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A eeneral framework for modeling composite mtor blades i spmnted.  This framework extracts from a three-dimensional - - .  
elasticity formulation two sets of analyses: one over the cross section, providing elastic constants that can be used in a suitable 
set of beam equations, and the other the beam equations themselves. The em-sectional analysis, dong with the accompany- 
ing enpineeri& sonware (VARS), pmvides an accurate bcm representation of the hlade structure, allowing a designer bl take 
advantaee of romncsite materiah when desieninc mtor hlades. VARS is ahle to take into ronsideration anisotmpic, nOnIlOm0- ~~- ~~~-~~~~ -- ~~ ~~ . - - 
geneous materials and to represent general cross-sectional geometries, requiring neither the costly use of 3-D fmite element dis- 
cretization nor the IDS of accuracy inherent in any simplified representation of the cross section. Results obtained fmm analy- 
sis of a variety of composite beam are presented. The generality of the method and accuracy of the results should increase 
confidence a t  the design stage that the structure will perform as expeeted and, consequently, should lower costs from experi- 
mental tests and further adjustments. 

Introduction 

Due to their geometries, mtor blades have one dimension that is much 
larger than the other two. Such flexible structures can often be treated as a 
beam, a one-dimensional (l-D) body. This idealization of the actual struc- 
hue leads to a much simpler mathematical formulation than would be o b  
tained if complete three-dimensional (3-D) elasticity were used to model 
it (see Fig. 1). To do so, one has to fmd a way to capture the behavior as- 
sociated with the two dimensions that are king eliminated hy correctly 
accounting lur gcomcy and malcrial dismhulion. Thc process that lakes 
the onginal3-U k)dy and rcprescnlz it as a I-D one is called 'dimmsiondl 
reduction." 

In this present work, fmiteelement-based nonhomogeneous anisotro 
phic initially c w e d  and hvisted beam theory was formulated k0m geC- 
metric nonlinear, 3-D elasticity. The kinematics were derived for arbitrary 
warping (which includes out-of-plane as well as in-plane deformations) 
based upon the concept of decomposition of the rotation tensor. The 3-D 
strain energy based on this strain field is dimensionally reduced via the 
variational-asymptotical method (Ref. 1). The 3-D warping is calculated in 
terms of the l-D strain measures and the functions in the strain energy be- 
come independent of the cross-sectional variables. The resulting equations 
govern both sectional and global deformation, as well as provide the 3-0 
displacement and strain fields in terms of beam deformation quantities. 
The formulation also naturally leads to geometrically exact, l-D kinemat- 
ical and intrinsic equilibrium equations for the beam deformation (Ref. 2). 

The current theory provides a very general framework of modeling ini- 
tially curved and twisted beams, allowing one to deal with diEerent effects 
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without the use of ordering schemes or other ad hoc restrictions. This the- 
ory is not limited to the low-order theory found in classical approaches. 
Moreover, it is not limited to the usual Saint-Venant approach for the inte- 
rior problem associated with beams. Rather, the asymptotical method al- 
lows for the approximation of the cross-sectional behavior in terms of the 
eigenfunctions of a certain Sm-Liouville problem associated with the 
cmss section. These eigenfunctions contain all the necessary information 
about the nonhomogeneities Ulmughout the cross section of the beam and 
thus possess the appropriate discontinuities in the derivatives of displace- 
ment. The new "degrees of freedom" associated with these eigcnfunctions 
for the beam cross section allow for treatment of transverse shear defor- 
mation and restrained warping in a systematic way (Ref. 8). The approach 
is based on the idenliiication of small parameters in the structure, and the 
cross section may have arbitrary geomeuy (solid or thin-walled, closed or 
open). The idea is to be ahle to model a complex structure (e.g.. an actual 
airfoil-shaped cross section, with all its components and different materi- 
als) rather than a simplified version of it. 

Fig. 2 represents the schematic of a unified pmcess for analyzing corn 
posite beams and the shaded blocks represent the extension of the current 
work. 

CrossSectional Analysis 

In constructing a 1-D k a m  theory from 3-Delaslicity, the swain energy 
stored in a 3-D body if represented by the strain energy which would be 
stored in an imaginary 1-D body. This modeling process cannot be per- 
formed in an exact manner. However, due to the interest of working with 
a simple 1-D theory, researchers have turned to asymptotical methods in 
order to reduce the dimension of the model for bodies which contain one 
or more small parameters. 

Thus, in what follows the 3-D beam problem is replaced by an approx- 
imare I-D one in which the swain energy per unit length will be a function 
only ofxlsx  (length along a reference liner within an undeformed beam; 
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(a) 3-D discretization 
(m 104N d0.f. - once) 

d.0.f. - several times 

\ 

(b) 'bo-step modeling prooess 

Fig. 1. Schematic of Ule discretization p m  for a mtor blade 
structure (N = number of nodes in a c m  section). 
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Fig. 2. Overview of beam analysis (shaded boxes reprerent the scope 
9f the present work). 

