Discussion of Flap-Lag Dynamics of Hingeless Rotor Blades

Today’s discussion is on how one can make practical use of the model (and slightly
extended versions thereof) we developed in class during the past three lectures. The
figures in this handout are lifted from [1], [2], and [3]. A simplified version of our model is
developed in [1], and many results both for elastically coupled and uncoupled blades are
presented. The main conclusion is that elastic coupling, as defined by the parameter R, has
a strong influence. Experimental verification of the model came with a surprise. Nonlinear
aerodynamics had a much more significant effect than anyone had thought: Because of
the model scale, the Reynolds number was low enough that static stall actually induced
an instability [2]. This is not something we worry about in full-scale aircraft. Finally,
the model was extended in [3] to allow much larger elastic coupling by tilting the spring-
restrained hinges at angles up to 45° while leaving the blade at flat-pitch orientation. This
large elastic coupling, in conjunction with negative pitch-lag coupling (pitch decreases as
blade leads), allowed the lead-lag damping to be made orders of magnitude larger than
before. Unfortunately, no combination of parameters was found that would eliminate the
instability for the blade and, simultaneously, eliminate ground/air resonance instabilities
for a coupled rotor-fuselage system. Additional work has been done on this by various
researchers, including Prof. Gandhi at Penn. State.
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LINEAR FLAP-LAG DYNAMICS OF HINGELESS HELICOPTER ROTOR BLADES 5

= p?, W = &2, = = /8  (11)

immediately follow since c;, > O,
essary (but not sufficient) condition
1wt 1 < p? < 2. This indicates that
»tors without hinge offset or 8:(p =
ble. This does not mean that de-
coupling is not present, but only
be sufficient to cause instability.
. flap frequency () the minimum
-al stability, Omin, occurs when w; =
t of Llock number.

= [P2D/2(P — 1)(2 — P)] (12)

minimum can be obtained for p =
will be referred to as 6* and is de-
profile drag coefficient and induced
. Fe—a = 2=n

2V cao/m, P = @ = V' 4/, (13)

specifies the lowest possible pitch
r hingeless rotor blade can become
»-lag oscillations.

1 is easily incorporated by modify-
1ping coefficient C;.

s [26"" + 2, 25 4 Ao] (14)
a v/8
respectively the profile drag damp-
iping, and induced drag damping.
sters 1/,9; structural damping (7.
order of 3 times the profile drag
1d significantly increase 6*.

5 (1/2% CRITICAL DAMPING)
=1.0
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Fi1GURE 4. Stability boundaries for basic rigid blade equations.

Figure 3 illustrates the relationship between inplane
damping and 8* given by Eq. (13) including the effects
of structural damping and various approximations for
the induced inflow parameter 4.

A summary plot giving basic flap-lag stability
boundaries as a function of the flap and lead-lag fre-
quencies is given in Fig. 4. For a particular collective
pitch, the region of instability lies within the respective
contour. These results illustrate the occurrence of min
for a given value of p when &, = p and * when p =

Case II, Effect of Pre-cone, No Flastic Coupling

With pre-cone, the perturbation equations are iden-
tical to those used previously although the coning now
becomes

Bo = [v/81(6 — A)/p? + (P2 — 1)Br/P> (15)

Routh’s criteria yields the following expression for the
collective pitch for neutral stability.
P2

— 2 =
@ _A) 2(P — 12 — P <




I~ TAR FLAP-LAG DYNAMICS OF HINGELESS HELICOPTER ROTOR BLADES 7

astic Coupling

nogeneous equations for this case,
ndix are

—sF; + F, VaV-1
s? + Cis + C,] {A;‘ =0 2

1g terms F; and Cgz produce cross
-lag moments proportional to lead-
ons respectively. Previous studies
ected these terms in simplified
analyses. However, as will be seen
pronounced effects on the stability
cteristics of rotor blade flap-lag
tch angles F; and Cg are given by

R(&:2 — 26 (23)

roportional to pitch angle and is
lent by virture of the nonrotating
:quencies &g, wg, and the variable
me .

1g of actual hingeless rotor blades
barticular design configuration and
ribution of flexibility radially in-
of the pitch bearing. As explained
s characteristic is introduced in the
s by dividing the flap and lead-lag
'wo separate spring systems, one
er outboard of the pitch axis. The
pling is denoted by R and is pro-
ction of flexibility present in the
ward of the hinge axis.

sults for the locus of roots of the
own in Fig. 6. In comparison with
that the degree of elastic coupling
1t in determining whether the ef-
or destabilizing. For full elastic
e effect is generally highly stabiliz-
f lead-lag frequencies considered.
, the elastic coupling allows the
ergv from the weakly damped in-
dc to the well damped flapping
e inherently low aerodynamic and
amping can easily be augmented
er of magnitude. This is significant
he inplane degrece of freedom is not
abilities as its low inherent damp-

1.98
R=1.0

1.96
Pp=./4/3
y=50
1.a4 [— Cdg = 0.01
O = 0.05, AapprOX
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FiGUureE 6. Locus of lead-lag mode roots, Case III, rigid blade
equations with variable elastic coupling.

