation. The
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-mR2[v + e cos(6 + 4)] term is a lateral centrifugal loading due to offset
from the elastic axis which passes through the center of rotation. Finally,
-2m2Byew  is a Coriolis term from negative longitudinal velocity due to flap
bending in the presence of precone. It is antisymmetric with 2mQchV of the
éw equation. The only terms not yet discussed in the 6w equation are the
accelerations miW and med cos 6 which are identical in origin to their
counterpart terms in the &v equation and the negative centrifugal force due
to precone, —mQZBPCx.

The first term in the torsion equation is the tension-torsion coupling
term, which arises from the tendency of a centrifugal force to untwist a pre-
twisted blade. The terms involving B;* and By* are special twist-effect
terms, which are included in the analysis of reference 1. The terms

12 2

-EAQAGJ' + !5— + —3—) (w'" cos 6 - v'" sin 8)

and meQ?x(w' cos 6 - v' sin 8) are approximately -Teaw'" and T'ew' for zero
6 and thus create a twisting moment due to tension acting on a deflected beam
at a point offset from the elastic axis. The well-known St. Venant torsion
rigidity term is -(GJ¢')'. The [ECy¢" + EC;*(w" cos 6 - v" sin 8)]" terms
arise from the longitudinal stress doing work through the warp displacement
due to torsion and bending, respectively. The next terms were identified in a
more simplified analysis by Mil' (ref. 5). These terms have been shown to be
important for rotor blade stability (ref, 8). The torsion inertia mkp2$, and
the "tennis racquet" terms m92¢(k%2 - k%l)cos 26 and -mﬂz(km2 - k2. )cos 8 sin®,
are well-known terms that tend to untwist (or, equivalently, stiffen) the
rotating blade. The remaining acceleration and centrifugal terms create
twisting moments because they are offset from the elastic axis.

These equations in modal form, when linearized with respect to equilib-
rium for Ly = Ly = Ly = My = 0, have symmetric stiffness and mass matrices
and an antisymmetric gyroscopic matrix. This property depends on the reten-
tion of only those terms from the substitution of the tension T, that are
consistent with the ordering scheme.
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PART I1I

DERIVATION OF EQUATIONS BY NEWTON'S SECOND LAW

In this section, the equations of motion are derived from Newtonian
mechanics. The derivation treats the forces and moments (elastic, inertial,
or aerodynamic) applied to the rotating beam. We first consider the equilib-
rium of a deformed blade in terms of its geometry and the resultant forces and
moments acting on it. Second, the inertial loadings on the blade are evalu-
ated in terms of the blade deformation. Finally, the resultant structural
moments and forces are determined in terms of the blade deformation based on
the stress-strain and strain-displacement relations. Combining these three
elements yields a set of integropartial differential equations for the longi-
tudinal (radial), flapping, lead-lag, and torsion deformations of the elastic
blade.

Equations of Structural Equilibrium
By considering a differential of length dx of the deformed beam, forces

and moments may be summed to establish the equations of equilibrium (see
fig. 4). For force equilibrium

5
> oV > -> _
V+&—dx-V+pdx—O
or
av
+
x tp=0 (66)

For moment equilibrium
N - N > N >
>
M+ EM-dx - M+ dxi' x {V + gy-dx +qdx =0
3ax ax
or, taking the limit as dx -+ 0,

-5
%1:(1+?'x§+3=0 67)

where ;, a are "external" forces and moments of inertial or aerogynamic
origin (aerodynamic forces and moments are taken as given); V and M are
equipollent internal structural forces and moments acting at the elastic axis.
Also noge that moments have been summed about a point at x rather than at
x + dx.