% and 5 denote lengths along lines orthogonal to the feference line r). 
This will be done with the aid of the variational-asymptotical formulation 
(Refs. 3,4). The kinematics of the beam are based on the general formula- 
tion of Danielson and Hodges (Ref. 5). Local mtation, as defmed therein, 
is taken to be of the order of the strain. Sine only geometrically nonlinear 
behavior is considered, the sUain can be treated as small relative to unity 

without imposing any explicit restrictions on the magnitudes of the dis- 
placement of the reference line or the section rotation. Subject only to 
these restrictions, all possible deformations of beams are taken into ac- 
count in the analysis. The theoretical development is only outlined herein 
and more detail can be found in Refs. 6 and 5. 

3-D Formulation 

As described in Refs. 7 and 8, we fmt derive the 3-D formulation, the 
solution of which shall be considered the exact solution of the beam prob 
lem. 

Strain Field Fmm the work of Danielson and Hodges (Ref. 5), under the 
condition of small local rotation, Jaumann slrain components T* (a 3 x 3 
symmetric matrix) can be expressed by 

where I is the 3 x 3 identity mauix, is the position vector which points 
to an arbitrary point in the deformed beam, gl is the contravariant base 
vector for the undeformed state, and B, and b,, are components of the or- 
thonormal reference triads in the deformed and undefonned states, re- 
spectively 

Fmm the above equation, the strain field can be expressed as a 6 x 1 
column matrix 

r = 2 ~ : ~  2ri3 r;2 2r;3 r y T  
so that 

where matrices Th (6x3), Tc (6x4). TR (6x3) and (6x3) are 

r o  o 0 1  

- 
Here (h = =d( )k ,  and lhe column matrix E represents the l-D 

measures of deformation 

where y is the average cross-sectional extensional strain (the axial force 
strain measure) defmed as 
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and column matrix K = LK, KZ c3] Tcontains the so-called moment strain 
measures 

and kis the initial curvature vector, the elements of which are the pretwist 
k,, and the initial curvatures 4 and k3. The 3-D warping is denoted by v .  
The metric determinant gcan be calculated as 

where x, andx, are cross-sectional local Cartesian coordinates which vary 
in the domain S. The characteristic size of the domain S is d& 
noted by h and the dimensionless coordinates5 (52 - d h ,  C3 - x3/h) 
are introduced. 

The small parameter & can be now specified as 

E = rnaxll~ll 

A few nonlinear terms in the strain field, which couple v and E, 

(8) 

, have 
been neglected in Eq. (2) because a physically linear bcam theory is to be 
developed. The form of the strain field is of great importance because it 
now linear in E, v and its derivatives. This is the only point where & as a 
small parameter needs to be raken into account 

Strain Energy of a Beam. The strain density for a beam per unit length 
can bewritten as 

where D is the 6 x 6 symmetric material matrix in the b,, basis and the no. 
tation 

( 0 )  = d x x  = h ofidC2dG (10) 
- 

is used throughout the paper. 
The >D Jaumann s u e s  Z, which is conjugate to the Jaumann strain r 

is 
Z = D r  (11) 

Small Parameters 

There are four characteristic parameters in the considered theory, two 
of which, hand &, have already been introduced. Two others are the char- 
acteristic length 0, over which the deformation state varies in the longitu- 
dinal direction, and the characteristic length of the initial curvature and 
twistR = lMk12 + k2Z + k3T. Thus, for a prehvisted straight bcam,R = Ilk,, 
and for a non-prehvisted beam curved about x,, R = Ilk,, where a = 2,3. 
We will expand the warping v,, (x,5) as a series with respect to the small 

h h .  parametersTandR S~nce both of them have the same numerator, expan- 
h h .  sion i n ~ a n d p  the same as the expansion in h only. 

We will therefore consider h to be the only small parameter in spite of 
its dimension. 

Substituting the above discretized unknown function into Eq. (9) and also 
taking into account Eq. (2). one obtains 

+(l) (eTD,e + V ~ D R R V  + v ~ D ~ ~ v '  (13) 

+2VTDee + z V ' ~ D ~ , E  + ~ v ~ D ~ v ' )  
in which the following defmitions were introduced 

Modal Approximation 

The shah enelgy is shown in Eq. (13) in its most general form. From 
here on, each specific formulation is derived depending on how we con- 
sider the displacement field component 1! For example, if V is the small 
permrbation in the classical displacement field (three. m l a t i o n s  and the 
rotation about the beam axis), then it only contains the ori& defmition 
of the 3-D warping field. But in order to make the beam functional more 
flexible with mpect to the variablex, consider the inmduction of new un- 
known beam functions such that 

where q is a column matrix of one or more new unknown functions, and 
Y4 is a matrix, of which each column represents a 5-mode shape associ- 
ated with one of thenew unknown functionsq(x). These are denoted as the 
"new degrees of freedom." The new warping to be found now is U! 

