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A
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c
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C1"
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i,j,k

-> -> -l-

i',j',k'

Iy,

Iz '

J

kA

cross-sectional area, equation (35), m 2

kinetic and strain energy boundary terms, equations (39) and (59),
N-m

reference frame which rotates with speed _ with respect to the

stationary inertial frame ,@

blade cross-section integral, equation (35), m 6

blade cross-section integral, equation (35), m 5

blade chord, m

blade cross-section integral, equation (35), m 6

blade cross-section integral, equation (35), m 5

mass centroid offset from elastic axis, positive when in front of

the elastic axis, equation (56), m

tensile axis (area centroid) offset from elastic axis, positive

when in front of the elastic axis, equation (35), m

Young's modulus, N/m 2

shear modulus, N/m 2

unit vectors associated with undeformed beam coordinate system,

figures 1-3

unit vectors associated with deformed beam coordinate system,

figures 2, 3

"fixed" unit vectors with _ in direction of rotation of

_, figure 1

in

blade cross-section moment of inertia from y'

equation (35), m 4

blade cross-section moment of inertia from z'

equation (35), m 4

axis,

axis,

torsional rigidity constant, equation (35), m 4

&, + Iz ,radius of gyration of blade cross section = A
equation (35), m



km

km 1

km 2

Lu,Lv,Lw

m

M

Mx,M x,

Mx '

My, My,

M z ,M z ,

M,

0

Px,Py,P z

Px'

qx,qy,qz

r

R

S x ,

t

T

T

[TI

T x ,

U,V,W

vi

÷k'm.mass radius of gryation of blade cross section = k I 2
equation (56), m

blade cross-section integral, equation (56), m

blade cross-section integral, equation (56), m

components of generalized nonconservative forces in x, y, and z

directions, equation (60), N/m

mass per unit length of the beam, equation (56), kg/m

internal structural moment

twisting moment about the x and x' axes, figure 4, N-m

Sx' - (Px')', equation (93), N-m

bending moment about y and y' axes, figure 4, N-m

bending moment about z and z' axes, figure 4, N-m

generalized nonconservative moment about x' axis, N-m/m

fixed point in _ and _ at the root of the blade, figure 1

inertial and aerodynamic forces

warp term in strain energy expression, equation (34), N-m 2

inertial and aerodynamic moments

distance along the deformed elastic axis

length of blade, m

inertial frame

twisting moment arising from shear stress, equation (34), N-m

time, sec; also blade thickness, m

tension (same as Vx,), equation (62), N

kinetic energy, kg-m2/sec

transformation matrix

a twisting moment arising from longitudinal stress, equation (34),

N-m

elastic displacements in the x,y,z directions, respectively,

figures 2, 3



U

Vx,Vxv

Vy,Vy,

Vz,V z,

V

x,y,z

xr,y ! ,z !

xO,Yo,Z 0

xI,Yl,Z 1

Yu,Yv,Yw,Y_

Zu,Z u

Zv,Zv,ZvI,Zvl

Zw, Zw, Zw ,,Z--w ,

z_,z_

8pc

6()

_W

E

ell,el2,el31

e22,¢23,e33]

exx,exn,ex_

strain energy, N-m

axial force (tension) in the
N

shear force in the y, y'

shear force in the z, z'

x, x ! directions, respectively,

directions, respectively, N

directions, respectively, N

P in ,R, m/sec; also internalvector velocity of point

structural force, N

mutually perpendicular axis system with x along the

undeformed blade and y toward the leading edge,

figures 1-3, m

axis system tangent to the deformed body, figures 2, 3, m

coordinates of a point in the undeformed blade, m

coordinates of a point (which was at x0' Y0' z0 in the
undeformed blade) in the deformed blade, m

notation for writing the energy expressions in a concise form,

equations (38), (53), and (55)

precone angle, figure i, rad

variation of ( )

virtual work of the nonconservative forces, equation (29),
N-m

small parameter, equation (4)

tensor strain components, equation (5)

engineering strain components, equation (27)

sectional coordinate normal to n axis at elastic axis,

figure 3, m

+ _ , equation (32), m

sectional coordinate corresponding to major principal axis

for a given point on the elastic axis, figure 3, m
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NONLINEAR EQUATIONS OF MOTION FOR THE ELASTIC

BENDING AND TORSION OF TWISTED

NONUNIFORM ROTOR BLADES

D. H. Hodges and E. H. Dowell 1

Ames Research Center

and

U. S. Army Air Mobility R&D Laboratory

SUMMARY

The equations of motion are developed by two complementary methods,

Hamilton's principle and the Newtonian method. The former is more mathemati-

cally rigorous and systematic, while the latter provides more physical insight.

The resulting equations are valid to second order for long, straight, slender,

homogeneous, isotropic beams undergoing moderate displacements. The ordering

scheme is based on the restriction that squares of the bending slopes, the

torsion deformation, and the chord/radius and thickness/radius ratios are

negligible with respect to unity. All remaining nonlinear terms are retained.

The equations are valid for beams with mass centroid axis and area centroid

(tension) axis offsets from the elastic axis, nonuniform mass and stiffness

section properties, variable pretwist, and a small precone angle. The strain-

displacement relations are developed from an exact transformation between the

deformed and undeformed coordinate systems. These nonlinear relations form an

important contribution to the final equations. Several nonlinear structural

and inertial terms in the final equations are identified that can substanti-

ally influence the aeroelastic stability and response of hingeless helicopter
rotor blades.

INTRODUCTION

The dynamic response and aeroelastic stability of helicopter rotor blades

can be determined in many cases from linear equations of motion. Much work

has been done with linear analyses - notably the work of Houbolt and Brooks

(ref. i), which contains a systematic derivation of the partial differential

equations for the coupled bending and torsion of twisted nonuniform blades.

These equations are not sufficient, however, in cases where nonlinear struc-

tural or inertial effects are important. Nonlinearities can be important in

determining the dynamic response of both articulated and hingeless (cantilever

blades) rotors, and they are especially important in determining the aeroelas-

tic stability of torsionally flexible hingeless rotors.

iConsultant, Professor, Department of Aerospace and Mechanical Sciences,

Princeton University.



This report develops a more complete and general nonlinear theory with

particular emphasis given to the fundamentals of the nonlinear behavior. The

theory is intended for application to long, straight, slender, homogeneous,

isotropic beams with moderate displacements and is accurate to second order
based on the restriction that squares of bending slopes, twist, t/R, and c/R

are small with respect to unity. Radial nonuniformities (mass, stiffness,

twist, etc.), chordwise offsets of the mass centroid and tension axes from the

elastic axis, precone, and warp of the cross section are included. Other more

specialized details are not considered, such as blade root feathering flexi-

bility, torque offset, blade sweep, and droop; nor are configurations
considered in which the feathering bearing is replaced with a torsionally

flexible strap.

The equations of motion are derived by means of two complementary methods:
the variational method based on Hamilton's principle, and the Newtonian method

based on the summation of forces and moments acting on a differential blade

element. Both methods used together help ensure a more accurate and consist-

ent treatment of the nonlinear terms. The important nonlinear strain-

displacement relations, required for both methods, are developed from a clas-
sical definition of strain and simplified in accordance with the premise of a

long, slender beam subject to moderate displacements. Applications of the

equations of motion to rotor blade aeroelastic problems and development of the

aerodynamic loads are not included in this report.

Several previous studies have included nonlinearities in the equations of
motion and identified their importance in forced response and aeroelastic

stability analyses. A brief discussion of this work should help to acquaint

the reader with the nonlinearities of interest, the extent to which they are

treated in previous work, and the rationale for the present development.

Several approximate analyses have represented the elastic cantilever

blade with a rigid blade and a spring restrained hinge. Reference 2 showed
that inertial (Coriolis and centrifugal) nonlinearities were important even if

only the flap and lead-lag degrees of freedom were retained. Reference 3 (also

based on the rigid blade representation) showed that structural bending-
torsion nonlinearities were important when blade torsion was included. The

flap and lead-lag nonlinear inertial terms were derived for an elastic blade
in reference 4; however, the radial displacement and an intermediate

equation for radial force equilibrium were required.

The extensive treatment of the elastic bending-torsion equations of

motion in reference 1 retained only linear terms in the final equations,

although nonlinear terms were included in certain intermediate stages of the

derivation. In particular, the present equilibrium equations in terms of
force and moment resultants are identical to those of reference I. The pres-

ent inertial terms are also identical to those of reference 1 prior to simpli-

fication therein. The present work includes a more complete development of

the strain-displacement relation, and this is required to obtain the elastic

bending-torsion coupling terms. Reference 5 discusses a simplified form of

the bending-torsion coupling in the torsion equation - that is, the elastic

torque due to the product of flap and lead-lag curvatures. The present deri-
vation includes a more general formulation of these terms as well as the

corresponding terms in the bending equations.



Reference 6 gives a relatively complete derivation (by the Newtonian
method) of the nonlinear equations for rotor blade bending, torsion and rota-
tion about flap and lead-lag hinges. Certain second-order nonlinear inertial
terms due to elastic deformations of the blade are not included, however, and
these can be important for stability of cantilever blade configurations.
Reference 7 contains a derivation (also by the Newtonian method) of a system of
nonlinear equations for the elastic bending and rigid pitching motion of a
cantilever rotor blade. Most of the nonlinear terms are included, but certain
inconsistencies in the discarding of higher-order terms resulted in nonself-
adjoint inertial and structural operators; that is, the stiffness matrix and
massmatrix are not symmetric, and the gyroscopic matrix is not antisymmetric.
The nonlinear bending-pitch coupling does not appear explicitly as a struc-
tural nonlinearity (as in refs. 5, 6, and the present report) since pitching
momentswere derived in terms of the aerodynamic forces.

Reference 8 presents an earlier and less rigorous version of the
derivations given in the present report. The earlier derivation was based on
a simpler development of the strain-displacement relations and several extra-
neous terms were present in the final equations of motion. Preliminary
results for the aeroelastic stability of hingeless rotor blades using the
present equations have been reported in reference 9.

After a brief discussion of the coordinate systems, transformations, and
the ordering schemeto be used in this report, the strain-displacement rela-
tions are developed for an elastic blade. This theory is then simplified to
second order for long, slender beams. The derivation of the equations of
motion is divided into two parts. Part I gives the derivation of the equa-
tions of motion for a rotating beambased on Hamilton's principle. Part II
outlines the derivation using the Newtonian method. Both derivations reduce
to the results of reference 1 whenthe nonlinear terms are omitted.