3The use of dx rather than distance along the deformed blade might be
cause for concern. However, to a consistent approximation of neglecting
squares of slopes compared to one they are the same.
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The vector equations of equilibrium may be written in several component
forms. Of the various choices possible, the following seems as convenient as
any; namely, equations (66) and (67) are expressed in components relative to
the undeformed x, y, z axes. The moment equations, in scalar component form,
are

oMy v aw

5x T Vzax c Vyax tax =0 (68a)
oM
7;%- Vz + Vx5 * qy = 0 (68b)
oM, Vv
X + Vy - Vx 3% + q, 0 (68c)

This is the same as equation (16) of reference 1, except for a difference in
sign convention for My and Gy -

Similarly, the force equations are

aVy

S +Px =0 (69a)

3V
=
—lax + py = 0 (69b)

v,
Sx t Pz = 0 (69c)

and these may be integrated, noting that Vy, Vz, Vy are zero at the rotor
tip (x = R),

R
Vy = J; pyx dx (70a)

R
vy = j; py dx (70b)

R

<2
[\

1
S

p, dx (70c)

More precisely, the upper integration limit should be the deformed length of
the beam rather than the undeformed length R. However, the deformed length
is of order R(l + exx) where ey, (the longitudinal strain) may be neglected
for small rotations - for example, (dw/3x)2 << 1.

Anticipating the need for four equilibrium equations for the four
deformations u, v, w, and ¢, the six equilibrium equations (68) and (69)
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(or (70)) are reduced to four, eliminating V, and V, in the process.
Substituting (68b,c) in (68a) and (69b,c) in (68b,c) yields

My BHX v M, ow
ax+<3x+q}’)ﬁ_+ 3% | 4z 3;+qx=0 (71a)
32M 3q
s i( awy, %y _
3x2 * Pzt g Vx 3IX *ax 0 (71b)
32M, 3 v 9q,
e () (71¢)
The first force relation, equation (69a), remains
BVy
—a?+px—0 (71d)

Either equation (71d) or its integrated form, equation (70a), may be used to
eliminate V, from the above equations.

There are now four equilibrium equations and seven unknowns, My, My, Mz,
Vg, V, W, and ¢. The applied loads py, Py, Pgs dx» dy» q, due to inertial
and/or aerodynamic loadings are functions of v, w, ¢, and a longitudinal
radial deformation u in the x direction. The inertial relations are
developed in the next section, and the aerodynamic loadings are assumed to be
known. In addition, four force and moment deformation relations required to
express My, My, M,, Vx in terms of u, v, w, ¢ are developed in a later
section. These latter relations are most easily developed in terms of the
moment and force components in the deformed body axis system, x', y', z'.
Hence, the equations of equilibrium will be developed for this axis system.

The necessary moment transformation between the deformed and undeformed
axis systems was given by equations (2) and (3); an identical transformation
holds for the force components Vyr, Vi, etc. Applying the transformation to
equations (71) yields

v'? w'? .
Myt -5 3 - Myv[v' COS(9+¢)+W'51D(B+¢)]
+M, o [v! sin(6 + ¢) - w' cos(64-¢)]} + v'qy
' 12 ~ !
+v‘{Mxvv‘ + ( 'Y_z—)[My' cos(6+¢+v'w') -Mzr sin(6 +¢+v'w')]}
w'? N A '
+w'qz+w'[Mx.w' + (l 'T)[MY' sin(6 + ¢) + Mzv cos (6 + ¢)]] +qy = 0 (72a)
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lMx-v' + (1 'T> [Myv cos (6 + ¢ +v'w') -M,r sin(6 +<T>+v'w')],

0 (72b)

+(VW')' + p, + ayy

0 (72¢)

'2 1
{Mx|w'+ (1-%—)[Myv sin(8 + $) + My cos(e+$)]] - (Vv =Py * Qg1

where
R
Vi = j; Px dx

Note that ( )' is substituted for 3/9x; this should cause no confusion with
the primes that denote the deformed body axis system. Equation (72a) may be
simplified further by first rewriting it as

TAY 12\’
Mil + [V'(Mxvv')' - (Mxv VT) ]+[w'(Mx|w')' -(Mxv —wz—) ]
/ V'2 R ! w|2 - ) ¥
+v'[(1-7) My' cos(e+¢+v'w')] +w'[(1—7) My' 51n(e+¢)]

-{Mye[v' cos(6+¢) +w' sin(6 + ¢)] =My [v! sin(e + ¢) - w' cos(8+4)]}’

V'2 . . ! w'2 R
—v'[( - ——2——> M, 51n(e+¢+v'w')] +w'[(1—T> My cos(e+¢)]

*qy * V'q, * w'qy = 0 (73)

Consistent with the ordering scheme, the second and third terms may be
neglected compared to the first. Also, ¢ may be replaced by ¢, and the
squares and products of v' and w' may be ignored with respect to unity in
equations (72) and (73). Expanding derivatives and cancelling terms in equa-
tion (73) then gives