Various Stifmess Models 

As discussed above, depending on the choice of YT diffemt stitmess 
matrices are derived. By defining the stifmess matrix by A with the a p  
propriated subindex, the dserent results may be summarized as follows: 

"Clsnical" 4 x 4 Stiffness Malrix. The "Classical" 4 x 4 stitmess matrix, 
with measures of extension, twist and bending. 

Even though "classical" in form, it goes well beyond Euler-Bernoulli t h s  
ory in rigor, and the nonclassical material coupling effects (bending-shear 
and extension-shear couplings) are correctly accounted for. 

'Tbnmhenko-like" 6 x 6 StiBnw Matrix. Beside the four classical 

Discrrtization measures, this formulation explicitly includes transverse shear deform* 
tions at the kinematical level. 

The problem may be solved numerically by discretizing it with respect to 
the cross-sectional coordi~tes 5,. Considering the finite ekment discretiza- 
tion, the &own functions v,, (x,S) can be r e p m t e d  as the product of a 
shape functions mahix S(5) and a column mahix of nodal values of v (&5), 
denoted as V(x) 

2U = 

v ( . > C )  = S(C)V(x) (12) 
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This can be seen as the first attempt to include higher-order effects in the 
classical theory, creating a Timoshenko-like theory. Another way to han- 
dle this problem in an asymptotically consistent way is addressed in Ref. 

1 9 for the plate problcm and could be adapted for this problem as well. 

( '%xtended9' (4 + 2Nq) x (4 + 2Nq) Stifmess Matrix. A general way to in- 
clude higher-order elfecfs in the classical theory is presented by inlmducing 
Nq new unknown beam functions, represented by b o d e  shapes Yq (mss- 
section dependent) and wrrcspnding "new degrees of W o m "  q(x). 

1; 1 
1-D Formulat ion 

'I 
; 1 

The non-linear onc-dimensional equations for the 4 x 4 as well as 6 x 
6 stiffness matrices can be found in Ref. 2. If one considers the new de- 
grees of freedom q is the beam analysis derivation, a new set of equilib 
rium equations is addcd to thc one derived in Ref. 2. This new set of equb ' 1  lions is decouplcd from the other equilibrium quatinns (the coupling 
appears only at the constitutive equation level) and can be summarized as 

In this general situation, Yq can be evaluated from an eigenvalueprohlem 1 (Ref. 6) or f m  dircct selection by the engineer. A simple case is the Tim- 
oshenko-like theory, llle stiffness- of which could be computcd by incor- 
prating two Yq as rigid-body mliltions of the reference cross section about 
x2 and x+ l l e  incorporation of such "non-classical" cross-sectional d e  
gees of freedom is also quite useful when analy~ing open-section beams, 
for which explicit restraint of these quantities is necessary. At present one 

I' must take into consideration short-wavelength extrapolation to ensure a 

when: F is a column matrix corresponding to three beam forces (axial, 
shcar along %, and shear along x3) and M to three. moments (torsional, 

1 bending ahoutxz, and bending aboutx3), all expressed in the Bi basis. f and 

I m are column matrices containing the applied force per unit length and 

I moment per unit length, respectively. The new degrees of freedom q's in- 
troduce corresponding generalized forces Q and P, and the measures fqand 
fq. are distributed generalized loads associated with Q and P respectively. 

The kinematical equations that go along with the rest of the I-D p m b  

I 

I 

I! lem are 

yll = ~ T C  (el + i u )  - 1 

correct stiffness model (Ref. 8). (A more"engineering-oriented" approach 
to Ulis problem is currently under development by the authors.) 

The full expressions for these various stiffness matrices described 
above can be found in Ref. 6 or, for example, in Refs, 8 and 10. 

e:C (el + u' + i u )  = o 

where u is a column matrix containing the thee displacements in the bi 
basis. and the elobal rotation m a h  

given in terms of the Rodriyes parameters 8. A detailed description of the 
I-D formulation, including the dynamic behavior, can be found in Ref. 2 
and the implementation in Ref. I I, for example. 

Implementation of the  Theory 

The developed theory was implemented numerically in a finite-ele- 
ment computer code call VABS (Variational-Asymptotical Beam Sectional 
Analysis). From it one can get the stiffness constants and warping field 
over the cross section. Along with I-D codes (e.g., Ref. 12), beam results 
are generated and the 3-D stresslstrain distribution can be recovered. 

Finite Element  Formulation 

As shown before, in order to eliminate the warping (u) from the energy 
density (Eq. 9), one has lo tum to a numerical solution. The finite element 
formulatiou is the natural choice for Ibis kind of prohlem, where arhilrary 
geometry and material distribution are present in the domain of the proh 
lem. 

