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A general framework for modeling composite rotor blades is presented. This framework extracts from a three-dimensional
elasticity formulation two sets of analyses: one over the cross section, providing elastic constants that can be used in a suitable
set of beam equations, and the other the beam equations themselves. The cross-sectional analysis, along with the accompany-
ing engineering software (VABS), provides an accurate beam representation of the blade structure, allowing a designer to take
advantage of composite materials when designing rotor blades. VABS is able to take into consideration anisotropic, nonhomo-
geneous materials and to represent general cross-sectional geometries, requiring neither the costly use of 3-D finite element dis-
cretization nor the loss of accuracy inherent in any simplified representation of the cross section. Results obtained from analy-
sis of a variety of composite beams are presented. The generality of the method and accuracy of the results should increase
confidence at the design stage that the structure will perform as expected and, consequently, should lower costs from experi-

mental tests and further adjustments.

Introduction

Due to their geometries, rotor blades have one dimension that is much
larger than the other two. Such flexible structures can often be treated as a
beam, a one-dimensional (1-D) body. This idealization of the actual struc-
ture leads to a much simpler mathematical formulation than would be ob-
tained if complete three-dimensional (3-D) elasticity were used to model
it (see Fig. 1). To do so, one has to find a way to capture the behavior as-
sociated with the two dimensions that are being eliminated by correctly
accounting for geometry and material distribution. The process that takes
the original 3-D body and represents it as a 1-D one is called “dimensional
reduction.”

In this present work, finite-element-based nonhomogeneous anisotro-
phic initially curved and twisted beam theory was formulated from geo-
metric nonlinear, 3-D elasticity. The kinematics were derived for arbitrary
warping (which includes out-of-plane as well as in-plane deformations)
based upon the concept of decomposition of the rotation tensor. The 3-D
strain energy based on this strain field is dimensionally reduced via the
variational-asymptotical method (Ref. 1). The 3-D warping is calculated in
terms of the 1-D strain measures and the functions in the strain encrgy be-
come independent of the cross-sectional variables. The resulling equations
govern both sectional and global deformation, as well as provide the 3-D
displacement and strain fields in terms of beam deformation quantities.
The formulation also naturally leads to geometrically exact, 1-D kinemat-
ical and intrinsic equilibrium equations for the beam deformation (Ref. 2).

The current theory provides a very general framework of modeling ini-
tially curved and twisted beams, allowing one to deal with different effects
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without the use of ordering schemes or other ad hoc restrictions. This the-
ory is not limited to the low-order theory found in classical approaches.
Moreover, it is not limited to the usual Saint-Venant approach for the inte-
rior problem associated with beams. Rather, the asymptotical method al-
lows for the approximation of the cross-sectional behavior in terms of the
eigenfunctions of a certain Sturm-Liouville problem associated with the
cross section. These eigenfunctions contain all the necessary information
about the nonhomogeneities throughout the cross section of the beam and
thus possess the appropriate discontinuities in the derivatives of displace-
ment. The new “degrees of freedom” associated with these eigenfunctions
for the beam cross section allow for treatment of transverse shear defor-
mation and restrained warping in a systematic way (Ref. 8). The approach
is based on the identification of small parameters in the structure, and the
cross section may have arbitrary geometry (solid or thin-walled, closed or
open). The idea is to be able to model a complex structure (e.g., an actual
airfoil-shaped cross section, with all its components and different materi-
als) rather than a simplified version of it.

Fig. 2 represents the schematic of a unified process for analyzing com-
posite beams and the shaded blocks represent the extension of the current
work.

Cross-Sectional Analysis

In constructing a 1-D beam theory from 3-D elasticity, the strain energy
stored in a 3-D body if represented by the strain energy which would be
stored in an imaginary 1-D body. This modeling process cannot be per-
formed in an exact manner. However, due to the interest of working with
a simple 1-D theory, researchers have tumned to asymptotical methods in
order to reduce the dimension of the model for bodies which contain one
or more small parameters.