M)'(, -My.[v" cos(0+¢) +w" sin(0+¢)] + M, [v'" sin(8 + ¢) - w" cos(6 + ¢)]

*ay * V'q, + wiqy =0 (74)

Equations (72b) and (72c) may be simplified further since the product of
torque M,r and a bending slope v' or w' may be neglected compared to a
bending moment My: or M,:. This is physically evident since a point load on
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the rotor blade will have a smaller associated moment arm (-~ chord or
thickness) for producing torques than for producing bending moments (~ radius).
This may be shown formally by integrating equations (72a-c), multiplying equa-
tion (72a) by v' or w', and subtracting the result from the equation (72b) or
(72¢). This calculation eliminates the terms Myrv' and Myw' 1in equa-

tions (72b) and (72c), respectively. The additional terms introduced by the
subtraction will be negligible consistent to second order provided that the
applied torque loading is small compared to the applied bending moments:

qx << qy: qz

Therefore, equations (72b) and (72c) may be written

[MY' cos(® + ¢) - My sin(® + P+ (Vew')' + py + q)', 0 (75)

[Myr sin(8 + ¢) + Mg cos(® + ¢)I" - (Vxyv')' - py + qy = 0 (76)

The linear approximations for sin(6 + ¢) and cos(8 + ¢) should also be
used in equations (72):

cos(6 + ¢)

cos 6 - ¢ sin 8
(77)

ne

sin(® + ¢) sin 6 + ¢ cos ©

In addition to equations (74)-(76) for moment equilibrium, an equation
for Vyr is needed if the tension changes significantly, as a function of the
rotor blade deformation, from the nominal centrifugal force value due to blade
rotation. The equations for Vyi, Vyr, and V,1 are obtained by transforming

equations (69a-c) to the deformed axis system, giving

2 2
Vx.(l —V—z—-w—;z-—)—v),'[v' cos(6+¢) +w' sin(8+¢)]

Vv sin(e+¢) -w' cos(0+ )] = [ipy dx  (782)

2 -
Vxrv! + (1 '%—>[Vy' cos(0+¢+v'w') -V, sin(0 + ¢ +v'w')] = J;pr dx (78b)

2
Vyrw!' + (1 -w—z-)[vyv sin(6+ $) +V,1 cos(8 + 1= J;sz dx (78¢c)

The required equation for Vi is obtained by substituting Vy: and V,+ from
equations (78b) and (78c) into equation (78a). After neglecting higher-order
terms consistent to second order, Vx: becomes
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R R R
Voo = Sopy dx + v [ Rpdx + w'J; p, dx (79)

Equations (74)-(76) and (79) are the principal expressions for the equilibrium
of internal and external forces and moments acting on the blade. For rotor
blade applications, the second and third terms are negligible to second order;
thus, Vyr = V.

Inertial Loading

The present derivation of the inertia loads closely follows appendix B of
reference 1 except that nonlinear terms are retained in accordance with the
ordering scheme. The deformed position of a generic point of the rotor blade
will be expressed with respect to the rotating undeformed, nonpreconed x,, y,
Z coordinate system. Note that here (but not elsewhere in this report), u,
vV, W, ¢, Px, Pys Pz> dx» Qy, q; are measured with respect to a nonpreconed
rather than a preconed coordinate system; the nonpreconed coordinate system
corresponds to that of reference 1. The deformations and loadings with
respect to the two coordinate systems are related by the following transforma-
tion, if the precone angle Bpc 1is small:

Upe = U + Bpew Pxpe = Px * BpcP, \
Vpe =V Uxpe = Ix * Bpcdz

Wpc = W Pzpe = Pz ~ BpcPx r (80)
$pc = ¢ Azpe = 9z - Bpcldy

Xpe = X Pyoe TPy Ay = Y|

The inertia terms are derived using the nonpreconed variables. In the final
equations for the inertial loadings, however, equation (80) will be used to
transform the forces, moments, and deformations into preconed coordinate
system consistent with the remainder of this report.