Since the domain must be homogeneous at the element level, elements 
are not allowed to cross a lamina boundary. Also, due lo the manufactur- 
ing process used in laminated composite structures, the planar quadrilat- 
eral element is the recommended choice. There were tluee types of ele- 
ments generated to deal with the cross-section discretization: 

(a) &node rectangular element 
(b) 6-node isoparametric element 
(c) 8-node isoparametric element 

and they are represented in Fig. 3. Shape functions for a planar quadrilat- 
eral element are the standard one given in Ref. 13, for example. 

nodr6 "06c3 

no* 7 - v 2  p - 7 2  
nodr I nod. 2 

nodr l node l 
(a) (b) (c) 

Fig. 3 (a) Four-node rectangular element; (b) Six-node 
isoparametric element; (el Eight-node isoparametric element 

Among the above elements, the &node rectangular element has the 
main advantage of being simple. But for most of the practical applications, 
the cross section has one or more curved boundaries and a higher-order in- 
terpolation is necessary. So, quadratic interpolation was used on each side 
of the element along with the isoparametric formulation, providing a way 
to model curved boundaries. That lea.& to the &node isoparametric ele- 
ment. But due to the fact that usually no more than two nodes are neces- 
sary to discreti7e a typical pre-preg lamina through its thickness, the 6- 
node i s o p m e t r i c  element is the most efficient one. All the elements 
present three degrees of freedom per node, corresponding to the 3-D w a p  
ing field. 

Computer  Code 

VABS is tho rcsult of the theoretical fornulation presented herein. 
From it one gets an asymptotically correct stifmess matnx and warping in- 
fluence matrix for a general, nonhomogeneous, anisowopic beam cross 
section. 
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Generation 
(c.g., IDEAS) 

VABS 

values other than the classical ones (i.e., zero eigenvalue with multipliciry 
four and the corresponding eigenvectors) of the generalized eigensystem. 
The selection of the important modes is based on a certain "influence co- 
efficient matrix" described in detail in Ref. 6. So, one deals with Large 
sparse matrices, and only the fust N, eigen-pairs are of some interest, 
where Nq is much smaller than the dimension of the matrices involved in 
the problem. Therefore, a suitable algorithm should be used to take ad- 
vantage of those characteristics. Several methods for solving this problem 
exist. Thc choice was for the Lanczos's method (Ref. 18). originally a p  
plied to solve large, sparse, symmetric eigenproblems. An algorithm based 
on this method for a generalized eigenpmhlem was numerically imple- 
mented in a computer package called LANZ (Ref. 19). In Ref. 20, it was 
shown that the Lanczos mcthod is superior to the well-known subspace it- 
eration (Ref. 13) in a sequential machine. Jones and Patrick (Ref. 21) 
showed that LANZ's margin of superiority over suhspace iteration is even 
greater in a vectorized machine. 

Again, a postprocessor is provided to visualize the deformed mesh for 
a given eigenvector and compare it to the undeformed onc. 

Warnine and stiffness calculations. The wre  of VABS is the warp- 
I t I 

- 
ing and stiffness calculations. To obtain the warping influence matrix, a - - ~ 

linear system of equations with several right-hand side vectors is solved. 

(F.E.hl. As<mblagrnnd 
The stiffness calculation is divided in suhmatrices, e.g., the ones described 

Linear srrtem solver - Recover 

1.inpr.4 
Dirplacementr in Eq. (18). TXis division is basically designed to avoid unnecessary cal- 

culations when there are onlv classical d e w  of freedom andlor when 

Fig. 4: VABS main blocks for stinem calculation. 

As shown in Fig. 4, VABS is divided in three main blocks. 
(a) Mesh preparation 
@) Eigcnsystem solution 
(c) Warping and Stiffness calculations 

Mesh pmparation. The discretization of the cross-sectional domain is 
made by using one 01 the elements available for VABS. Even though 
VABS has a mesh generator developed for simple geometries, the user is 
supposed to provide the mesh input data. 

Two fillers to convert the Universal File format generated by CAD 
soflware, such as I-DEAS (Ref. 14), to standard input of VABS were cre- 
ated. They an: able to deal with 6-node and 8-node elements. Also, an au- 
tomatic nodal renumbering routine is available at the point in the procc 
dure where the input data is prepared. It is used to reduce the bandwidth 
of the matrices involved in the problem by optimizing the enumeration of 
the nodes in the model and is a direct implementation of Ref. 15. An even 
more attractive option is to use thc standard NASTRAN (Ref. 16) bulk 
data format. The mesh can be again generated by any compatible CAD 
package, and converted to VABS input format by NASVABS (Ref. 17) (a 
NASTRAN-to-VABS interface) before sending it to stiffness calculations. 

Finally, a customized mesh preprocessor is available to the user in 
order to check the modeled geomct~y and material distribution of the p m b  
lem. Again, since lhc input mesh can be given in NASTRAN hulk data 
format, scvcral commercial packages may be used for that as well. 