The authors have closely collaborated on the entire report. However,
Part I is largely the work of the first author and Part II that of the second
author. Both have benefited substantially from D. A. Peters' contributions to
the transformation laws and strain-displacement relations. Numeroususeful
discussions with R. A. Ormiston are also gratefully acknowledged.

COORDINATESYSTEMSANDTRANSFORMATIONS

Several coordinate systems will be used in the present analysis 4 The
orthogonal axes system X, Y, Z and associated unit vectors _, _, K (fig. I)
are fixed in an inertial frame _. Orthogonal axes Xp, y, Z are fixed in a
reference frame _ which rotates with respect to _ at constant angular
velocity _. Point 0, a commonfixed point of .R and _, is located at the
root of the beam. The plane containing X, xp, Y, and y is called the refer-
ence plane, or plane of rotation. The x ax_s, which lies along the elastic
axis of the undeformedbeam, is inclined to the plane of rotation (and to the
Xp axis) at the precone angle 8p_. The orthogonal axes x, y, z, and the
corresponding unit vectors _, j, k, therefore, are also fixed in _. Beam



ztk .__

Y, i

x,5"

Figure I.- Undeformed coordinate systems.

bending deformations shown in figure 2 for @ = 0 are described by the

displacements of the elastic axis u, v, w, parallel to i, 3, k, respectively.

A point on the elastic axis that is located at x, 0, 0 in the x, y, z

coordinate system before deformation is located at x + u, v, w after

deformation.

y, J

Figure 2.- Elastic displacements.



The beam cross section is shown in figure 3 before and after deformation.

The point of the cross section through which the elastic axis passes (the

shear center) is shown at the intersection of the y and z axes before defor-

mation. The n and _ axes are the principal axes of the cross section for the

z,k

T
W

_) Z t

I

Y

._---= v -----_

,=_

Y, J

Y) J

Figure÷3.- Cross-section coordinates before and after deformation. (Note:
+ -@

j',k' are not in the same plane as j,k. Their projections are shown in

the j,k plane.)



shear center. The cross section is assumed to be symmetric with respect to

the _ axis. The n and _ axes are inclined relative to the y and z axes

at the "built-in" pitch angle O(x). When the beam is deformed, the shear

center for the cross section located at x is displaced an amount u in the

x direction (not shown), v in the y direction, and w in the z direc-

tion. The angle of twist of the cross section changes from 8 about the x

axis to O + ¢ about the x' axis.

The deformed beam is shown in figure 4 with force and moment resultants

acting on the face of a cross section. At any point along the deformed beam,

x' is tangent to the deformed elastic axis. (Note that the distance along

the deformed elastic axis is also denoted by r, in addition to x'.) The y'

and z' axes are identical to th_ n and+_ axes, respectively, when the beam
is deformed. The unit vectors x', _', k' are parallel to the deformed beam

coordinate system axes x', y', z', respectively. Stress resultants and

moments are subscripted with x', y', z' to associate them with the deformed

beam; for example, Mx, is a moment about the x' axis.

Vy'

V X'

M X'

Figure 4.- Beam with resultant forces and moments.

Several coordinate transformations are used, including the simple

transformation from _ ._ _ to i* 7, _. A more difficult transformation

(appendix) is one from i, j, k to i', j', k', which is given to second

order by

( ); ++ 1 2 1 ,2 v'
i' = 1 _ v' - --2w + j + w'k (la)



( )+ ÷ i v,2 v'w'
j' = -[v' cos(@ + ¢) + w' sin(@ + ¢)]i+ I-_ cos(8+$+ )j

1
+ (l-_w'2)sin(8 + ¢)_

(lb)

+ + ( lv'2) +k' = -[-v' sin(@ + ¢) + w' cos(@ + ¢)]i - 1-2 sin(@ + $ + v'w')j

i wi2) ^ ->+ i-_ cos(O + ¢)k
(lc)

where $ (consistent to second order in v', w', ¢) is given by

fO X 8w 82V$ : ¢ - 2
dx

The transformation used in equations (I) may be simplified further in many

(but not all) parts of the analysis by replacing ¢ by ¢ and dropping the

squares and products of 8v/Sx and 8w/Sx. The summation of @ and ¢ repre-

sents the total pitch angle (built-in pitch plus torsion deformation) with

respect to the x' axis; w is the bending deformation (flapping) in z

direction; v is the bending deformation (lead-lag) in y direction; and

_v/_x, _w/_x are small rotations about the z and y axes, respectively. It

is convenient to carry @ + ¢ through the analysis without making the small-

angle approximation until the end of the derivation.

It will be necessary to transform vector components fro_ one coordinate
system to another. For example, a resultant moment vector M may be written

as

or

-9- -9. --_ -9-

M = Mxi + Myj + Mzk (2a)

-+ 4 -9- -_

M = Mx,i' + My,j' + Mz,k' (2b)

in terms of components measured in the undeformed or deformed coordinate sys-

tems, respectively. The relations between Mx,, My,, M z, and Mx, My, M z are

determinated by using the unit vector relations of equations (I) and taking

appropriate dot products of equations (2). Thus



Mx = Mx,i" i + My,j'" i + Mz,k'' i

l1 V_2= Mx' 2 w,2)2 - My,[V' cos(@ + _) + w' sin(@ + _)]

- Mz,[-v' sin(o + ¢) + w' cos(o + ¢)] (3a)

and, similarly,

/My : Mx,V' + - [My, cos(O+_+v'w') -M z, sin(0+_+v'w')]

( w41M z = Mx,w' + - [My, sin(O+_+v'w') +M z, cos(@+_+v'w')]

where the primed notation is introduced for subsequent use.

(3b)

(3c)

_v _w
V v : -- • W v :

_x ' _x

Other vectors, such as resultant force

transformation laws.

V and acceleration a, obey the same

ORDERING SCHEME

In deriving a nonlinear system of equations, it is necessary to neglect

higher-order terms to avoid overcomplicating the equations of motion. When

neglecting terms within a large system of equations, care must be exercised to

ensure that the terms retained constitute self-adjoint structural and inertial

operators. These self-adjoint operators lead to symmetric stiffness and mass

matrices and an antisymmetric gyroscopic matrix in the modal equations.

A systematic self-consistent set of guidelines has been adopted for

determining which terms to retain and which to ignore. The dimensionless

axial deflection u/R is generally taken to be of the same order of magnitude

as the square of v/R or w/R and thus is small with respect to unity. The

elastic twist _ is a small angle in the sense that sin _ = _ and cos _ = i.

The axial coordinate x is of order R and the lateral coordinates are of

the same order as the chord c, and thickness t, respectively. Both c and t

are assumed to be at the same order of magnitude as v and w. The warp func-

tion _ is taken to be of order c times t so that the actual warp dis-

placement will be an order of magnitude less than the axial displacement u.

These assumptions can be systematized by introducing c, a parameter of order

v/R or w/R. Hence

8



u n 0(_)= 0(_2) _ =

v _ o(_)= o(E) _ =

w = o(_) ! = o(_2)
R R2

= o(_) a;_/anR = o (_)

x a_,/a_
_-= 0(1) R = O(E)

(4)

Within the energy expressions, terms of order c2 are ignored with respect to

unity. Thus, if the largest terms of the energy expression are 0(E4), then

all terms of 0(E 4) are retained (first-order terms), all terms of 0(e 5) are

retained (second-order terms), and generally terms of 0(_ 6) are discarded.

There are conditions under which certain 0(E 6) terms should be retained.

These exceptions will be noted below. Since the physical quantities involved

in the strain energy and the kinetic energy are fundamentally different, a

scaling parameter for their respective orders of magnitude is introduced in

the text. This is done so that the ordering scheme may be consistently

applied to both strain energy and kinetic energy terms.

In the application of the above guidelines, it is important that the

ordering be done within the total energy context, or equivalently within the

virtual work expression (e.g., the w equation times 6w). Ordering differ-

ently in one equation than in another without regard to this consideration can

lead to the above-mentioned symmetry problems, and introduce dissipative and

circulatory forces into the final equations that are linearized with respect
to an equilibrium position. Also, the scheme implies that the same order

terms should be retained in the v, w, ¢ equations, but terms of one order

less should be retained in the u equation.

STRAIN-DISPLACEMENT RELATIONS

The development of a nonlinear strain-displacement relation is central to

both the variational and the Newtonian methods for developing a nonlinear sys-

tem of equations. The use of this relation, together with the generalized
Hooke's law, permits the strain energy, the force resultants, and the moment

resultants to be expressed in terms of deformation quantities. Although the

primary goal of this paper is to develop a second-order nonlinear theory, we

first develop a general nonlinear strain-displacement relation, which is then

simplified consistent to second order for deriving the equations of motion.

This approach is necessary to ensure that a valid approximation for the

9



nonlinear strain-displacement relation is obtained. The general strain-

displacement relation would also be useful for future development of a more

accurate theory.

Derivation of a General Strain-Displacement Relation

Several different classical definitions of strain may be found in the

literature, depending on the mathematical formulation, reference states (based

on deformed or undeformed positions), and coordinate systems used. The influ-

ence of the definition of strain is considered in the present development. In

particular, for nonlinear strain-displacement relations accurate to second

orde_ there is no distinction between two commonly used definitions of strain.

The classic strain tensor ¢ij in terms of r I and r0, the vector

positions of the same point on the deformed and undeformed blade, respectively,

may be expressed as (ref. i0)

{dr}d_ 1 • d_ 1 - d_ 0 • d_ 0 : 2[dr do d_][eij] do
dK

(s)

where dr, dq, d_ are increments along the deformed elastic axis and two

cross-sectional axes, respectively.

The vector position of a generic point _n ethe÷undef°rmed beam is given by
(x, y, z) with respect to the unit vectors i, j, k where (x, 0, O) is the

elastic axis. The corresponding point on the deformed beam is given by

(i) the position of t_e _efRrmed elastic axis (x + u, v, w) with respect to
the undeformed axes i, j, k, and (2) the position of the point relative to

the elastic axis [-X(8 + _)+, q, _] with respect to deformed axes _', _', _'.

Note in particular that -4(0 + _)+, where ( )+ = 8/8r(), represents an

axial position where X is the warp function; X(0, 0) = 0.