As a result of equation (80), the position of a generic point with
respect to the Xps ¥, Z axes (see eqs. (40)) becomes

X] =x+u-v'(y; -v) - (w' + BPC)(zl - W - chx) - A (81a)
Y1 =V +ycos(6+ ¢) -t sin(6 + ¢) (81b)
Z] = W + chx +yy sin(® + ¢) + r cos(6 + ¢) (81c)

Substituting equations (81b) and (8lc) into equation (81a) yields

Xp=x+u-2A¢'-vi[ncos(6+¢)-zsin(6+¢)]-(w'+Bpc)[nsin(6+¢) + ¢ cos(8 +¢)]
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The time derivatives are
xy=u-[v'+ (w'+ ch)ﬂ[n cos(6+¢) -t sin(6+¢)] }
s(v'-w")[n sin(8+4) + L cos(0+¢)] - Ap'

. . ‘s v (83a)
Xp=U- [V'+w'é+ (W' +Bpc)o+ (W -v'$)$][n cos(6+¢) -7 sin(8 +¢)]

AT [V e (W' +Bpc)blb+ ¥ G+ VIE - U I sin(6+ 4) + T cos(8+0)])

y1=v - b[n sin(® + ¢) + ¢ cos(® + ¢)] ]

. . (83b)
$1 =V - $2[n cos(8+¢) - sin(0+¢)] - ¢[n sin(6+9) + ¢ cos (6 +¢)]
5y=w + $[n cos(6 + ¢) - ¢ sin(e + ¢)]

. . (83c)
5y =% - 62[n sin(8+¢) + g cos(8+¢)] +¢[n cos(8+¢) - ¢ sin(8 + ¢)]

> > >
The components of acceleration in the i, j, k coordinate system, including

the usual contributions due to rotation &, are (ref. 1)

ay = il - szl - Zﬂyl
ay = ¥y - Q2y; + 29%; (84)
az = .Z.l

. . > > .
The inertial forces pI and moments qI may now be evaluated in a

D'Alembert sense using equations (81)-(84) and the following definitions

Pyl = -ffypax dn dz
= - [fipay dn dz (85)

P, = -JU;oaz dn dg

=]
<
I

el
”
11l

Lz ffolay(zy - W) - az(n - V]dn dz
-Jfpax(z1 - widn dg

a," = Shpax(1 - V)dn de

Note that the present sign convention for q I js different from reference 1.
Equations (81)-(84) are substituted into equgtions (85) and (86), and higher
order terms are discarded. In reference 1, it is assumed that
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1]

cos(6 + ¢) cos O

sin ©

1R}

sin(6 + ¢)

and all products in u, v, w, ¢ and their derivatives are ignored - that is,
equations (85) and (86) are linearized. This is not the same as simply
assuming ¢, v', etc., are small and using the small-angle approximation.

Here we apply a consistent set of simplifying approximations to equations (85)
and (86). In ordering the various terms it is noted that (e/R)2, (c/R)2,
(t/R)2 are small compared to one; hence, products of these quantities with
themselves or with v/R, w/R or ¢ can be neglected with respect to unity.

The order of magnitude estimates ( )' ~ 1/R, () ~ Q@ are also used.

The evaluation of EI and EI from equations (85) and (86) and the
transformation from nonpreconed to preconed axes leads to the same inertial
terms that were developed in Part I. To second order, the results for the
nonpreconed variables are

A
pxI = m(Q2x + 20V)
pyI = -m{V - e¢ sin 0 - Q2[v + e cos(8 + $)]
' (87)
+2Q[0 - e(V' cos 8 + w' sin 6)]}
sz = -m(W + e$ cos 6) J
\
qxI = m{e[ (V- Q2v)sin(8 + ¢) - & cos(6 + ¢) + 2Qu sin 6]
. 2 .
- m2¢-Qz(kiz-kml)cos(e-+f)51n(9-+f)
-22[ (kk, - kp,)¥' sin@cos 6 +w' (ka, sin? 8 +kp, cos? )]} ¢ (88)

qu = me[02x sin(6 + ¢) + 20V sin 6]

q,” = -me[02x cos(6 + ¢) + 20V cos ]
/

Everywhere in equations (87) and (88), the usual linearized expressions for
sin(® + ¢), cos(® + ¢) should be used. Additional simplifications will be
made when these terms are compared to the elastic forces. For example, the

third-order terms of qxI + v'qu + W'qu are neglected except the double
underlined ones.