Eigensystem solution. In order to use the "new degrees of freedom" 
approach, an eigenpmhlem might need to be solved before the actual stiff- 
ness calculations statl. This is going to provide the eigenvectors and eigcn- 

~ ~ - 
the beam is prismatic. Two output files are generated, one for report pur- 
poses and the othcr one to be sent to the l-D analysis. 

Finally, after the beam analysis has been performed, the l-D measures 
are fed hack to VABSTR (Ref. 17) and the sltainlstress fields arc calcu- 
lated within each element of the given cross section. A postprocessor is 
available to visualize the fields. 

Numerical Results 

For several different cmss-sectional shapes and material distributions. 
beam geomeUies (including initial twist and curvature), and loading con- 
ditions, results from the current work wcre compared with experimental, 
analylical and other numerical results whenever available. Extensive vali- 
dation of the code was done based on isotropic beams, where analytical 
andlor experimental results are available, and those are omitted fmm the 
present paper. In what follows, VABS is used to analyze several compos- 
ite beams in order lo demonstrate its versatility. Since some of the beam 
configurations have already been presented in earlier papers, details of 
them can be found in the indicated reference. 

Rectangular Blade (BT) and (ET) 

Consider two composite beams studied both experimentally and t h e e  
retically by Minguet and Dugundji (Ref. 22) with the following layups 

Where BT reflects the fact that the prismatic beam has bending-twist cou- 
pling and ET that the prismatic beam has cxtension-twist coupling. The 
beams have thin rectangular cross sections of width 1.182 in and of thick- 
ness 0.05792 in and0.07565 in, respectively. Thc beams are 22.05 in long 
and is vertically loaded 21.67 in from the m t .  The material used is the 
AS4l3501-6 Graphit&pxy, the propeRies of which and other details can 
be found in Ref. 4. 

In Fig. 5, the displacements (far in the non-linear range) of the s y m  
metric laminate BT are shown as a function of the magnitude of the veni- 
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Symbols Experiment - Minguet and Dugundji (1990) 
NABSA (all) and VABS 

I 0 0.2 0.4 .0.6 0.8 1 

Load, Ib. 
Fig. 5: Displacements of symmetric beam (BT). 

cal load. As an independent numerical comparison, we use the results o b  
tained from NABSA (Ref. 23). a finite element code based on the v h a l  
work principle, and also the corresponding condensation of the 6 x 6 stiff- 
ness matrix by minimizing the energy with respect to the transverse shear 
measures (e.g.. see Ref. 4). The theoretical results from all the stiffness 
models, including the full NABSA 6 x 6, the reduced NABSA 4 x 4, 
NABSA with transverse shear deformation set equal to zero (Euler beam 
theory), and the present result from the classical pati of VABS, all show as 
one curve to within plotting accuracy, and agree with the experimenral 
data very well. This is not too surprising since in this case the duc t ion  

: 1 operation only slightly changes the axial stiffness (because of extension- 

I 
shear coupling). Studying only these results, one might (falsely, as shown 
below) conclude that transverse shear deformation could be set equal to 
zero at the outset and not hamper the predictive capability ofthe model. 

! I  
In Fig. 6, the displacements of thc beam with the antisymmetric laminate 

I/ 
arc shown. The dashed lines are the Euler-beam results (Incorrect 

"Classical") obtained by setting shear deformation equal to 7ero in the strain 
energy based on the full 6 x 6 stitfness matrix. These results are clearly in- 
ferior because the model is considerably stiffer than it should be. However, 
Ule theoretical results fmm the other three stifiess models, including the full 
NABSA6 x 6, theredudNABSA4~4,andthepresentresultfmmVABS 
( t h w  last two being in the comxt "Classical" form), all show as one curve 
to within plotting accuracy. This shows that for lhis case the 4 x 4 stifiess 
model is sulficienl for predicting the same behavior as fhe 6 x 6 model. 

A box beam case was taken from Stemple and Lee (Ref. 24) and has 
the following stacking sequence 

The corresponding geometric properties are shown in Fig. 7. The material l a the T30015208 GraphitelEpoxy and its properties can be found in Ref. 8. 
This case presents a circumlerencially uniform stiffness (CUS) config- 

uration which produces extension-twist coupling. The cross section was 

I 
discreti7ed with 3M) eight-node isoparametric elements for a total of I200 

Symbols Experiment - Minguet and Dugundji (1990) 

10 - NABSA, NABSAR, VABS 
1 - - - - - Incorrect "Classical" 

/' vertical 

axial 

horizontal 
0 0.2 0.4 0.6 0.8 1 1.2 

Load, Ib. 
Fig. 6: Displacements of antisymmetric beam (ET). 

Fig. 7: Box Beam (Bl) c m  section geometry and material. 

nodes and 3600 degrees of freedom. 
This box beam configuration was also studied by Hodges et 01. (Ref. 