(@; < 1) rotor blades are only stabilized by elastic
coupling. Further evidence is provided by Fig. 7 which
presents stability boundaries for wvariable elastic cou-
pling as a function of inplane frequency with p = V' 4/;.
This figure clearly shows that for stiff inplane blades
there exists a particular value of R for which instability
can occur at moderately low pitch angles but that in-
creased elastic coupling is strongly stabilizing. Further-
more, this minimum pitch angle is equal to 6* given by
Eaqa. (13) for the basic flap-lag equations.
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parison of approximations for induced inflow-

/2. This approximation eliminates the
amic lead moment in the lead-lag cou-
1t Cga. i

ful but morc¢ accurate approximation for
1flowwv parameter can be derived as fol-
wct expression for A is based on non-
ed inflow given by blade-element mo-
yv. Fora = 2x

7woQR/S[NV'1 + 1660t/ 7o — 1] 6)

mated by the value at £ = 3/,4, the follow-
r A results

- = 7wo/6[V1 + 120/ 70 — 1] @

of these two approximate expressions is
. the exact value in Fig. 1. The effect of
to be important and therefore limits the
L = 6/2 for gquantitative results. A, prox;,
ite accurate and will be used for the re-
low
xal. .ation of flap-lag stability and dy-
v be carried out for several specific cases.
ximate rigid blade equations these in-
flap-lag coupling, 2) the effects of pre-
.ble elastic coupling, and 4) pitch-lag
5, the results using multimode elastic
s are presented and compared with pre-
1d finally, the effects of elastic coupling
sonse are examined.

RIGID BLADE STABILITY
-cone or Flastic Coupling

v of the basic flap-lag stability charac-
rigid hinged blade is afforded by Fig. 2.

Necutral stability occurs when Routh’s discriminant
vanishes, i.e.,

F = D(BC — AD) — B2E = O @

After some manipulation the following cexpression for
the collective pitch for neutral stability is obtained.

A £
J— 2 —
4 ) 2P — DE — P <
(D + Ae]l[P — W ]2
D 10
2 + T P>+ oAe o & b anf O
1.a0
ac=|.4{
»=5.0 =
o =.05, AppprOx +44:20
p=v4s3
Cq =.0I
do Jiis
LEAD-LAG | -6
MODE —— s
- Ji1.1a
w72
1.4 FLAP .12
MODE
1.2 |
“e V1D 1'-1o
H1.o9
—
o.9o J .oz
—_
.s0
=0 . .2 .3 .4 .5+rad B
——y

L - L 1 “/\_n__n_j
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FicurEge 2. Locus of roots for increasing pitch angle, Case I, basic
rigid blade equations.
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Particular care was required to insure that centrifugal
and Coriolis forces which produce the destabilizing
flap-lag coupling were retained in the derivation. These
forces arise from blade radial displacements and tension
variations resulting from perturbation deflections and
velocities respectively. These effects are normally not
included in elastic rotor blade equations. In addition,
they do not have direct counterparts in the approxi-
mate rigid blade equations since radial displacements
and tension do not appear explicitly in those equations.

Results obtained using the elastic blade modal equa-
tions are presented in Fig. 9. The first inplane mode
damping is relatively high as a result of the elastic
coupling. Because the principle elastic axes of the rotor
blade rotate through the pitch angle 6 for the entire
length of the blade, the elastic coupling is equivalent
to Z = 1.0 for the rigid blade. The effect of number of the
modes retained in the equations is relatively slight as
far as the first inplane mode damping is concerned. A

single flap and lead-lag mode are denoted by 2 = 1, two

of each mode are included for n = 2. To illustrate the
importance of the proper derivation of the elastic equa-
tions, the damping is also shown with the radial dis-
placement and tension perturbations neglected. This
gives a very unconservative result since the destabiliz-
ing flap-lag terms are not present.

A comparison with the rigid blade damping (& =
1.0) shows the approximate eguations to be quite ac-

PITCH ANGLE , 6, rad

't

-3 -3 -2 - o . .2 .3 4 o . .2 .3 .4 .5
PITCH—- LAG KINEMATIC COUPLING, 9:

Ficure 8. Stability boundaries for rigid blade equations, Case
IV, kinematic pitch-lag coupling and wvariable elastic coupling,
p = \V4/3, v = 5.0, cayg = 0.01, o = 0.05.
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R. A. ORMISTON AND W. G. BOUSMAN

8.c 8.2
LEAD-LAG MOOE
TP OO
8.0 - so}
€0.(12), R=0.96
7.8 LEAD-LAG MODE el 2 100
o .10 20 30
6, deg
7.6
7.4
7.2 |-
EQ.(12), R=0.08

L ;
~20 o 20 a0 €0 80 100
BLADE PITCH, 8, deg

ure 6. Nonrotating flap and lead-lag natural fre-
ncies for weak (R = 0.08) and strong (R = 0.96,
it) elastically coupled configurations.