The correspondence between the present inertial forces and those of
Part I is shown by

a4+ vl ¢ wigl o 7
Pl + (@) = Ty - Ty (89)
pyl - (@) =Ty - Ty’
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Bl

Force-Deformation and Moment-Deformation Relations

The force and moment resultants are expressed in terms of the
deformations by resolving the distributed stresses into a resultant force and
moment system acting at the elastic axis. These resultants are essentially
the same as those obtained in Part I. Here, they are derived from a physical
point of view, whereas in the variational method they arise as mathematical
groups of terms. The resultant axial force is

Vx'

IOy dn dt = [fpEexy dn dz

12 qu
+
2

e fur + FKAZ0'4" - ep[V" cos(8+ ) +w" sin(e+ )] (90)

The bending moments are

My' = f!Acoxx dn dg = IIAEEEXX dn dg

= EIy|[v” sin(6 + ¢) - w'" cos(6 +¢)] - ECy*¢" (91)
M, = -fiknoxx dn dg = f]kEnexx dn dz
V'2 w,2
= -EAeA(P'+ 5 +-—§—)-EB2*8'¢'*'EIzv[V" cos (6 +¢) +w'" sin(8 + ¢)] (92)

The twisting moment with respect to the x!' axis is more complicated because
of the interaction of longitudinal and shear strains with the warp. Brunelle
(ref. 12) has identified the twisting moment by use of the variational method.
For the assumptions of the present work, his equation takes on a slightly
different form

~ 90 aa
xn , 39xz 3
Hxr ﬂ:\ [”Oxc - %xn * A( an ' oC )]d” de+ 5y Jidoxx dn de

- S - () (93)
where
Syt = fjk[(n - Aoxg - (T *+ Ap)ogpldn dg = GJo!
(94)
Pyr = —j]kkoxx dn dg = ECy¢" + ECy*(w'" cos 6 - v" sin 8)
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The contribution of the Py, term is clearly related to the work done by the

longitudinal stress acting through the virtual displacement in the longitudi-

nal direction due to warp. Moreover, as shown in reference 1 (based on a more
detailed discussion in ref. 13), there is an additional twisting moment due to
longitudinal stress:

TX' = (e + ¢)'IIA(n2 + Cz)oxx dﬂ dC

' 2 ' 2
= EAkp2 (0 +4)" (u' +VT+ WT)+ EB1*6'2¢' - EBy*8'(v" cos 6 +w" sin 6) (95)

This expression represents the component of force due to longitudinal stress
normal to the elastic axis with moment arm vnZ + 4. The total resultant
twisting moment is now expressed by combining equations (93) and (95):

2 viZ 2
Myt = Txr +Sx1 - (Pxr)' =GJ¢' + EAkp2 (0 +i)'(u' +T+T)
+EBl*6'2¢' - EB*6'(v'"" cos 6 + w'" sin @)
-[ECy¢" + EC;*(w'" cos 6 - v" sin 8)]"! (96)

The double underlined terms may be neglected according to the ordering scheme.
However, as discussed above, these terms are important for configurations with
low torsion stiffness. The various section constants in the above resultants

are defined in Part I, equation (35).

Equations (90)-(96) give the desired force- and moment-deformation
relations. They can be simplified by making the usual small-angle assumptions:

cos(6 + ¢) = cos 6 - ¢ sin 6

sin(6 + ¢) sin 8 + ¢ cos 8

In general, no additional approximations can be made, although for special
blade cross sections, several of the blade section constants may reduce to
zero - for example, for a doubly symmetric cross section epr = By* = 0.

Final Equations and Boundary Conditions

The four equations of equilibrium, the inertial loadings, and the force-
and moment-deformation relations may be combined to give the final equations
of motion in terms of the deformations u, v, w, ¢. That is, equations (87),
(88), transformed to the preconed axes, (90), (91), (92), and (96) are sub-
stituted into equations (74)-(76) and (79). The resulting equations are sim-
plified consistent to second order by discarding higher-order terms in
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accordance with the ordering scheme. The final equations are identical to
those obtained by the variational method in Part I, and are not repeated here.