Let us now express the above mathematically. After deformation, the

vector position of a generic point is

rl = tl Y v + n
w

(6)

where the transformation matrix IT], given in the appendix, relates the

deformed axes (_', _', _') and the undeformed axes (I, j, _) 2

2This derivation is simplified if [T] is retained in abstract form

throughout. A first-order approximation of [T] introduced at this point could

result in an incorrect expression for the shear strain component.

I0

II



Before deformation,

Thus, using equation (6)

÷ ÷[r 0 = r I
u=v=w= _=0

(7)

.=),. --->. ._

r 0 = [i j Elxl (8)

where

no = nlu__v:w=¢:o _0 : _]u:v:w:¢:o _O(no' _o) = _(_' _)[u:v:w:_:o

The coordinates n and _ may be regarded as functions of no and _0'
respectively.

From equation (A2),

o[T] [u=v=w:¢:O : cos 0 sin (9)

-sin O cos

Thus

r 0 = [i j n o cos O _0 sin (i0)

n o sin O + S 0 cos

The position vector differentials are given by

/ dno d_ \
x+(I- E0O")dr - klnO _ an + E_0 _ dqO'

J÷ ÷ ÷ dn 0 d_ 0

d_ 0 = [i j k] -0'x+(n0 sin @ + _0 cos O)dr +-_-ndn0C°S @ dn - d---_d_sino@ d_

0'x+(n 0 cos O o s'n ) d " + -_ O d_1 @ r+ d_ sln O dn cos

(II)

ii



+ + +

d_ 1 = [i' j' k']
T] v+ idr

w+ ]

-x(e + ¢)+t
[T] [TIT+ t{ n_ r

-X(8 + _)++dr- (Xn dn+;k_ d_)(8+ ¢)+/]JJ+ dn

d_

(i2)

where

dx

x+ _ dr ;

a_ G
ax . = aX . _'nO =---- _0

a_ o
= --

a_ o

Note that

Thus

[T][T] T+ + [T]+[T] T = [\0\]

and

0 -_k aJlJ

[T] [TI T+ [T]+ [T]T mk 0

_oj _i 0

(13)

where explicit expressions for _i, _j, ak are given in the appendix. Hence,

12
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d_ 1 = [i' j' k'J
T] i v + , dr + _k 0

w+ -_j _i

(e + _)+

q
dr

-_(0+ _)++dr - (_q dn + >% d_;)(O+ _)+llJJ+ dr]

d_

(14)

The expressions for the position vector derivatives can be simplified by
eliminating x+ in equation (ll) and [T] in equation (14). On the elastic

axis q = dn = _ = d_ = _ = In = _= 0. Thus,

X+ + U+ 1

d_l[ = [l' _' _'][T]" v + (15)

dr q=_=0 1 w+

However, drl/dr at
system. Therefore,

q = _ = 0 must be i' by definition of the i', j', k'

[i' j' k.'J = [i' j' k'][T] v + (16)

W +

The first component of this vector equation yields:

Z - v+2 - w+2 (x+ + u+) + v+2 + w+2 = 1

Hence,

x + = /1 - v +2 - w+2 - u + (17)

13



Equation (14) for

yield

d; tll = l

d_ 1 may be now simplified, by using equation (16), to

j ' k '] + _k 0 - n dr

-_j _i

-X(@ + 4)++dr - ()`n dn + )`¢ d_)(O + 4)+I]IJ+ dn

de

(18)

With equation (17), equation (11) for d_ 0 becomes

dr 0 =

/-v + -w + -u (i-)`0 dr- no -_n dn+X_0 -_- d_

++i_(t_ ) _o _o[i j _] 0' -v +2-w +2-u + (no sin 0+ _0 cos O)dr+-_ cos Odn _- sinOd_

dno -_-- cos 0 d_O' v+2-w+2-u + (nO cos O _0 sin O)dr+-_sinOdn+

(19)

for the components of the strain tensor

Equations (18) and (19) can now be substituted into equation (5) to solve

cij.

2Eli = (__LOk + _coj)2 + [)`COk(O+ 4) + + _coi]2 + [Xcoj(0 + 4)+ + _coi]2

+)`2(0 + 4) ++2 + 2(-nOOk + _coj) - 2),(0 + 4)++(1 - no3k+ _mj)

+V +2 + W +2 _ U +2 + 2u+_l - V +2 _ W+ 2 _ X+20'2(N02 + _02)

+x +2 (2)`00- - )`020''2) (20a)

14
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2e12 = Xtn(O + ¢)+(0 + ¢)++- Xq(O + ¢)+(1- q_ok+ _oj) - [X_Ok(8 + ¢)+ + _oi]

dno (1 X 8") _0]+x+O' Tn [)'no - o + (20b)

2E13 = XX¢(O + 0)+(0 + 4) ++ - X¢(O + 0)+(1 - n_ k + Cmj) + [_mj (0 + 4) + + nwi]

de o
+x+e , -_- [X¢o(1 - XoO,, ) - n o ] (20c)

(drlo _2 +2 2 2 (drio_ 2

2E22 = 1 -k-_--,] + Xn2(O + 4) - Xn0@' \-_--j

2e33 = 1 - +_¢2(0 + 4) +2

where

(20d)

(20e)

(2Of)

0+ = 0,x + 0++ = 0,,X+2 + 0,X ++

Equations (20a)-(20f) are the classical strain components in terms of

displacements u, v, w, and 4; the warp function X; the curvatures mi, _j,
and mk; the cross-section coordinates q, no, _, and Cn; and the pretwist O.

The warp function is determined through Laplace's equa£ion for the cross sec-

tion. The curvatures and twist are known (appendix). A relationship between

no, _0, and n, _ is needed to express the strain components entirely in terms

of displacement variables. This relationship will only be determined for the

second-order approximate theory.

Second-Order Approximation for the Strain Components

Equations (20) form the basis for a general nonlinear strain-displacement

theory. This theory will now be reduced to second order. First, dn0/dq and
d_0/d_ must be expressed in terms of the elastic displacements and the known

parameters. The assumption of uniaxial stress, valid for long slender beams,

(a22 = 033 = a23 = 0) and Hooke's law gives

(21)

15



Equations (20d) and (2Of) are now

-2v__11 = 1 - + Xn2_ O + q_)+2 _

-2V¢II = 1 - + % + _)+2 _ %¢00,2

(221

and solving for (dq0/dq) and (d_0/d_) gives

(dno'_ 2 = 1 + 2v¢11 + Xn2(O + _)+2
2 2

V_-/ 1 + XnoO'

= 1 (to second order) (23a)

1 + 2Yell + X¢2(0 + {)+2

= 1 (to second order) (23b)

Thus to second order n and _ are equivalent to q0 and _0' respectively, and
_= X0 .

The strain components Ell , el2 , and El3 in equations (20) may now be

reduced to second order. The expressions for (dqo/dn) and (d_0/d_) are sub-
stituted in equations (20), higher-order terms are eliminated and ( )' is

substituted for ( )+ since dx/dr = 1 to second order (eq. (17)).

(0ell = u'+-2-+-T-- + (n2+ c2) ,+,+

-v"[n cos(O+¢) - _ sin(O+_)] -w"[n sin(O+¢) +¢cos(O+{)] (24)

1
el2 = - _-(_ + xn)@'

1 @,el3 = _ (q - X_)

(25)

(26)

2
Although the _' term in equation (24) is formally negligible, since it is

of 0(E #) compared to other terms of 0(c2), it leads to a tension term pre-

viously identified in reference 1 that contributes to the elastic torque Tx,

16



about the x' axis (see eqs. (33) and _3,1) in Part I). Hence, it is retained
here although for certain applications it could be dropped without loss of
accuracy.

The shear strain component E23 is now considered. Equation (20e) shows
that E23 is not identically zero, contradicting the previous assumption that
a23 = 0. However, c23 is two orders of magnitude smaller than the shear

strains el2 and _13- Therefore, neglecting _23 and hence o23 is well

justified. This completes the reduction to second order of the classical

strain components in equations (20).

The relationship between the simplified classical strain tensor and

engineering strain is now discussed. Since the uniaxial stress assumption has

been invoked (o22 = o23 = o33 = 0), the expression for strain energy in terms

of the classical strain components is equivalent to the more familiar form of

strain energy based on engineering strain (the latter form is used in Part I).

Thus, the engineering strain components can be written in terms of the

simplified classical strain components.

%

eXX = Ell I

exn = 2e12

ex_ = 2e13

(27)

There are other possible definitions of strain that could have been used

in this development. Here the strain has been defined on the basis of an

increment of deformed length dr. The most frequently used alternative

employs the original length dx. By appropriate transformation, the two

definitions can be compared. For example, examining the case of longitudinal

displacement only, u _ 0, v = w = _ = 0, the present definition of strain

gives

du 1 /du_ 2 (28a)
ell = dr 2 \d-_J

From the definition of r

dr du

dx dx

and

du

dr

du

dx

du
1 + m

dx

17



Thus, the alternative definition of strain gives

A [dr_ 2 du 1 /Idu'_2 (28b)
_11 = ell k, dx,] = d-"x-+ 2" \dx]

which is the more familiar result. To second order, however, the two results

are equivalent.

18



PART I

DERIVATION OF EQUATIONS BY HAMILTON'S PRINCIPLE

The equations of motion and boundary conditions for a cantilever beam

rotating at constant speed are obtained from Hamilton's principle. These

equations are valid for rotor blades that can be represented by a long,

slender, homogeneous, isotropic beam. This representation includes spanwise

variations in the mass and stiffness properties, variable mass centroid axis

and area centroid axis offsets from the elastic axis, variable built-in axial

twist, and a small precone angle. The external forces acting on the beam are

characterized by a set of generalized distributed loads. The use of an actual

helicopter rotor blade as a model would be a more formidable task because of

the nonhomogeneous, anisotropic structures found in typical blades. The

present structural representation is similar to that of reference I.

Hamilton's principle may be expressed as

fti2[_(U- T) - 6W]dt = 0
(29)

where U is the strain energy, T is the kinetic energy, and dW is the

virtual work of the external forces. Suitable expressions for 6U, 6T, and _W

are now determined and then combined to give the desired equations.