Thus, in what follows the 3-D beam problem is replaced by an approx-
imate 1-D one in which the strain energy per unit length will be a function
only of x; =x (length along a reference line r within an undeformed beam;
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(a) 3-D discretization
(== 10°N d.o.f. — once)

=3N d.o.f. - several times

(b) Two-step modeling process

Fig. 1. Schematic of the discretization process for a rotor blade
structure (N = number of nodes in a cross section).
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Fig. 2. Overview of beam analysis (shaded boxes represent the scope
of the present work).

x, and x3 denote lengths along lines orthogonal to the reference line r).
This will be done with the aid of the variational-asymptotical formulation
(Refs. 3,4). The kinematics of the beam are based on the general formula-
tion of Danielson and Hodges (Ref. 5). Local rotation, as defined therein,
is taken to be of the order of the strain. Since only geometrically nonlinear
behavior is considered, the strain can be treated as small relative to unity
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without imposing any explicit restrictions on the magnitudes of the dis-
placement of the reference line or the section rotation. Subject only to
these restrictions, all possible deformations of beams arc taken into ac-
count in the analysis. The theoretical development is only outlined hercin
and more detail can be found in Refs. 6 and 5.

3-D Formulation

As described in Refs. 7 and 8, we first derive the 3-D formulation, the
solution of which shall be considered the exact solution of the beam prob-
lem.

Strain Field. From the work of Danielson and Hodges (Ref. 5), under the
condition of small local rotation, Jaumann strain components I'* (a 3 x 3
symmetric matrix) can be expressed by
* 1 T
s 5 (X a0 ) -1
¢))]
_B_. R 5k,
Xmn =B, - 91 8 b,
where [ is the 3 x 3 identity matrix, R is the position vector which points
to an arbitrary point in the deformed beam, gk is the contravariant base
vector for the undeformed state, and B,, and b,, are components of the or-
thonormal reference triads in the deformed and undeformed states, re-
spectively.
From the above equation, the strain field can be expressed as a 6 x 1
column matrix
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Here (.)m = —€,mt)p and the column matrix € represents the 1-D

measures of deformation
_] 7 (@)
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where y is the average cross-sectional extensional strain (the axial force
strain measure) defined as

y=R *B-1 )
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and column matrix k£ = |k K, &3 | T contains the so-called moment strain
measures

anKn*‘kn (6)

and £ is the initial curvature vector, the elements of which are the pretwist
k, and the initial curvatures k, and k3. The 3-D warping is denoted by v.
The metric determinant g can be calculated as

\/E =1- $2k‘3 + 513'3]{2 )

where x; and x5 are cross-sectional local Cartesian coordinates which vary
in the prescribed domain §. The characteristic size of the domain § is de-
noted by h and the dimensionless coordinates § = {{, = xy/h, {3 = x4/h}
are introduced.

The small parameter £ can be now specified as

£ = max||¢|| (8)

A few nonlinear terms in the strain field, which couple v and €, have
been neglected in Eq. (2) because a physically linear beam theory is to be
developed. The form of the strain field is of great importance because it
now linear in €, v and its derivatives. This is the only point where € as a
small parameter needs to be taken into account.

Strain Energy of a Beam. The strain density for a beam per unit length
can be written as

_lr
U=5(T DT) o5

where D is the 6 x 6 symmetric material matrix in the b, basis and the no-

tation
()= [ ovaisadsa =12 [ /Giadcs 0O
s

is used throughout the paper.
The 3-D Jaumann stress Z, which is conjugate to the Jaumann strain I
is
Z=DT (11)

Small Parameters

There are four characteristic parameters in the considered theory, two
of which, h and &, have already been introduced. Two others are the char-
acteristic length ¢, over which the deformation state varies in the longitu-
dinal direction, and the characteristic length of the initial curvature and
twist R = 1k 2 + k,2 + k3Z. Thus, for a pretwisted straight beam, R = 1/k;,
and for a non-pretwisted beam curved about x,, R = 1/k,, where @ = 2,3.
We will expand the warping v, (x,{) as a series with respect to the small
parametcrs—%—and% Since both of them have the same numerator, expan-
sion in-rand g is the same as the expansion in & only.

We will therefore consider 4 to be the only small parameter in spite of
its dimension.