25) and Berdichevsky er 01. (Ref. 26). Table 1 shows the flexibility results 
from the present classical theory in comparison with NABSA (Ref. 26), 
and TAIL (Ref. 27) results. The flexibility coeficicnts F,, were obtained 
by inverting the stitfness matrix and the numbers in parenthesis corn- 
spond to the difference between that coclficient and the result obtained 
from NABSA (used as a reference). 

As one can see, the classical theory coincides very closely with the c o r n  
sponding NABSA results. Even though Ref. 26 is asymptoIically correct to 
the same order as the present "Classical" Theory, the inclusion of an addi- 
tional small parameter, i.e., the thickness of the hem-sectional wall, appar- 
ently eliminated tern that should be preserved due to material distribution. 

Box Beam (B2) 

A second box beam case was chosen among the experimental studies 
presented in Ref. 28. 
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Fig. 8: Box Beam (BZ) cross section geometry and material. 

The corresponding geometric properties are shown in Fig. 8. The material 
properties are based on the AS413501-6 Graphite/Epoxy (see Ref. 6). 

This case presents a circunferencially asymmetric stiffness (CAS) con- 
figuration which produces bending-twist coupling. It is also known by the 
name symmetric configuration as adopted hy Chandra er al. (Ref. 28) and 
Smith Ad Chopra (Rcf. 29). 

The cmss section was discretized with 540 six-node isoparametric el% 
menu for a total of 1260 nodes and 3780 degrees of freedom. 

Table 1: Flexibility results for the Box Beam (Bl) 
(1 extension; 2 torsion; 3,4 bending) 

Flexibility NAUSA Ref. 26 TAU VABS 

F,, x 105 1.439 1.449 (+0.7%) 1.449(+0.7%) 1.431(4.5%) 
Flz x 105 -4.178 4.301 (+2.9%) 4.301(+2.9%) 4.225(+1.1%) 
F2,x 105 3.121 3.236 (+3.6%) 3.236(+3.6%) 3.172(+1.6%) 
F3, x 105 1.837 1.886 (+2.6%) 1.729(+5.8%) 1.837(+9.0%) 
Fax 105 6.143 6.345(+3.2%) 5.016(+18.4%) 6.194(+0.8%) 

In Fig. 9, the illduced twist angle ola cantilever beam due to a unit ver- 
tical tip load is plotted against the spanwise coordinate. The present a p  
proach is put togcthcr with the experimental result and with the analytical 
predictions of Bcrdichevsky er a/. (Ref. 26), Rehfield and Atilgan (Rcf. 
30). and Smith and Chopra (Ref. 29). As one can see, the correlation of 
the prcsent approach with the experimentid results is quite gwd. Even 
though Ref. 26 is based on a similar asymplotical approach, the thickness 
c k c t  apparently prevents it from yielding bener agreement with the ex- 
perimen~al rcsults. The complete thickness effect is includcd in the present 
numerical formulation. The inclusion of new d e m  of freedom does not 
change this solution within plotting accuracy. 

For the open-scction configuration, a panicular case from the experi- 
mental study done hy Chandra and Chopra (Ref. 31) was chosen. It is a 
bending-twistcoupled cantilever I-beam. The cross section is made with 
graphitdepoxy malerial and Fig. 10 shows the geometric configuration. 
The cross section was discretized using 590 6-node isoparametric e l s  
ments for a total of 1277 nodes and 3931 degrees of freedom. 

One can take only the most dominant mode associated with torsion 
from the eigenanalysis. The "coeilicient of influence" indicates that mode 
11 is the most dominant one. It is repmduced in Fig. 11. The mode matches 
what was expected from the engineering theory like Ref. 32. 

0.016- 

- 
m 0.012- - 

, . . Experimental 
(Chandra et al., 1990) 

-. Berdichevsky et al. (1992); 
Rehfield and Atilgan (1989) 

...... Smith and Chopra (1991) 

0 5 10 15 20 25 30 
Spanwise Coordinate (inches) 

Fig. 9: Induced twist diirihution along the beam length for the box 
beam (BZ) due to a unit vertical tip load. 

Fig. 10: I-Beam cmss section geometry and material. 

Therefore, considering only one extra degree of freedom q, one ob- 
tains a 6 x 6 stsness matrix. This result has to go to a certain short wave- 
length extrapolation and the details of it is presented in Ref. 6. Wlth the 
corrected stiffness matrix, the present theory predicts a behavior which is 
in gwd agreement with the experimental results from Ref. 31 (see Fig. 
12). The other solutions shown on Fig. 12 are fmm Badir er a/., (Ref. 33) 
which also uses the variational-asymptotical approach, and from Chandra 
and Chopm (Ref. 31). As expected, the reduced 4 x 4 stiffness mauix 
("Classical" theory) is unable to reproduce such behavior, introducing up 
to 100% error in the prediction of the induced twist angle at the tip. 