Strain Energy Contributions

The usual expression for strain energy in terms of engineering stresses

and strains, defined in equation (27) in terms of the classical strains, is

So SS U = _ (Oxxexx + Oxnexn + Ox_Ex_)dn d_ dx (30)

The first variation is

6U = (axx_Cxx + Oxn6Cxn + ax_6Ex_)dn d_ dx (31)

where

Oxx = Eexx

Ox_ = Gexn

Ox_ = Gcx_
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and

_Cxx = _u' + v'_v' + w'_w' + (n2 + _2)(O + ¢)'5¢' - k_¢"'

-[n cos(O+¢) - _ sin(O+C)](_v" + w"_¢)

-[n sin(O+_) + _ cos(O+ ¢)](_w" - v"6¢)

_xn =-_'

(32)

where we introduce the notation _ = n - _; _ = _ + _n" Since the strains

(and hence the stresses) are composed of the sum of terms of order e2 and s3,

any product of stress and strain consists of terms of 0(e4), 0(es), and 0(c6).

Consistent with the ordering assumption (J << l), 0(E 6) terms are neglected

because of the presence of 0(s 4) terms. In terms of stress resultants and

moments, the strain energy variation becomes

R

6U = "f0 {Vx'(Su' + v'Sv' + w'6w') + (Sx, + Tx,)_ ¢' + Px,_¢"

+ [Mz, cos(0 + ¢) + My, sin(O+ ¢)](_v" + w"_¢)

+ [Mz, sin(0 + ¢) My, cos(0 + O)](_w" - v"6O)}dx (33)

where the stress resultants and moments are defined by

SS A { v'2 w _2Vx, _ axx dn d_ = EA u' ÷T+_+kA20'¢' - eA[v" cos(0 + ¢) +w" sin(0 + ¢)]

Sx, - 7_A(_ax_ - _axn)dn d_ = GJ¢'

Tx, - (O+¢)'axx(n2+_2)dn dE = EAkA2(0+__) ' + 2

+ EBI*O'2¢ ' - EB2*O_(v" cos O+w" sin O)

Px' -=-S_AkaXX dn dE = ECI¢" + ECI*(W" cos O - v" sin 8)

My, -fSAEaXX dn d_ = EIy,[V" sin(0 + ¢) - w" cos(e + ¢)] - ECI*¢"

Mz, = -S_naxxdn dE =EIz,[v''cos(0+¢) +w"sin(O+_)]
d_

(u- EAeA '+T + - EB2*O'_' (34)
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Three third-order linear terms (doubly underlined) are retained in these

equations although, consistent with the present ordering scheme, they could be

neglected. These terms (and two subsequent inertial terms) contribute to the

final torsion equation. In the special case of rotor blade configurations of

very low torsional rigidity, these terms may contribute substantially to the

magnitude of the torsion natural frequency; hence, they will be retained. The

linear term ECI_" in Px' is usually neglected for beams of closed cross
section.

The section integrals in equations (34) are defined as follows:

A=- S_A dn d_

Iy, - S_A _2 dn d_

AkA2 - _j'A(n 2 + _2)drl d_

81. - ffA(rl2 + _2)2 dnd_

C1 = j'fAX 2 dn d_

AeA - ffA n dn d_

Iz, =- ffA n2 dn d_

J - f_A(_2 + _2)dn dc

B2* = ffArl(n 2 + _2)dn d_

CI* - _A_% dn d_

(35)

These integrals are to be evaluated only over the portion of the blade cross

section that is structurally effective. The blade cross-section area effec-

tive in carrying tension is A; Iy, and Iz, are the flapwise and chordwise

moments of inertia, respectively; AkA 2 is the polar moment of inertia; and J

is the torsional constant including cross-section warping. Without warping,

J is equal to the polar moment of inertia. The tension axis offset from the

elastic axis is eA. C 1 is the warping rigidity, and BI* and B2* are sec-

tion constants equivalent to those found in reference i. Cl* is not included

in previous references.

Because of the antisymmetric character of _ and the assumed symmetry of

the cross section about the n axis, the following integrals involving n,

are set equal to zero and hence do not appear in equation (34):

_A % dn d_ = 0

_fA _ dn d_ = 0

_A_(n 2 + _2)dn d_ = 0

_A_(n 2 + _2)dn d_ = 0

ffAn_ dn d_ 0

ffAn% dn d_ 0

(36)

These integrals would be nonzero if the cross section were asymmetric.
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Integration by parts of the strain energy yields

foR Vv v÷Yw w÷ ÷bCU)6u = (Yu_u +

where

(37)

Yu = - (Vx')'

Y--v = [Mz' cos(0 + 0) + My, sin(0 + *)]" - (Vx,v')'

Y--w= [Mz' sin(O+ ¢) - My, cos(O + ¢)]" (Vx'w')'

Y-¢ = (Px')" - (Sx' + Tx')' - v"[Mz' sin(O+ _) - My, cos(O + ¢)]

-w"[Mz' cos(O+ _) + My, sin(O + ¢)]

(38)

and

b(U) =Vx,6Ul R+ (Vx'V' - [Mz' cos(0+¢) +My, sin(e+¢)]')6v[_
0

+[M z, cos(@+ 0) +My, sin(O+ 0)]8v'1_+ [Mz, sin(O+ 07 -My, cos_+O)l_w'l RO

+{Vx,W'- [Mz, sin(O+ ¢)- My, cos(O+ 0)1'}6w1_+ [Sx, + Tx,-

+px,a¢,lR (39)
0

It is generally essential to include b(U) in equation (37) when using

modal solution methods, as discussed below.

Kinetic Energy Contributions

The position of an arbitrary point after the beam has deformed is given

by (x I, YI' zl) where

x I =x+u- XO' -v'[n cos(O+ ¢) - _ since + ¢)] -w'[n sin(@ + ¢) + _ cos(@ + _)]'

Yl =v + n cos(O + ¢) - _ sin(O + ¢)

Zl=W + n sin(O+ _) + ¢ cos(O + ¢)

,(4o)
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or

Xl = x + u - _' - v'(y I - v) -

Yl = v + (Yl - v)

zI = w + (zI - w)

(41)

where -X#' is an axial displacement due to warp. The velocity of this point

on the blade with respect to .R, the inertial frame, is

+ 8_ + ÷
V =- + _K x r (42)

8t

where r =÷xli÷+ ylj + Zlk, and 6/6t is the derivative in the rotating frame
_. The flK x r term is the velocity contributed by the rotating coordinate

system. The velocity in _ is

{__r = _1 i + ) j + Zl k (43)
8t 1

and the rotating coordinate system contribution is

fiK×r = -_Yl cos Bpci+ (_xI cos 8pc- _Zl sin Bpc)j +_yl sin Bpck (44)

Thus, the total velocity V is given by

= (il - _Yl cos _pc)i + (Yl + _xl cos 8pc - _zl sin Bpc)J + (Zl + _Yl sin Bpc)_ (45)

The kinetic energy T is the volume integral of (1/2)p_ ÷•V, or

.goff  V, v (46)

and the variation is simply

6T = S0 RsSAP_" 8_ dn d_ dx

where

6_ = (6i I - _ COS 8pc_Yl)i + (SYl + _ COS gpc_Xl

-> _>

-fl sin gpcSZl) j + (8_ 1 + fi sin Bpc6Yl)k

(47)

(48)
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The integrand of equation (46) then becomes

_- 8_=i16i I - fliI cos 8pc_Yl-flYl cos Bpc_i I +_2y I cos 8pc_Yl

- +_2x I cos 2 8pc6X 1 - _2x I sin 8pc cos 8pc_Z 1 + _x I cos 8pc8_i

-_2z I sin 8pc cos 8pc_Xl + _2z I sin 2 8pc_Z 1 - _z I sin Bpc_l + _Yl cos 8pc_X 1

-_Yl sin Bpc6Z 1 + _18_i +fl2y I sin 2 Bpc_Y I +_yl sin 8pc_ 1

+_Zl sin 8pc6Yl + _18_i (491

According to the variational method, equation (491 must be integrated in time

between two arbitrary points in time, t I and t2. The initial and final values
t2

(e.g., il_xlltl) are taken as zero. Hence, we may anticipate integrating by

parts and combine various terms in equations (47) and (491 to obtain

6T= f0RffA[(-Xl + 2_y I cos Bpc+@2x I cos 2 Bpc- @2Zl sin 8pc cos 8pc)_Xl

+(fl2yl-Yl - 2Ri1 cos 8pc +2flzl sin 8pc)6y 1

+(-fl2x I sin 8pc cos Bpc+fl2z I sin 2 Bpc- 2flYl sinBpc-Zl)_Zl]p dn d_ dx

where

_ : _- (_' + Sw')(y_ - v] - (,' - +_')(z_ -w) - x_'

Yl = _- $(zi - w)

_i =* + $(y_ - v)

_ _--ii - (v, + _w, + 25,') (y_ - v) - [_, - _;v' - 25_,'1 (z_ - w) - _$'

_ - _- $(z_ - _1

_ -"_ + _(y_ - v]

_x_ = _u- (y_ - v) (_v' + w'_¢) - (z_ - w) (_w' - v'_¢) - x_¢'

6Yl = _v - (Zl - w)6¢

6z I = _w + (Yl - v)_¢

24
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These expressions have been truncated consistent with the ordering scheme

(c 2 << 1). Assuming that 8pc = 0(_) the variation of the kinetic energy
becomes

6T = loRlfA(Zu_U + Zv_v + Zw_W + Z¢_¢

+Zv,_V' + Zw,_W' + Z¢,_¢')0 dn d_ dx (52)

where

Zu = _2x + 2_

Zv = f12[v+ (Yl - v)] - v + ¢(z I - w) + 2_8pc_

-2fl[fl - v'(yl - v) - *'(z 1 - w)]

Zw = -f128pcX - 2flBpcV - w - ¢(Yl - v)

Z_ = -_2x(y I - V)W' + fl2X(Zl - w)v' - _2[v + (Yl - v)](Zl - w)

+V(Z 1 - w) W(Yl - v) - _2BpcX(Y 1 - v) - ¢[(YI - V) 2 + (Zl - w) 2]

ZV, = -(fl2x + 2fl*)(yl - v)

Zw' = -(fl2X + 2fl*)(Z 1 - w)

Z¢, = -f12%x

(S3)

The doubly underlined higher-order term could be dropped consistent with the

ordering scheme, but this would eliminate torsion inertia from the torsion

equation. As discussed previously, this term is important for small values of

torsion rigidity and hence is retained.