Discretization

The problem may be solved numerically by discretizing it with respect to
the cross-sectional coordinates §,. Considering the finite element discretiza-
tion, the unknown functions v,, (x,5) can be represented as the product of a
shape functions matrix S(§) and a column matrix of nodal values of v (x,5),
denoted as V(x)

v(z,¢) = S(QV(z) (12)
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Substituting the above discretized unknown function into Eq. (9) and also
taking into account Eq. (2), one obtains

2

1

2= (%) VTEV = (EJQVT (Dree+ DpgV + .Dth')
+(1) (67 Dece + VT DRV + V'T DgpV' (13)
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in which the following definitions were introduced

E 2 ([45] D [T4S))
Dhe = ([TxS) D [Te))
Dhe £ ([T4S] D[T%S))
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Dgp. = ([C&S|D[L])) (14
Dgr £ ([CrS) D [CrS))

Dys 2 ([T S] D [T2S))

Modal Approximation

The strain energy is shown in Eq. (13) in its most general form. From
here on, each specific formulation is derived depending on how we con-
sider the displacement field component V. For example, if V is the small
perturbation in the classical displacement field (three translations and the
rotation about the beam axis), then it only contains the original definition
of the 3-D warping field. But in order to make the beam functional more
flexible with respect to the variable x, consider the introduction of new un-
known beam functions such that

V(z) = yq(z) + W(z) (15)

where g is a column matrix of one or more new unknown functions, and
¥, is a matrix, of which each column represents a {-mode shape associ-
ated with one of the new unknown functions g(x). These are denoted as the
“new degrees of freedom.” The new warping to be found now is W.

Various Stiffness Models

As discussed above, depending on the choice of ¥, different stiffness
matrices are derived. By defining the stiffness matrix by A with the ap-
propriated subindex, the different results may be summarized as follows:

“Classical” 4 x 4 Stiffness Matrix. The “Classical” 4 x 4 stiffness matrix,
with measures of extension, twist, and bending.

2U = €T Age (16)

Even though “classical” in form, it goes well beyond Euler-Bernoulli the-
ory in rigor, and the nonclassical material coupling effects (bending-shear
and extension-shear couplings) are correctly accounted for.

“Timoshenko-like” 6 x 6 Stiffness Matrix. Beside the four classical
measures, this formulation explicitly includes transverse shear deforma-
tions at the kinematical level.

T
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This can be seen as the first attempt to include higher-order effects in the
classical theory, creating a Timoshenko-like theory. Another way (o han-
dle this problem in an asymptotically consistent way is addressed in Ref.
9 for the plate problem and could be adapted for this problem as well.

“Extended” (4 +2.N,) x (4 + ZNq) Stiffness Matrix. A general way to in-
clude higher-order effects in the classical theory is presented by introducing
N, new unknown beam functions, represented by ¢-mode shapes ¥, (cross-
section dependent) and corresponding “new degrees of freedom” g(x).

T
€ Ae Ay Ace € (18)
2U =4 3q Age Agq Age +q
4z Age Agg Ape 9

In this general siluation, ‘Ifq can be evaluated from an eigenvaluc problem
(Ref. 6) or from direct selection by the engineer. A simple case is the Tim-
oshenko-like theory, the stiffnesses of which could be computed by incor-
porating two 'If, as rigid-body rotations of the reference cross section about
xp and x3. The incorporation of such “non-classical” cross-sectional de-
grees of freedom is also quite useful when analyzing open-section beams,
for which explicil resiraint of these quantities is necessary. At present one
must lake into consideration short-wavelength extrapolation to ensure a
correct stiffness model (Ref. 8). (A more “engineering-oriented” approach
to this problem is currently under development by the authors.)

The full expressions for these various stiffness matrices described
ahove can be found in Rel. 6 or, for example, in Rels. 8 and 10.

1-D Formulation

The non-linear onc-dimensional equations for the 4 x 4 as well as 6 X
6 stiffness matrices can be found in Ref. 2. If one considers the new de-
grees of freedom ¢ is the beam analysis derivation, a new set of equilib-
rium equations is added to the one derived in Ref. 2. This new set of equa-
tions is decoupled from the other equilibrium equations (the coupling
appears only at the constitutive equation level) and can be summarized as

F+KF+f=0
M + KM+ (1 +m1)é1F +m=0 (19
P —Q+ fo—(fo) =0

where F is a column matrix corresponding to three beam forces (axial,
shear along x,, and shear along x3) and M to three moments (torsional,
bending about x,, and bending about x3), all expressed in the B; basis. fand
m are column matrices containing the applied force per unit length and
moment per unit length, respectively. The new degrees of freedom ¢’s in-
troduce corresponding generalized forces Q and P, and the measures f, and
[y are distributed generalized loads associated with Q and P respectively.