As shown in Part I, the boundary conditions for the variational method
were obtained as a natural by-product of the derivation of the equations of
motion, without requiring any independent consideration. For the Newtonian
method, special attention must be given to the boundary conditions, which are
of two types. The geometric conditions, normally applied at x = 0, are
simply

u=v=w=¢=v=w =0 for x=0 (97)

> >
The natural conditions for the free end x = R may be expressed as M=V=0
or, since Vx = Vx' to second order,

Myt = Myr = Mgy = Vyr = Vy =V, = 0 for x = R (98)

In addition, the work done by the longitudinal stresses acting through the
warp displacements must be zero at X = R. Thus

Pyr = 0 for x = R (99)
Restrained warping at the hub implies that
$' =0 for x =20 (100)

That is, there can be no warp displacement at x = 0. These conditions reduce
to the standard cantilever boundary conditions when warp effects (C; and C;*)
are neglected. Recall from equations (68) and (69) that the shears Vy, Vg
may be expressed in terms of Vyi, My', Mz, Qys and q,. When x =R, Vxr =0
and the shears may be written (for qx << Qqy, qz)

v

y -M§, sin(8 + ¢) - My cos(®+9) -q,

0
for x =R (101)
Vz

0

Myy cos(8 + ¢) - Mg sin(6+¢) +ay

The boundary conditions (97)-(101), when expressed in terms of the deforma-
tions u, v, w, and ¢, are equivalent to equation (64) - the boundary
conditions as derived from the variational method.

CONCLUDING REMARKS

Nonlinear equations of motion for the elastic bending and torsion of
twisted nonuniform rotor blades have been derived by two complementary methods.
When deriving a system of nonlinear equations it is advantageous to check the
resulting equations in this manner. The use of the Newtonian method alone,
for example, may give rise to nonsymmetric structural or inertial operators.
However, with the variational method, a consistent set of equations will
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automatically result if the energy expressions are accurate to the desired
order of magnitude. With the Newtonian method, the boundary conditions must
be established on the basis of physical reasoning. The variational method
leads to the appropriate boundary conditions as a by-product of the derivation
of the equations of motion. The two methods are complementary in'that the
Newtonian method provides clearer physical understanding of the force compo-
nents and reactions, while the variational method is more precise mathemati-
cally - that is, there is less chance of inadvertently leaving out important
terms or including unnecessary ones.

In the resulting system of equations, several important nonlinear terms
are identified. First, the centrifugal term proportional to lead-lag velocity
in the tension equation combines with the centrifugal coupling terms in the
bending equations to produce nonlinear flap-lag inertial terms. The longitu-
dinal velocity in the lead-lag equation, a Coriolis term, is expressed in
terms of bending quantities as another nonlinear flap-lag inertial term.
These terms, when linearized with respect to equilibrium, are antisymmetric
gyroscopic terms and significantly influence hingeless rotor stability and
forced response phenomena. Second, the nonlinear bending-torsion coupling
term in the torsion equation is written in a form similar to the one identi-
fied by Mil' in reference 5. The twisting moment arises from bending in two
directions and is proportional to the difference in bending stiffness and the
product of curvatures. The counterpart nonlinear bending-torsion coupling
terms in the bending equations appear in the form of a change in elastic
coupling due to elastic twist. These bending-torsion coupling terms are also
important in determining the aeroelastic stability of hingeless rotors.
References 8 and 9 give a preliminary discussion of the application of the
present equations to a stability analysis of uniform blades.

The effect of warp interacting with the longitudinal stress is included
for completeness, although it can be neglected without essential loss of
accuracy for most applications involving closed cross sections.

An important step in the derivation of the equation is the development of
a nonlinear strain-displacement relation based on an exact coordinate trans-
formation from the undeformed system to the deformed system. This general
relation between strain and displacement may be useful for extending the equa-
tions to include higher-order terms than these considered herein.

Future improvements in the equations should include the incorporation of
torque offset, root-pitching motion with elastic restraint, droop, pre-lag,
and other parameters (discussed in ref. 9) to describe more completely the
behavior of hingeless rotor blades. With the addition of aerodynamic forces,
the equations of motion may be used for stability analyses and frequency
response studies of hingeless helicopter rotor blades.