Integrating over the blade cross section, equation (52) becomes

= IoR (Z-u U+ zK, v÷ zL w+

+Zv,_V' + Zw,6w')dx (54)
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where

Zu = m( _2x + 2fl9)

Zv mfl2[v + e cos(@ + 4)] + 2mfl(BpcW - 6)

+2me_(_' cos O + _' sin 0) - mV + me_ sin 9

_w -mBpc( flzx + 2fl9) - mQ - me_ cos @

2"' 2 2 2

Z-¢ -mk m ¢ - mn (kin2 - km.)COS(@ + _)sin(@ + 4)

-mee2x(w ' cos @ - v' sin 0) - me_2v sin @

-me_28pc x cos O + me(_ sin @ - _ cos 0)

Zv, -me[_2x cos(@ + 4) + 2_% cos 0]

Z-w' -me[_2x sin(@ + 4) + 2_9 sin 0]

(55)

and where the sectional integrals are defined by

m- flAP dn d_ ;

mkm21ffA= p_2 dn d_ •

2 +km22=km 2 ;km 1

me-=ffAPn dn d_

mk2m2 - :fAp n2 dn d_ (56)

assuming cross-section symmetry about the n axis and an antisymmetric warp

function _. The terms involving (Yl - v) and (z I - w), introduced for

convenience in equation (41), are given by

ffAp(yl v)dn d_ = me cos(O + $)

£p(z - w)dn d_ = me sin(0 + 4)

IrA 2P(Yl - v)(zl w)dn d_ = m(km2 - kml)cos[O + $)sin(O + $)

f_AO[(YlV) 2 + (z 1 - w)2]dn d_ = mkm 2

(57)
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The blade mass per unit length is m; the center of mass offset from the

elastic axis is e; the polar mass moment of inertia is mkm 2.

After integration by parts, the variation of the kinetic energy becomes

where

_r:f0R[_u_U+ (_v-7;,)6v+ (Zw-Zw,)_w+z%6,]dx÷ b(r)

bee)=Zv,_vlR +Zw,_WlR
0 0

(58)

(S9)

The kinetic energy contributions are equivalent to the inertial terms of

Part II. The inertial terms of reference I, before simplifications were made

therein (eqs. B.10-15 of ref. I), are also equivalent to the present results

for Bpc = 0.

Generalized Nonconservative Forces

The virtual work 8W of the nonconservative forces may be expressed as

6W = _0R(Lu_U + Lv8v + LwSw + M_8¢)dx (60)

where Lu, Lv, Lw, and M_ are the distributed loads that act in the x, y,
and z directions and a twisting moment about the elastic axis, respectively.
The nonconservative forces include all forces other than the elastic and

inertial forces (e.g., aerodynamic or mechanical).

Summary of Partial Differential Equations of Motion

and Boundary Conditions

According to Hamilton's principle (eq. (29)), the strain energy and

kinetic energy must be combined into one variational statement. Thus, the

relative order of magnitude of the inertial terms with respect to the struc-
tural terms must be considered. The ratio of inertial terms to structural

terms can be expressed as a dimensionless scaling parameter whose order of
magnitude is assumed to be

m_2R2 0 (g2)
EA

Hence, the order of terms derived from the kinetic energy is, in effect,

increased by 0(e 2) so that the largest terms of the kinetic energy that are

0(_ 2) become 0(_4), the same order of magnitude as the largest strain energy

terms. Note that the above scaling parameter is essentially the square of the
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ratio of the tip speed to the speed of sound in the blade material. For other

applications, the order of magnitude of this scaling parameter may be modified

accordingly. Now, for the total energy expression, the first-order terms in

either the kinetic energy or strain energy of 0(a 4) are retained along with

the second-order terms of 0(_5). In general, the third-order terms of 0(_ 6)

are discarded except for certain third-order linear terms as noted above. The

variational operations can now be performed on the energy expressions as they

are written with no further terms discarded.

By substituting equations (37), (58), and (60) into equation (29) and

using equations (34), (38), and (55), one can obtain the total variational

equation in terms of u, v, w, and _. For arbitrary, admissible variations

6u, _v, _w, 6_, the coefficients of the variations must vanish in the inte-

grand for all x from 0 to R and also must vanish in the remaining terms

evaluated at 0 and R. The former condition will yield four nonlinear partial

differential equations for u, v, w, and _. The latter will specify the

boundary conditions at the ends of the beam. The four equations are as

follows:

6u equation:

-T' - m(f_2x + 2_____) = Lu (61a)

6v equation:

{ (u-(Tv')' + -EAe A ' +-_--+ cos(@÷__)- EB2*@'¢' cos @-ECI*_" sin @

+[EZz, cos2(e +¢_)÷ Ely, sin2(O +_)]v" + (_Iz, - _y,)COS(O +!)sin(e +¢__)w"l"
J

+2m_h+mi)-me_ sin0- 2mefl(*' cos 0+*' sin @)-mfi2[v+e cos(@ + _)]

-2m_Bpc*- {me[fl2x cos(@ +_) + 2fl9 cos @]}' = Lv (61b)

_w equation:

{ (u-(TwT__O' + -EAe A '+ -7-+ sin(O+_)-EB2*@'_' sin 8+ECI*_" cos @

+(V.Iz, - Eiy,)COS(O +_)sin(e +__)v"+[EIz, sin2(o +_¢)+EIy, cos2(e +!)]w"}"

+ m_ + me$ cos @ + 2mflBpc9 -{me[fl2x sin(@ + _) + 2fl9 sin @]}' =L w - mfi2Bpc x (61c)
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_¢ equation:

t, v,, ],- AkA2(O+¢) '_ ' +-_+ + EBI*O'2¢ ' - EB2*O'(v"cosO+w" sin O)

U V ' 2 w2 )-EAe A ' +---T+ (w" cos 0 - v" sin O) - (GJ¢') ' + [ECI¢" + ECI*(W" cos O-v"sin e)]"

2
+(EI z, - EIy,) [ (W"2-V"2)COS O sin O + v"w" cos 20] + mkm2¢ + mfl2¢ (k22 - kml)COS 20

+me[fl2x(w ' cos @ -v' sin O) - (_- fl2v)sin O +_ cos O]

2

= M¢-mf12(km22-kml)COS O sin O-mefl2Bpc xcos O (61d)

where

VV2 W12 1T _ Vx, =EA u' +--T+--_-+kA20'¢'- eA[v" cos(O + ¢) + w" sin(O + ¢)] (62)

The boundary conditions, from equations (29), (37), and (58), become

b(U) - b(T) = 0 (63)

Equations (34), (39), (55), and (59) may be used to express the boundary
conditions in terms of the deformation:
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b(U)-b(T)=T6u]R (TvV {0 + - [EIz' c°s2(0 + 0--) + Ely, sin2(0 + ,)]v"

u ,2 w,2\
v V

+(EI z, - EIy,)Cos(O + ___)sin(0 + __)w" - EAe A +--_--+--_--)cos(0 + _3

1' ),oR-EB2*O' ov COS O-ECl*O"sinO + me [a2x cos (0 + 0) + 2agcos0] 6v

+{[EI z, cos2(0 + __)+EIy, sin2(0 + _)]v"

+(Elz, -EIy')C°S(O+*_)sin(0+*_)w"-EAe A ' +--T + cos(0+,)

-F.B2*0' _' cos 0 - ECI*0_" sin 0}6v' jR0

+(Tw___'-{(EIz,-Ely,)Cos(@+__)sin(O+_)v"+ (El z, sin2(@+_

u' v'2 w'2_+Ely, cos2(0 + _)]w" -EAe A +--_-+--_)sin(O+_)- EB2*0' _' sin O

÷F.Cl*d0"cos0 ÷me[_2xsin(0+O)+2f_ ' sin 6] 6wl0

+ {(EIz, - EIy,)COS(e + q!)sin(0 ÷ 0_)v" + [EIz, sin2 (e + *__)

+Ely, cos 2(0 + ___)]w"- EAe A '+_--+ sin(0 + _)

-EB2*0' _' sin O + ECI*_" cos O}6w' jR0

l (u+ GJ0' +EAkA2(0 + *___)' ' +--_-+-=_-) + EBI*0'

-EB2*0' (v" cos 0 +w" sin O) - [ECl_" + ECI* (w" cos O - v" sin O)] '6_J R
0

+[ECI_" + ECI*(W" cos 0 - v" sin 0)]6_' jR)0 (64)

In the equations as well as the boundary conditions, only the linear

expansion of cos(0 + _) and sin(0 + _) should be used to avoid complicating

the equations with unnecessary small terms. The single underlined terms are

nonlinear terms and the double underlined terms are the third-order linear

terms discussed earlier. The tension-torsion term
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[ AkA'0(u"'_ ! ! + T +

may appear to be a nonlinear term. However, there is a third-order linear
approximation based on equations (61a) and (62) such that

(u,.,''C) IxEAkA2_, + _ + = kA2qb, R m_2x dx

+ third- (and higher) order nonlinear terms

The equations of motion may be solved by Galerkin's method provided that

natural boundary condition terms in equation (64) that are not identically

satisfied by the assumed modal functions are added to the resulting modal

equations in the standard manner (ref. II). This operation may be necessary

to insure symmetric structural and inertial operators. Thus, only the geomet-

ric boundary conditions (clamped end conditions for a cantilevered beam, e.g.)

must be satisfied by the assumed modes to obtain equations equivalent to the

Rayleigh-Ritz method (which deals directly with the energy expressions). By
incorporating aerodynamic forces into the equations, stability analyses can be
performed.

It is convenient to eliminate u' + (v'2/2) + (w'2/2) and 0 from the _v,

_w, and _ equations and the boundary conditions before applying a modal

solution procedure. From the definition of T in equation (62),
u' + (v'2/2) + (w'2/2) can be expressed in terms T, v, w, and _, while T

may be determined from equation (61a), thus expressing u' + (v,2/2) + (w'2/2)

in terms of v, w, and _ only. Solving for u', integrating over x, and
then differentiating with respect to t gives an expression for _ that may

be substituted in equation (61b). The 6u contribution to equation (64) must
be used in determining 0 and T; u = 0 at x = 0 and T = 0 at x = R. Thus,

u may be eliminated from the system of equations. T and T' in equa-
tions (61b) and (61c) are replaced by equation (61a) for T' and the
expression

T = fx R [m(_2x + 2_) + Lu]dx (65)

for T obtained by integrating equation (61a). Thus, there are now three

integropartial differential equations in terms of v, w, 4, and modal func-

tions are only required for these three deformations. This procedure for

eliminating _ and T is applied to simpler forms of the equations of motion
in references 4, 8, and 9.