The kinematical equations that go along with the rest of the 1-D prob-
lem are

m=elC (81 +u' + i?:u) -1
eIC (e +u +Fu) =0 (20)
K=k+k &=-C'CT+CkCT —k

where u is a column matrix containing the three displacements in the b;
basis, and the global rotation matrix

(1-22)1-6+%
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given in terms of the Rodrigues parameters 6. A detailed description of the
1-D formulation, including the dynamic behavior, can be found in Ref. 2
and the implementation in Ref. 11, for example.

Implementation of the Theory

The developed theory was implemented numerically in a finite-ele-
ment computer code call VABS (Variational-Asymptotical Beam Sectional
Analysis). From it one can get the stiffness constants and warping field
over the cross section. Along with 1-D codes (e.g., Ref. 12), beam results
are generated and the 3-D stress/strain distribution can be recovered.

Finite Element Formulation

As shown before, in order to eliminate the warping (v) from the energy
density (Eq. 9), one has Lo turn to a numerical solution. The finite element
formulation is the natural choice for this kind of problem, where arbitrary
geometry and material distribution are present in the domain of the prob-
lem.

Since the domain must be homogeneous at the element level, elements
are not allowed to cross a lamina boundary. Aiso, due to the manufactur-
ing process used in laminated composite structures, the planar quadrilat-
eral element is the recommended choice. There were three types of ele-
ments generated to deal with the cross-section discretization:

(a) 4-node rectangular element
(b) 6-node isoparametric element
(c) 8-node isoparametric element

and they are represented in Fig. 3. Shape functions for a planar quadrilat-
eral element are the standard one given in Ref. 13, for example.

node 3 node 6 node 3
node 4 nade 3 noded
node 4, node 4
node 7
node §
s node 2 node 5 node 2
node | node 2
node | node 1

(a) (b) (©)

Fig. 3 (a) Four-node rectangular element; (b) Six-node
isoparametric element; (c) Eight-node isoparametric element.

Among the above elements, the 4-node rectangular element has the
main advantage of being simple. But for most of the practical applications,
the cross section has one or more curved boundaries and a higher-order in-
terpolation is necessary. So, quadratic interpolation was used on each side
of the element along with the isoparametric formulation, providing a way
to model curved boundaries. That leads to the 8-node isoparametric ele-
ment. But due o the fact that usually no more than two nodes are neces-
sary to discretize a typical pre-preg lamina through its thickness, the 6-
node isoparametric clement is the most efficient one. All the elements
present three degrees of freedom per node, corresponding to the 3-D warp-
ing field.

Computer Code

VABS is the result of the theoretical formulation presented hercin.
From it one gets an asymptotically correct stifiness matrix and warping in-
fluence matrix for a general, nonhomogencous, anisolropic beam cross
section.
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Fig. 4: VABS main blocks for stiffness calculation.

As shown in Fig. 4, VABS is divided in three main blocks:
(a) Mesh preparation

(b) Eigensystem solution

(c) Warping and Stiffness calculations

Mesh preparation. The discretization of the cross-sectional domain is
made by using one of the elements available for VABS. Even though
VABS has a mesh generator developed for simple geometrics, the user is
supposed to provide the mesh input data.

Two filters to convert the Universal File format generated by CAD
software, such as I-DEAS (Ref. 14), to standard input of VABS were cre-
ated. They are able to deal with 6-node and 8-node elements. Also, an au-
tomatic nodal renumbering routine is available at the point in the proce-
dure where the input data is prepared. It is used to reduce the bandwidth
of the matrices involved in the problem by optimizing the enumeration of
the nodes in the model and is a direct implementation of Ref. 15. An even
more attractive option is to use the standard NASTRAN (Ref. 16) bulk
data format. The mesh can be again generated by any compatible CAD
package, and convertcd to VABS inpul format by NASVABS (Ref. 17) (a
NASTRAN-to-VABS interface) before sending it to stiffness calculations.

Finally, a customized mesh preprocessor is available to the user in
order to check the modeled geometry and material distribution of the prob-
lem. Again, since the input mesh can be given in NASTRAN bulk data
formal, several commercial packages may be used for that as well.