given in Fig. 6. The uncoupled frequencies
and wgz; are determined by the maximum and
vimum measured values, respectively, which
> define the zero reference for the effective

ict=ral pitch angle 6,. This angle differs from

ae. vdynamic pitch angle measured at the 3/4
ius by —3.2° for the weak elastically coupled
figuration because of blade spar twist. For
strong elastically coupled configuration the

odynamic and structural pitch angles are co-
B - — —

JOURNAL OF THE AMERICAN HELICOP

The coupled rotating natural freque
Eq. 1 for the values of R round above
for reference purposes in Fig. 7. At
angle, the flap and lead-lag modes ar
The degree of coupling for nonzero p
depends on R. These results show th:
resonance with 1/rev excitation occu
speeds near 475 rpm and that couplin
flap and lead-lag modes is strongest
425 rpm. Determination of lead-lag ¢
difficult at these speeds because of r«
and beating effects.

Steady-State Measuremenits

The equilibrium deflections of the kt
were measured to determine the stea
stall characteristics of the rotor. Th
ments were used to calculate effectiv
values of the blade lift and drag coeff
cq vs. angle of attack by assuming a 1
constant downwash angle ¢;, neglectir
and using a tip loss factor B = 0.97. '
efficients from the measured data ext
gradual stall, with a low value of max
coefficient, high profile drag, and a r=z
rise with angle of attack, all characte
havior for low Reynolds numbers. Vi:
servations of stroboscopically illumir
indicated that stall progressed radial:
as pitch angle increased, and the enti:
stalled at 6 = 17°. '

Lead-Lag Mode Transient Responses

Examples of the response of the lea

.8

4 UNCOUPLED, £
= .6 —— R=0.96, 8 =14
el ——— R=0.08, 8 =14
=1

w 1.4




Figure 10. Dimensionless lead-lag damping; 6 — 10.4°,
R = 0.96.

rations. Flagged symbols denote data reduced
by the Peak Plot method. The remaining data
were manually reduced. Three different analytical
results are also included; the uncoupled single
degree of freedom lead-lag mode damping, linear
flap-lag theory, and flap-lag theory with stall.
Figure 9 clearly confirms the destabilizing effect
of aerodynamic and inertial flap-lag coupling

for the weak elastically coupled configuration.
This is shown by the pronounced reduction in
damping near 400 rpm compared with the un-
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Figure 11. Dimensionless lead-lag damping at 300 rpm;
R = 0.08, w, = 1.62, p = 1.28.

LEAD
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b
b

1
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BLADE

Figure 12. Dimensionless 1
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Figure 12. Dimensionless lead-lag damping at 400 rpm;

R = 0.08, @, = 1.21, p = 1.17..

coupled damping. The effects of stall are also
evident in Fig. 9. At low rpm (stiff inplane case)
the measured damping is in good agreement with
the stall theory which predicted increased damp-
ing compared to linear theory. A larger increase
in damping was measured for high rpm (soft
inplane case) and although stall theory also shows
an increased effect of stall, the correlation is
not as good. Measurements near 475 rpm are
unreliable because of w,, 1/rev resonance dis-
cussed earlier. The discrepancy at the highest
rpm is not considered to be due to stall since

it was also present at lower pitch angles. In
addition, this discrepancy probably cannot be
accounted for by errors in the data reduction
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experimental measurements below stall.

3. The aerodynamic and inertial flap-lag cou-
pling terms of the linear theory were confirmed
insofar as the model configuration with small
elastic coupling exhibited the predicted reduction
in lead-lag mode damping at rotor speeds where
lead-lag and flap mode frequencies were nearly
equal.

4. Each of the four nonlinear airfoil aerody-
namic parameters c¢,;,, €445 €., and ¢4 used in
linear flap-lag theory were found to contribute
significantly to the total effect of stall. The drag
curve slope c¢,, is usually destabilizing, the drag
rise Ca, is stabilizing, and the lift curve slope

¢, __mav be either stabilizing or destabilizing
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quency of 0.7, from Reference 8.

sophisticated analysis becomes necessary. A firsct
step in this direction is to consider an elastic
rotor blade with a pitch bearing attached to a
rigid hub. Such a configuration may include blade
torsional flexibility, pitch—1ink flexibility, pre—
cone, droop, sweep, torque offset, hub offset,
twist, and chordwise offsets of the blade mass cen—

ter, tension axis, elastic axis, and aerodynamic
center. In this section we will consider the
effects of some — but not all — of these parameters

on the stability and lead—lag damping of an iso-—
lated rotor blade. It should be noted that even
this configuration is not the most general one that
may be conceived. One may also consider a somewhat
more complex configuration having bending flexibil-—
ity inboard of the pitch bearing, or a completely
bearingless configuration without a pitch bearing
at all. In the latter case, the mechanical and
structural details of the pitch—changing mechanism
play a significant role in determining the aero-—
elastic properties of the system.

For the purposes of this paper, only the sim-—
pPle hingeless rotor blade configuration with a
pitch bearing rigidly attached to the hub will be
considered. The development of the mathematical
model of this system is described in detail in
references 9 and 10. Brieflv. the seneral partial