Variable Angle-Ply Laminates (APs) and (APa) 

To study some of the effecu of initial twist and curvature in the stiff- 
ness constants of abeam, consider a thin rectangular cross section with di- 
mensions 26.8 mm by 2.68 mm. (We note that h here is the larger diien- 
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Fig. 11: Non-Clsssieal Mode 11 for the composite I-Beam W). 

Experimental (Chandra & Chopra 1991) 

Badir et o l  (1993) 
-. Chandra & Chopra (1991) 

. . . . . . . Classical Thmry only 

- New Degree of Feedom (Made 11) 

I " " I " " I " " I " " I " ' ~ I  
0 5 10 15 20 25 30 

Spanwise Coordinate (inches) 

Fig.12. M t  djstribution along the beam length for ihe I-Beam (lB) 
due to a unit tip torsional load. 

sion 26.8 mm.) ' h o  layups were studied. following Ref. 34. and both were 
discretized using a 12 x 20 6-nodeelement mesh (with quadratic i n f e w  
lation acmss the width). They are defmed as: 

where the first is a symmetric layup with bending-mist coupling and the 
second is an antisymmetric configuration which presents extension-twist 
coupling. The material used is 'DW5208 GraphiteiEpoxy (Ref, 34). The 
cross-sectional dimension used to nondimensionalii  thecurvature mea- 
sure is the width of the blade, thus h = 26.8 mm. 

Blades with Initial Twist 

Few results are available in the literature for highly pretwisted corn 
posit beams. Here, we compare VABS results with the numerical results of 
Kosmatka (Ref. 34) for pretwisted beam stiffness and flexibility constants. 
This seems to be a very consistent approach, even though there is no way 
at this point to assess its level of asymptotical comtness. Non-dimen- 
sionalized cross-sectional constants were used in order to set a common 

basis for comparison. The following definitions are used: 

F:l(2,2) 
Torsional Rigidity R a t i o  = - 

F Z 2 , 2 )  

'4:;(2,2) 
Torsional Stiffness R a t i o  = - 

'4:8(2,2) 

F2(1,1)  
Axial  Rigidity R a t i o  = - 

F Z 1 , l )  

3 3) F 2 ( 4  41 
Bending Rigidity R a t i o  = --or- 

, FZ4,4)  

Extension-Bending Stiffness R a t i o  = AEi(1,4) 

'4:!(4,4)h 

Twist /Extension R a t i o  = 
F:;1,2]h 

FL41,l) 

where pt = (4% )-I is the flexibility matrix for a prismatic unidirectional 
(0 = 0") thin suip, and A;! = (F:!)-l is the stiffness matrix including qua- 

h dratic corrections on the small parameter (= hk,) when initial curvature 
is zcro, thus symbolically representing the effect of initial twist. 

Figs. 13 and 14 describe cmss-sectional constants related to the antisym- 
metric layup and Figs. 15 and 16 to the symmetric layup, each with respect 
to the ply angle (8) and the level of non-dimensional pretwist (hkl = $. 
In thcse plots, the symbols represent the results from Ref. 34 (abbreviated 
by "K") and the present results by lines (VABS). As one can see, the basic 
trends are the same between the two numerical methods, indicating that 
significant changes in the stiffness constants are introduced by applying an 
initial twist on the rotor, an issue of great impomce  mainly for tilt-rotor 
design. Figs. 13 and 15 show a dicrepancy between VABS rcsults and the 
ones from Ref. 34 for high levels of pretwist. At the highcsl level of 

h prctw~st s h ~ w n , ~  = hk, = 0.3 ,the maximum difference between the two 
numerical approaches is of the onler of 10%. Based on independent analy- 
sis* we have concluded that the VABS rcsults are closer to the exact solu- 
tion than are those of the theory of Ref. 34 for the highest levels of pretwist 
presented hercin. However, this is an issue that should be funher addressed 
in light of experimental results and additional analytical research. 

Blades with Initial Curvature. 

A preliminary study of the influence of initial curvature in the stiffness 
constants of a composite blade was also done. The initial curvature (again 
nondimensionalized by h, leading to hk3 = $)was taken aboutx3 direction, 
so that k, 2 0. For this case we have no other available result for comparison. 

Fig. 17 shows the variation of theextension-bending stiffness constants 
for the APs configuration (the APa configuration shows similar vends 
(Ref. 35)). The maximum values of the coupling terns occur for 8 = + 154 
The effects of the symmetric or antisymmeuic layups are not significant 
for the general behavior. This is also the case for all the other constants. In 
fact, the effective axial rigidity as well as the effective bending rigidity 
(F:$ are insensitive for the variation of k3. Both effective torsional 
rigidity and the other effective bending rigidity (Fcf (4d)) present similar 

*Ihc aulhors lhao* Mr. Dineshkumar Harursampath for providing results from his 
unpublished analysis, based on arbitrarily large twist for an anisotropic strip-like 
bcam 
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Fig.13. Torsional rigidity ratio of APa for differat levels of initial 
twist 

results, with the dillercnce that there is an influence of initial cwature of 
up to 10% localized around 0 = ?45" and 0 = O", respectively. 