The equations of motion contain the same basic linear terms as those of

reference 1 as well as several additional nonlinear terms. A brief discussion

of the terms should suffice to familiarize the reader with the equations.

Beginning with equation (65), the tension is composed of the centrifugal force
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terms m(_2x + 2_9) and the applied load Lu which is often neglected for

helicopter applications. The 2m_ and Lu terms are underlined because they

appear as nonlinear terms in the bending equations (_v and 6w) through the

centrifugal coupling terms (Tv')' and (Tw')' The bracketed terms ({ }") in

the bending equations are bending moments. The

_V

terms (in the _w

IU V'2 W'2"_ COS (@+$)-EAeA ' + T + --2--]sin(@+¢)

equation) contain T" as do

r^ 2 cosC@+_) + 2ggcos 8]'
-me _ Xsi n(O+_) sln oJ

and physically they show that the bending moment due to tension is propor-

tional to e - eA, the distance from the mass centroid axis to the tension

..,,sin @
axis. The -EB2*@'_ 'c°ssin@@ and ;£C 1 _ cos @ terms represent special twist and

warp effect terms. The last terms in the brackets are the conventional bend-

ing moment terms modified in the sense that the cross section is inclined at

the angle @ + ¢. The coupling of ¢ with v" and w" forms the counterpart

terms of the product of curvature terms in the torsion equation identified by

Mil' et aZ. (ref. 5). To help identify them, these terms are listed sepa-

rately below. Rearranging the terms with trigonometric substitutions shows

that the structural coupling terms are proportional to the difference of the

flap and lead-lag bending stiffness:

I (EI z -EIy,)sin ¢)w"_"

1 I

6v: [EI z, - (EI z, - EIy,)sin2(@ + ¢)]v" +_ , 2(@ +

6w: {i (Elz ' -Elyv)sin 2(@+_)vV'+ [Ely,+ (El z, -Elyv)sin2(@ +_)]w''l vv

Iv 1 (w"2- v"2)sin 2@]_: (EI z, - EIy,) "w" cos 28+_

Consider now the remaining terms in the _v equation. The Coriolis

term 2m_6 is the counterpart to the -2m_9 in the 6u equation. This term

combines with the nonlinear part of (Tv')' to produce Coriolis (gyroscopic)

coupling with (Tw')' in the _w equation. With modal functions, these terms

form an antisymmetric gyroscopic matrix Cref. 8). The acceleration terms m9

and -me_ sin @ are produced by translational and rotational accelerations of

the cross section, respectively. The offset Coriolis term,

-2me_(9' cos@+ *' sin @), represents the longitudinal velocity of the cross-

section mass centroid due to rotation of the cross section during bending.

This term also combines with -{me[_2x cos(@ + _) + 2_ cos @]}' to give an

antisymmetric gyroscopic counterpart and a symmetric stiffness counterpart to

the -{me[_2x sin(@ + _) + 2_9 sin @]}' term in the 6w equation. The
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-m_2[v + e cos(@+ 0)] term is a lateral centrifugal loading due to offset

from the elastic axis which passes through the center of rotation. Finally,

-2m_Bpc_ is a Coriolis term from negative longitudinal velocity due to flap

bendihg in the presence of precone. It is antisymmetric with 2m_Bpc) of the
6w equation. The only terms not yet discussed in the 6w equation are the
accelerations m_ and me_ cos e which are identical in origin to their

counterpart terms in the _v equation and the negative centrifugal force due

to precone, -m_28pc x.

The first term in the torsion equation is the tension-torsion coupling

term, which arises from the tendency of a centrifugal force to untwist a pre-

twisted blade. The terms involving BI* and B2* are special twist-effect
terms, which are included in the analysis of reference I. The terms

-EAeA ' + T + (w" cos O - v" sin O)

and me_2x(w ' cos @ - v' sin O) are approximately -TeAw" and T'ew' for zero

@ and thus create a twisting moment due to tension acting on a deflected beam
at a point offset from the elastic axis. The well-known St. Venant torsion

rigidity term is -(GJ_')' The [ECI_" + ECI*(W" cos @ - v" sin @)]" terms

arise from the longitudinal stress doing work through the warp displacement
due to torsion and bending, respectively. The next terms were identified in a

more simplified analysis by Mil' (ref. S). These terms have been shown to be

important for rotor blade stability (ref. 8). The torsion inertia mkm2_, and

the "tennis racquet" terms m_2¢(k_2 - k_l)COS 2@ and -m_2(k_ - k_ )cos e sin0,
are well-known terms that ten_ to untwist (or, 2 lequivalently, stiffen) the
rotating blade. The remaining acceleration and centrifugal terms create
twisting moments because they are offset from the elastic axis.

These equations in modal form, when linearized with respect to equilib-

rium for Lu = Lv = Lw = M_ = 0, have symmetric stiffness and mass matrices
and an antisymmetric gyroscopic matrix. This property depends on the reten-
tion of only those terms from the substitution of the tension T, that are
consistent with the ordering scheme.
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PART II

DERIVATION OF EQUATIONS BY NEWTON'S SECOND LAW

In this section, the equations of motion are derived from Newtonian

mechanics. The derivation treats the forces and moments (elastic, inertial,

or aerodynamic) applied to the rotating beam. We first consider the equilib-

rium of a deformed blade in terms of its geometry and the resultant forces and

moments acting on it. Second, the inertial loadings on the blade are evalu-

ated in terms of the blade deformation. Finally, the resultant structural

moments and forces are determined in terms of the blade deformation based on

the stress-strain and strain-displacement relations. Combining these three

elements yields a set of integropartial differential equations for the longi-

tudinal (radial), flapping, lead-lag, and torsion deformations of the elastic

blade.

Equations of Structural Equilibrium

By considering a differential of length dx of the deformed beam, forces

and moments may be summed to establish the equations of equilibrium (see

fig. 4). For force equilibrium

-9.

+ _-_ dx - _ + p dx = 0

or

_V + P = 0 (66)
_x

For moment equilibrium

+ _-_ dx - M + dxi' × + _-_ d + dx = 0

or, taking the limit as dx ÷ O,

-).

_--M-M+ i' x _ + = 0 (67)
_x

where p, q are "external" forces and moments of inertial or aerodynamic

origin (aerodynamic forces and moments are taken as given); _ and _ are

equipollent internal structural forces and moments acting at the elastic axis.

Also note that moments have been summed about a point at x rather than at

x + dx. 3
3The use of dx rather than distance along the deformed blade might be

cause for concern. However, to a consistent approximation of neglecting

squares of slopes compared to one they are the same.
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The vector equations of equilibrium may be written in several component
forms. Of the various choices possible, the following seems as convenient as

any; namely, equations (66) and (67) are expressed in components relative to

the undeformed x, y, z axes. The moment equations, in scalar component form,
are

_Mx 3v _w
-+ Vz - Vy + = 03x 3-x -_ qx

8My Vz + Vx _w
3x - 3-x+ qY = 0

_Mz _v
--+ Vy Vx + = 0_x - _-f qz

(68a)

(68b)

(68c)

This is the same as equation (16) of reference l, except for a difference in

sign convention for My and qy.

Similarly, the force equations are

3Vx
_x + Px = 0 (69a)

_Vy + PY = 0 (69b)8x

8Vz
3x + Pz = 0 (69c)

and these may be integrated, noting that Vy, Vz, Vx are zero at the rotor
tip (x = R),

Vx = /xR Px dx (70a)

Vy = _xR py dx (70b)

Vz = _xR Pz dx (70c)

More precisely, the upper integration limit should be the deformed length of

the beam rather than the undeformed length R. However, the deformed length

is of order R(I + ¢xx) where Cxx (the longitudinal strain) may be neglected
for small rotations for example, (3w/3x) 2 << i.

Anticipating the need for four equilibrium equations for the four

deformations u, v, w, and ¢, the six equilibrium equations (68) and (69)
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(or (70)) are reduced to four, eliminating Vv and Vz in the process.
Substituting (68b,c) in (68a) and (69b,c) in "(68b,c) yields

+ +q + + + = 0
yf qz qx

_2MY + Pz Tx x + =0
_x 2 3x

_2Mz _ (V _v) _qz3x 2 Py _x x Tx + _x
m: 0

(71a)

(71b)

(71c)

The first force relation, equation (69a), remains

_Vx
_+ Px = 0_x

(71d)

Either equation (71d) or its integrated form, equation (70a), may be used to

eliminate Vx from the above equations.

There are now four equilibrium equations and seven unknowns, My, Mx, Mz,

Vx, v, w, and 4. The applied loads Px, Pv, Pz' qx, qY, qz due to inertial
and/or aerodynamic loadings are functions bf v, w, 4, and a longitudinal
radial deformation u in the x direction. The inertial relations are

developed in the next section, and the aerodynamic loadings are assumed to be
known. In addition, four force and moment deformation relations required to

express Mx, My, Mz, Vx in terms of u, v, w, _ are developed in a later
section. These latter relations are most easily developed in terms of the

moment and force components in the deformed body axis system, x', y', z'.
Hence, the equations of equilibrium will be developed for this axis system.

The necessary moment transformation between the deformed and undeformed
axis systems was given by equations (2) and (3); an identical transformation

holds for the force components Vx,, Vx, etc. Applying the transformation to
equations (71) yields

Mx,(l v'2 w'2)2 - My,[V'COS(0+4)+w'sin(0+4)]

}'+M z,[v' sin(0+4) -w' cos(@+4)] + V'qy

I'+v' Mx,V'+ - [My, COS(0+_+V'W')-Mz' sin(@+_+v'w')]

+W'qz+W' Mx,W'+ -T][My, sin(O+$) +M z, cos(e+$)] +qx : 0
(72a)
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{ )Mx,V' + I- [My, cos(e+$+v'w')-M z, sin(e+_+v'w')]

+(Vxw')' + Pz + qy' = 0 (72b)

Mx,w'+ - [My, sin(O+$) +M z, cos(O+$)] - (VxV')) -Py+qz' = 0 (72c)

where

Vx : fxR Px dx

Note that ( )' is substituted for 3/8x; this should cause no confusion with

the primes that denote the deformed body axis system. Equation (72a) may be

simplified further by first rewriting it as

,[, (, 4)] [w (,Mx' + '(Mx'v') '- x' + '(Mx'w'} ' - x'

[(4) ]+v' I- My, cos(O+$+v'w' +w' I- My, sin(O+$)

-{My,[V' cos(e+_) +w' sin(O+ ¢)] -M z,[v' s'in(O +_) -w' cos(e+_)]},

v_2 Mz, sin(e+$+v'w') +w' 1- Mz, cos(e+

V'qy w qz : 0+qx + + ' (73)

Consistent with the ordering scheme, the second and third terms may be
neglected compared to the first. Also, _ may be replaced by _, and the

squares and products of v' and w' may be ignored with respect to unity in
equations {72) and (73). Expanding derivatives and cancelling terms in equa-
tion (73) then gives

!