Ames Research Center
National Aeronautics and Space Administration
and
U. S. Army Air Mobility R§D Laboratory
Moffett Field, California 94035, Aug. 20, 1974
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APPENDIX

DEFORMED BLADE COORDINATE SYSTEM TRANSFORMATION
D. A. Peters

In the section devoted to the development of the strain-displacement

relations, the transformation [T], given to second order in equations (1), is

of central importance.
based upon the development of reference %4.

Here [T] is determined in terms of u, v, W, and ¢
[I] is the transformation between

Ehe gndeﬁormed blade coordinate system 1, j, k, and the deformed blade system

i', 3', k':

In terms of Euler angles (fig. 5), [T] may be expressed as

The Euler angles are taken in the order z, B, 0.

[T]

g Ry

cos B cos ¢

6
B )

= [T]

A N

cos B sin g

cos 8 cos T

-sin ¢ sin B sin 6

sin B

cos B sin 6

(Al)

(AZ)

They uniquely define the

orientation of the blade principal axes with respect to the undeformed coor-

dinate system.
and ¢, rather than g, 8, 6.

Rotor blade equations are normally written in terms of

can be easily expressed in terms of Vv and w, yielding
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[T] =

—

2 2

1-vte-wt

-[sin Buwt/1 - v+2 - w+?
+cos §V+]/V1-w+2

-[cos Bwt/l - v+2 - wt?
| +sin Bvt]/V1 - wt?

V+

[c05671-v+2 —wt?
-sin §V+w+]/V1-w+2

-[sin /1 - vt2 - wt?
+COS 5V+w+]/¢1-w*2

As shown in figure 5, the Euler angles ¢

w+

siné-l—w+2

cos BY1-w*?

vV, W,
and B

2

(A3)




N

w' dr

Figure 5.- Deformation and Euler angles.

The determination of the third Euler angle 8, however, requires the formula-
tion and solution of a differential equation for [T]. Consider the small
rotation wdr of the blade-fixed coordinate system, which occurs as r goes
through the increment dr. (To second order there is no distinction between
distance along the deformed dr and undeformed dx elastic axes; hence,

dr = dx.) The vector components of the rate of rotation & can be identified
as the torsional rotation rate, wi = (6 + ¢)+,! and the bending curvature w;
and wy, as shown in figure 6. This infinitesimal rotation can be written in
terms of the transformation matrix [T], giving the differential equation

INote that in this purely geometric exercise there is no distinction
between pretwist 6 and elastic twist ¢.
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—3
—

0 Wi -Wj
g0 wil| = [T1*[117 (A4)
wj -wy 0

Formally, there are nine equations; however, there are only three independent
ones due to the usual orthonormality conditions on the transformation matrix.
Substitution of equation (A3) into (A4), eliminating wj and wk and identi-

fying wji = (8 + ¢)*, yields the exact solution

T T
vitwt dr J’ wHiwttyt dr

o Y1-vt2_y+? 0 (1-w2)/1 - v+Z - w2

6 =06+ ¢ - (AS)

where the pretwist and twist are both taken to be zero at the root. To
second order, equation (AS5) may be written

—_ X
e=e+¢-,’;v"w' dx (A6)

Thus, from (A6) and (A3), [T] may be written to second order as

[~ 2 2
t 1
WA v W

12 12
[T] =| -[v' cos(8+¢) +w'sin(8+¢)] cos(6+¢+v'w') {1 -lé—) sin(e+$)(}-E§—)

12 n '
[v'sin(6 +¢) -w' cos(®+ ¢ ] -sin(e+$+v'w')( --VT) cos(6+¢) (1 -w—z—)J

(A7)

where

A

¢ = ¢ - ngv"w' dx

Equation (A7) is the desired result, compare equations (1).
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It is also useful to record here expressions for w5
obtained directly from (A3) and (A4):

—cos Bwtt/l - v+*2 - w*? + sin a(vtwtwtt + vt

and Wy s which can be

2 3
- vitwt

ws
! - v - w2 1o w?

[ (A8)

_cos B(viwrwtt + vt - vttwt?) + sin Bwtt/l - v

+2

- w+2

m —
k /i - v w+2 /i - wt?

To second order, these may be simplified as

W] v'" sin(® + ¢) - w'" cos(8 + ¢)

wk = V"' cos(® + ¢) + w" sin(e + ¢)
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