Rotor  Blade (RB) 

As one can see from the above results, VABS is well suited for evalu- 
ation of stiffness constants for a given cross section. In the following, the 
code provides stiflncss results for an airfoil-shaped blade. This is done by 
modeling all the difIcrcnt components of the cross-sectional geometry and 
the different materials pment in each of them. At this point, there is no 
need for simplification of the airfoil external geomey or its interior sub- 
slructurc, as often done by simple theories (the actual blade is far from 
hav~ng a box-beam shape or any other simplified geometry.) The way 
VABS is conceived, the fonn of the cross section is immaterial, and the as 
ymptotical stiffness constants are evaluated within the same accuracy as 
the simplified ones showcd before. Unfortunately, actual rotor blade data 
are not extensively available in the literature, so we present results for a 
simulated blade section, based on the geometric configuration described in 
Ref. 17. 

Fig. 18 shows the blade geometry. As indicated there, four ditferent 
materials were used which exemplify a typical material distribution for a 
rotor blade. The cross section was discretized by using 412 &node e l e  
ments with a total of 3915 warping dcgrces of freedom. VABS takes a p  
proximately 2.5 minutes of CPU time in an HP9000n35 machine in order 
to do this cross-sectional analysis once. 

Any of the analyses previously presented can be similarly done for this 
rotor blade. Fig. 19 shows the appearance of extension-twist coupling due 
to initial twist and its consequence in the axial rigidity ratio, Fig. 20: the 
torsional rigidity and torsional stiffness ratios, Fig. 21; and finally in the 
bending rigidities ratios, Fig. 22. 

The modes and frequencies, as well as aercelastic stability, could be 
calculated in the same way they are done, for example, in Refs. 11 and 12. 
3-D stresslst~ain recovery is also possible, and a few such cases are d i s  
cussed in Ref. 17, including the same rotor blade geometric configuration. 
This provides the rotor designer with great flexibility in exploring differ- 
ent design options with the actual rotor blade configuration using a high- 

Fig.14. Nstlextemion ratio of APa for diaerent levels of initial 
twist 
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Fig.15. Torsional rigidity ratio of APs for different levels of initial 
twist. 

fidelity low-cost computational tool. 

Concluding Remarks  

A general framework for beam modeling is presented that allows an 
engineer to take advantage of composite materials when designing rotor 
blades. It is able to take into consideration anisotropic, nonhomogeneous 
materials and represent general cross-sectional geometries. The frame- 
work naturally leads to two separate analyses, one over the cross section 
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Fig.16. MVextension ratio of A% for different levels of initial 
twist. 
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Fig.17. Extension-bending coupling stiffness ratio of APs for 
different levels of initial curvature (k3). 

(VABS) and the other along the beam. v o t e  that VABS is derived from 
the same framework as the geomelricallyexact mixed formulation for 
beam dynamics of Ref. 2.) Results obtained by using this framework are 
presented, and their accuracy indicates that Ulis framework yields excel- 
lent predictive capabiliiy and, consequently, should lower costs from ex- 
perimental tests and further adjustments. Thus, the designer does not need 
to bear either the cost of 3-D f d t e  element discretization or the loss of a c  
curacy inherent in any simplified representation of a bladc cross section, 
such as a box beam. Although VABS is intended to be used along with a 

geometricallyexact, mixed finite element formulation derived from the 
same framework, the 4x4 "classical" ma& can also be used with the non- 
linear beam element of 2GCHAS (Ref. 36). Finally, VABS is suitable lor 
use as a tool in structural dynamics optimization procedures and aeroelas- 
tic tailoring. 

VABS takes into account all possible deformation in the 3-D rcprcsen- 
talion. Although it is a useful and powerful tool in ils present form for 
analysis of composite rotor bladcs with arbitrary cross sections, the code 
still needs to be improved lor cellain non-classical rcfinemenls in the l-D 
theory. For example, for bearingless rotor flexbeams (a beam with open 
section) one must account for restrained warping in the l-D model, which 
may q u i r e  the use of a rather complex procedure known as short-wave- 
length extrapolation. Here "non-classical" I-D variables must be redefined 

Fig.18. Rotor blade (RB) test ease. 

-5 - 
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Fig.19. TwisVextension ratio of the mtor balde (RB) for different 
levels of initial twist. 

and incorporated into both the stiffness and dynamic models. A more cn- 
gineering-oriented approach to this aspect of the prohlem is in progress 
under the sponsorship of the National Rotorcrah Technology Center. 
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Fig. 20. Axial rigidity ralio of the mtor blade (RB) for different 
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