Mx, -My,[V" cos(O+¢) +w" sin(O+O)] +M z,[v'' sin(e+¢) -w" cos(e+¢)]

+ qx + V'qy + W'qz : 0 (74)

Equations (72b) and (72c) may be simplified further since the product of

torque Mx, and a bending slope v' or w' may be neglected compared to a

bending moment Mx, or Mz,. This is physically evident since a point load on
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the rotor blade will have a smaller associated moment arm (~ chord or
thickness) for producing torques than for producing bending moments (- radius).
This may be shown formally by integrating equations (72a-c), multiplying equa-
tion (72a) by v' or w', and subtracting the result from the equation (72b) or
(72c). This calculation eliminates the terms Mx,v' and Mx,W' in equa-
tions (72b) and (72c), respectively. The additional terms introduced by the
subtraction will be negligible consistent to second order provided that the
applied torque loading is small compared to the applied bending moments:

qx << qy, qz

Therefore, equations (72b) and (72c) may be written

[My, cos(O+ @) - Mz, sin(O + _)]" + (VxW')' + Pz + qy' = 0 (75)

[My, sin(e + ¢) + Mz, cos(O + _)]" - (Vxv')' - py + qz = 0 (76)

The linear approximations for sin(e + @) and cos(0 + @) should also be
used in equations (72):

cos(e + @) _ cos e - @ sin e /

sin(O+ _) _ sin e + @ cos O
(77)

In addition to equations (74)-(76) for moment equilibrium, an equation
for Vx, is needed if the tension changes significantly, as a function of the
rotor blade deformation, from the nominal centrifugal force value due to blade

rotation. The equations for Vx,, V_,, and Vz, are obtained by transforming
equations (69a-c) to the deformed axis system, giving

Vx'( I v'22 w_2")-VY '[v' cos(O+_)+w' sin(O+¢)]

+V z,[v' sin(e+@) -w' cos(B+¢)] =_xRpx dx (78a)

Vx,V'+ - [Vy, cos(B+_+v'w')-V z, sin(O+$+v'w')]= dx (78b)

Vx,w' + - [Yy, sin(O+$) +V z, cosfO+_)] = Pz dx (78c)

The required equation for Vx, is obtained by substituting Vy, and Vz, from
equations (78b) and (78c) into equation (78a). After neglecting higher-order

terms consistent to second order, Vx, becomes
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Vx:/xRpxdx÷v dx.w Rpz (79)

Equations (74)-(76) and (79) are the principal expressions for the equilibrium
of internal and external forces and moments acting on the blade. For rotor

blade applications, the second and third terms are negligible to second order;

thus, Vx, = Vx.

Inertial Loading

The present derivation of the inertia loads closely follows appendix B of

reference 1 except that nonlinear terms are retained in accordance with the

ordering scheme. The deformed position of a generic point of the rotor blade

will be expressed with respect to the rotating undeformed, nonpreconed Xp, y,
Z coordinate system. Note that heme (but not elsewhere in this report), u,

v, w, ¢, Px, Py, Pz, qx, qy, qz are measured with respect to a nonpreconed
rather than a preconed coordinate system; the nonpreconed coordinate system

corresponds to that of reference i. The deformations and loadings with

respect to the two coordinate systems are related by the following transforma-

tion, if the precone angle 8pc is small:

Upc = u + Bpcw

Vpc = V

Wpc = w

Cpc =

Xpc = x

Pxpc = Px + 8pcPz

qxpc = qx + 8pcqz

Pzpc = Pz - BpcPx

qZpc = qz - Bpcq x

PYpc = py; qYpc = qy

The inertia terms are derived using the nonpreconed variables. In the final

equations for the inertial loadings, however, equation (80) will be used to

transform the forces, moments, and deformations into preconed coordinate

system consistent with the remainder of this report.

(80)

As a result of equation (80), the position of a generic point with

respect to the Xp, y, Z axes (see eqs. (40)) becomes

X1 = X + U - v'(y 1 - V) - (W' + 8pc)(Zl - W - 8pcX ) - k@' (81a)

Yl = v + y cos(O + @) - g sin(O+ @) (81b)

Zl = w + _pc x + Yl sin(O+ @) + g cos(O+ @) (81c)

Substituting equations (81b) and (81c) into equation (81a) yields

xI =x+u- k@'-v'[qcos(B+@)- _sin(B+¢)]-(w' + Bpc) [n sin (0 + @) + _ cos(B+@)]
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The time derivatives are

Xl=6- [9' + (w' + 8pc)_][u cos(0+_)- _ sin(O+_)]

+(v'$-W')[n sin(e+¢) + _ cos(O+¢)] - X_'

Yl=fi- [_' +W'$+ (w' +8pc)¢+ (&'-v'$)¢][n cos(e+¢)-_ sin(e+¢)]

-X_' +([if'+ (w' +Spc)_]$+9'$+v'_-w'}[n sin(O+#) +_ cos(8+¢)]

(83a)

Yl :V - $[n sin(O+ _) + _ cos(O + ¢)] I

IYl 9- $2[n cos(e + ¢) - _ sin(e + @)] - $[n sin(8 + ¢) + _ cos(e + ¢)]
(85b)

zl =w + $[n cos(e + ¢)-_ sin(e + ¢)] I

Izl :{J- $2[n sin(e + ¢) + _ cos(e + ¢)] + ¢[n cos(e + ¢) - _ sin(e + ¢)]

(83c)

The components of acceleration in the 1, j, k coordinate system, including
the usual contributions due to rotation _, are (ref. 1)

ax = _1 - fl2xl - 2fly1

J
az : Zl

(84)

The inertial forces _I and moments _I may now be evaluated in a

D'Alembert sense using equations (81)-(84) and the following definitions

px I _ -ffAPaX dn d_

I
py _ -f_APay dn d_

pz I _ -ffAPaz dn d_

(85)

qxI - _AP[ay(Zl - w) - az(y I - v)]dn d_

I w)dn d_qy - -IIA oa x(zl -

qz I = IIAPax(Yl - v)dn dE

Note that the present sign convention for qv I is different from reference i.

Equations (81)-(84) are substituted into equations (85) and (86), and higher
order terms are discarded. In reference i, it is assumed that
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cos(O + ¢) --= cos 0

sin(0 + _) -" sin 0

and all products in u, v, w, _ and their derivatives are ignored - that is,

equations (85) and (86) are linearized. This is not the same as simply

assuming _, v', etc., are small and using the small-angle approximation.

Here we apply a consistent set of simplifying approximations to equations (8S)

and (86). In ordering the various terms it is noted that (e/R) 2, (c/R) 2,

(t/R) 2 are small compared to one; hence, products o£ these quantities with

themselves or with v/R, w/R or _ can be neglected with respect to unity.
The order of magnitude estimates ( )' - I/R, (.) - fl are also used.

The evaluation of _I and _I from equations (85) and (86) and the

transformation from nonpreconed to preconed axes leads to the same inertial

terms that were developed in Part I. To second order, the results for the
nonpreconed variables are

px I : m(_2x + 2_¢)

I _2 (O + _)]py = -m{_ - e_ sin 0 - [v + e cos

+2fl[fl - e(9' cos 0 + O' sin 0)]}

pz I = =m(_ + e_ cos O)

(87)

qx I : m{e[(V-_Zv)sin(O +_) -(_ cos(0+_) +2tiff sin 0]

_km2_ _2(k2m2 2- -kml)cos(0+_)sin(0+_)

2
-2fl[Ckm22 - km21)¢ ' sin 0 cos 0 + O' (kmZ2 sin 2 O + kml

qyI = me[fl2x sin(0 + _) + 2fl¢ sin 0]

qz I = -me[_2x cos(0 + _) + 2_¢ cos 0]

cos 2 o) ] } (88)

Everywhere in equations (87) and (88), the usual linearized expressions for

sin(0 + _), cos(0 + _) should be used. Additional simplifications will be

made when these terms are compared to the elastic forces. For example, the

third=order terms of qx I + V'qy I + W'qz I are neglected except the double
underlined ones.

The correspondence between the present inertial forces and those of

Part I is shown by

qx I + v'qy I + W'qz I ++Z_ }
pz I + (qyI), __+ Z--w _ Z--w''

pyI _ (qzI), ++ Z--v = iv''

(89)
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Force-Deformation and Moment-Deformation Relations

The force and moment resultants are expressed in terms of the

deformations by resolving the distributed stresses into a resultant force and

moment system acting at the elastic axis. These resultants are essentially

the same as those obtained in Part I. Here, they are derived from a physical

point of view, whereas in the variational method they arise as mathematical

groups of terms. The resultant axial force is

V x, = f_AOXX dn de = ffAEexx dn dg

= EA u' +____+w -_--+kA2O'_ ' - eA[v" cos(O+_) +w" sin(0+#)]

The bending moments are

(90)

My, - ffA_OXX dn d_ = fJ'AE_exx dn d_

= EIy,[V" sin(0 + _) -w" cos(0 + _)] -ECI*¢" (91)

Mz, = -,j'fAqOXX dn dg = ,ffAEqV.xx dR d_

(u v'2 _) [v" (0+ sin(0+_)]= -EAe A ' +T+ - EB2*O' _' +EI z, cos _) +w" (92)

The twisting moment with respect to the x' axis is more complicated because

of the interaction of longitudinal and shear strains with the warp. Brunelle

(ref. 12) has identified the twisting moment by use of the variational method.

For the assumptions of the present work, his equation takes on a slightly

different form

ffA - +x( °xn ÷

= Sx' (Px') ' (93)

where

S x, = f_A[(n - X_)Ox_ (_ + Xn)Oxn]dn d_ = GJ_' /

/Px' - -_AX°XX dq d_ = EClO" + ECl*(W" cos 0 - v" sin 0)

(94)
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The contribution of the Px, term is clearly related to the work done by the

longitudinal stress acting through the virtual displacement in the longitudi-

nal direction due to warp. Moreover, as shown in reference 1 (based on a more

detailed discussion in ref. 13), there is an additional twisting moment due to

longitudinal stress:

T x, = (O + ¢) 'ffA(n 2 + _2)gxx dn d_

(u=EAkA2(0+ _) ' ' +--_--+ +EBI*0'2_ ' - EB2*0'(v" cos 0+w" sin 0) (9S)

This expression represents the component of force due to longitudinal stress

normal to the elastic axis with moment arm /q2 + _2. The total resultant

twisting moment is now expressed by combining equations (93) and (95):

(uMx' = Tx' +Sx' - (Px')' =GJ_' +EAkA2(0+__) '_ ' +-_--+

+EBI*0'2¢ ' - EB2*0'(v" cos 0 + w" sin 0)

-[ECI#" + ECl*(W" cos 0 - v" sin 0)]' (96)

The double underlined terms may be neglected according to the ordering scheme.

However, as discussed above, these terms are important for configurations with
low torsion stiffness. The various section constants in the above resultants

are defined in Part I, equation (35).

Equations (90)-(96) give the desired force- and moment-deformation

relations. They can be simplified by making the usual small-angle assumptions:

cos(0 + _) = cos 0 - _ sin O

sin(0 + _) = sin O + _ cos 0

In general, no additional approximations can be made, although for special

blade cross sections, several of the blade section constants may reduce to

zero - for example, for a doubly symmetric cross section eA = B2* = 0.

Final Equations and Boundary Conditions

The four equations of equilibrium, the inertial loadings, and the force-

and moment-deformation relations may be combined to give the final equations

of motion in terms of the deformations u, v, w, _. That is, equations (87),

(88), transformed to the preconed axes, (90), (91), (92), and (96) are sub-

stituted into equations (74)-(76) and (79). The resulting equations are sim-

plified consistent to second order by discarding higher-order terms in
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accordance with the ordering scheme. The final equations are identical to

those obtained by the variational method in Part I, and are not repeated here.

As shown in Part I, the boundary conditions for the variational method

were obtained as a natural by-product of the derivation of the equations of

motion, without requiring any independent consideration. For the Newtonian

method, special attention must be given to the boundary conditions, which are

of two types. The geometric conditions, normally applied at x = 0, are

simply

u = v = w = ¢ = v' = w' = 0 for x = 0 (97)

The natural conditions for the free end
or, since Vx = Vx, to second order,

x = R may be expressed as

M x, = My, = M z, = V x, = Vy = V z = 0 for x = R (98)

In addition, the work done by the longitudinal stresses acting through the

warp displacements must be zero at x = R. Thus

Px' = 0 for x = R (99)

Restrained warping at the hub implies that

@' = 0 for x = 0 (I00)

That is, there can be no warp displacement at x = 0. These conditions reduce

to the standard cantilever boundary conditions when warp effects (C1 and CI* )

are neglected. Recall from equations (68) and (69) that the shears Vy, V z

may be expressed in terms of Vx, , My,, Mz, , qy, and qz" When x = R, Vx, = 0

and the shears may be written {for qx << qy, qz)

, , }

Vy = -My, sin(0+ _) -M z, cos{0 +_) - qz = 0

)

V z = _, cos(O + @) -M z, sin(O+_) +qy = 0

for x = R (I01)

The boundary conditions (97)-(i01), when expressed in terms of the deforma-

tions u, v, w, and @, are equivalent to equation (64) - the boundary

conditions as derived from the variational method.

CONCLUDING REMARKS

Nonlinear equations of motion for the elastic bending and torsion of

twisted nonuniform rotor blades have been derived by two complementary methods.

When deriving a system of nonlinear equations it is advantageous to check the

resulting equations in this manner. The use of the Newtonian method alone,

for example, may give rise to nonsymmetric structural or inertial operators.

However, with the variational method, a consistent set of equations will
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automatically result if the energy expressions are accurate to the desired

order of magnitude. With the Newtonian method, the boundary conditions must

be established on the basis of physical reasoning. The variational method

leads to the appropriate boundary conditions as a by-product of the derivation
of the equations of motion. The two methods are complementary inqthat the

Newtonian method provides clearer physical understanding of the force compo-

nents and reactions, while the variational method is more precise mathemati-

cally - that is, there is less chance of inadvertently leaving out important
terms or including unnecessary ones.

In the resulting system of equations, several important nonlinear terms

are identified. First, the centrifugal term proportional to lead-lag velocity

in the tension equation combines with the centrifugal coupling terms in the

bending equations to produce nonlinear flap-lag inertial terms. The longitu-

dinal velocity in the lead-lag equation, a Coriolis term, is expressed in

terms of bending quantities as another nonlinear flap-lag inertial term.

These terms, when linearized with respect to equilibrium, are antisymmetric

gyroscopic terms and significantly influence hingeless rotor stability and

forced response phenomena. Second, the nonlinear bending-torsion coupling

term in the torsion equation is written in a form similar to the one identi-

fied by Mil' in reference 5. The twisting moment arises from bending in two

directions and is proportional to the difference in bending stiffness and the

product of curvatures. The counterpart nonlinear bending-torsion coupling

terms in the bending equations appear in the form of a change in elastic

coupling due to elastic twist. These bending-torsion coupling terms are also

important in determining the aeroelastic stability of hingeless rotors.

References 8 and 9 give a preliminary discussion of the application of the

present equations to a stability analysis of uniform blades.

The effect of warp interacting with the longitudinal stress is included

for completeness, although it can be neglected without essential loss of

accuracy for most applications involving closed cross sections.

An important step in the derivation of the equation is the development of

a nonlinear strain-displacement relation based on an exact coordinate trans-

formation from the undeformed system to the deformed system. This general

relation between strain and displacement may be useful for extending the equa-

tions to include higher-order terms than these considered herein.

Future improvements in the equations should include the incorporation of

torque offset, root-pitching motion with elastic restraint, droop, pre-lag,

and other parameters (discussed in ref. 9) to describe more completely the

behavior of hingeless rotor blades. With the addition of aerodynamic forces,

the equations of motion may be used for stability analyses and frequency

response studies of hingeless helicopter rotor blades.

Ames Research Center

National Aeronautics and Space Administration
and

U. S. Army Air Mobility R_D Laboratory
Moffett Field, California 94035, Aug. 20, 1974
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APPENDIX

DEFORMED BLADE COORDINATE SYSTEM TRANSFORMATION

D. A. Peters

In the section devoted to the development of the strain-displacement

relations, the transformation [T], given to second order in equations (I), is

of central importance. Here [T] is determined in terms of u, v, w, and

based upon the development of reference 14. [_] is the transformation between
the undeformed blade coordinate system _i, 3, k, and the deformed blade system

i', j' , k':

(AI)

In terms of Euler angles (fig. 5), [T] may be expressed as

[T] =

cos 8 cos _ cos 8 sin

-sin @ sin 8 cos

-cos @ sin

-cos 8 sin B cos

sin @ sin

sin 8

cos 8 cos _ cos B sin @

-sin _ sin 8 sin @

-sin @ cos

-sin _ sin 8 cos

cos B cos @

(A2)

The Euler angles are taken in the order _, 8, 8. They uniquely define the

orientation of the blade principal axes with respect to the undeformed coor-

dinate system. Rotor blade equations are normally written in terms of v, w,

and 4, rather than _, B, @. As shown in figure 5, the Euler angles ¢ and B

can be easily expressed in terms of

[T] =

v and w, yielding

l- V+2 - w +2 V + w+

-[sin _w+/l-v+2-w+2 [cos@-/l - v+2 - w +2 sin b-¢_- w +2

+cos @-v+]//l - w +2 -sin @'v+w+]//i - w +2

-[COS @W+/I - V +2 - W +2

+sin_v+]//l_ w+2

-[sin _/1-v +2-w +2

+cos +2

cos

(A3]
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Z

dr

w' dr

I

v dr

Figure 5.- Deformation and Euler angles.

The determination of the third Euler angle _, however, requires the formula-

tion and solution of a differential equation for IT]. Consider the small

rotation _dr of the blade-fixed coordinate system, which occurs as r goes

through the increment dr. [To second order there is no distinction between

distance along the deformed dr and undeformed dx elastic axes; hence,

dr = dx.) The vector components of the rate of rotation _ can be identified

as the torsional rotation rate, _i = (0 + _)+,I and the bending curvature _j

and _k as shown in figure 6. This infinitesimal rotation can be written in

terms of the transformation matrix IT], giving the differential equation

INote that in this purely geometric exercise there is no distinction

between pretwist @ and elastic twist _.
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[T] + = -Wk 0

_j -wi

[T]

which can be solved by applying the identity [T]-I = [T]T:

-mk 0 =

_j -_i

[T]+ [T]T (A4)

Formally, there are nine equations; however, there are only three independent

ones due to the usual orthonormality conditions on the transformation matrix.

Substitution of equation (A3) into (A4), eliminating mj and _k and identi-
fying mi = (8 + _)+, yields the exact solution

-- I r v++w + dr@ = @ + @ - " /1-v +2-w +2 _0r W+2W++V + dr' (i - w+2)/1 - V+2 - w+2
(AS)

where the pretwist and twist are both taken to be zero at the root. To

second order, equation (AS) may be written

[T] =

f0x@ = @ + _ - V"W' dx

Thus, from (A6) and (A3), [T] may be written to second order as

1 v'2 w'2 v w w t
2 2

-[V' cos(B+¢) +w' sin(@+¢)]

[v' sin(@ +¢) -w' cos(@+ @)]

COS (e+@+v'w') l-

-sinCO+$+v'w') (I -_)

sin(0+$) (1-_)

cos (e+$) (i - w'T) ]

where

= @ - f0Xv"w ' dx

Equation (A7) is the desired result, compare equations (I).

[A6)

(A7)
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It is also useful to record here expressions for mj and _k, which can be
obtained directly from (A3) and (A4):

_k-

-cos Ow*+/l- v+2 - w*2 + sin [(v÷w+w++ + v*+ - V*+W +2

/i - V+2 - W+2 /I - W+2

COS _(V+W+W ++ + V ++ - V++W +2) + sin _w++/1 - V +2 - w +2

/1 - V +2 - W+2 /1 - w +2

(A8)

To second order, these may be simplified as

wj = v" sin(O + _) - w" cos(O + _)l

J_k = v" cos(0 + ¢) + w" sin(0 + _)

(Ag)
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