Eigensystem solution. In order to use the “new degrees of freedom™
approach, an eigenproblem might need to be solved before the actual stiff-
ness calculations start. This is going lo provide the eigenvectors and eigen-
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values other than the classical ones (i.e., zero eigenvalue with multiplicity
four and the corresponding eigenvectors) of the generalized eigensystem.
The selection of the important modes is based on a certain “influence co-
efficient matrix” described in detail in Ref. 6. So, one deals with large
sparsc matrices, and only the first N, cigen-pairs are of some interest,
where N, is much smaller than the dimension of the matrices involved in
the problem. Therefore, a suitable algorithm should be used to take ad-
vantage of those characteristics. Several methods for solving this problem
exist. The choice was for the Lanczos’s method (Ref. 18), originally ap-
plicd to solve large, sparse, symmetric eigenproblems. An algorithm based
on this method for a generalized cigenproblem was numerically imple-
mented in a computer package called LANZ (Ref. 19). In Ref, 20, it was
shown that the Lanczos method is superior to the well-known subspace it-
eration (Ref. 13) in a sequential machine. Jones and Patrick (Ref. 21)
showed that LANZ’s margin of superiority over subspace iteration is even
grealer in a vectorized machine.

Again, a postprocessor is provided to visualize the deformed mesh for
a given eigenvector and compare it to the undeformed one.

Warping and stiffness calculations. The core of VABS is the warp-
ing and stiffness calculations. To obtain the warping influence matrix, a
lincar system of equations with several right-hand side vectors is solved.
The stiffness calculation is divided in submatrices, e.g., the ones described
in Eq. (18). This division is basically designed to avoid unnecessary cal-
culations when there are only classical degrees of freedom and/or when
the beam is prismatic. Two outpul files are generated, one for report pur-
poses and the other one to be sent to the 1-D analysis.

Finally, after the beam analysis has been performed, the 1-D measures
are fed back to VABSTR (Ref. 17) and the strain/stress fields are calcu-
lated within each element of the given cross section. A postprocessor is
available to visualize the fields.

Numerical Results

For several different cross-sectional shapes and material distributions,
beam geometries (including initial twist and curvature), and loading con-
ditions, results from the current work were compared with experimental,
analytical and other numerical results whenever available. Extensive vali-
dation of the code was done based on isotropic beams, where analytical
and/or experimental results are available, and those are omitted from the
present paper. In what follows, VABS is used to analyze several compos-
ite beams in order to demonstrate its versatility. Since some of the beam
configurations have already been presented in earlier papers, details of
them can be found in the indicated reference.

Rectangular Blade (BT) and (ET)

Consider two composite beams studied both experimentally and theo-
retically by Minguet and Dugundji (Ref. 22) with the following layups

(BT): [45° 1 0°];5
(ET): [20° /—70° / = 70° / 20°],

Where BT reflects the fact that the prismatic beam has bending-twist cou-
pling and ET that the prismatic beam has extension-twist coupling. The
beams have thin rectangular cross sections of width 1.182 in and of thick-
ness 0.05792 in and 0.07565 in, respectively. The beams are 22.05 in long
and is vertically loaded 21.67 in from the root. The material used is the
AS4/3501-6 Graphite/Epoxy, the properties of which and other details can
be found in Ref. 4.

In Fig. 5, the displacements (far in the non-linear range) of the sym-
metric laminate BT are shown as a function of the magnitude of the verti-
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Experiment — Minguet and Dugundiji (1990)
NABSA (all) and VABS

Symbols

10+

vertical

Displacement, in.

1 |
0 0.2 04 06 0.8
Load, Ib.

Fig. 5: Displacements of symmetric beam (BT).

—

cal load. As an independent numerical comparison, we use the results ob-
tained from NABSA (Ref. 23), a finite element code based on the virtual
work principle, and also the corresponding condensation of the 6 x 6 stiff-
ness matrix by minimizing the energy with respect to the transverse shear
measures (e.g., sc¢ Ref. 4). The theoretical results from all the stiffness
models, including the full NABSA 6 x 6, the reduced NABSA 4 x 4,
NABSA with transverse shear deformation set equal to zero (Euler beam
theory), and the present result from the classical part of VABS, all show as
one curve to within plotting accuracy, and agree with the experimental
data very well. This is not too surprising since in this case the reduction
operation only slightly changes the axial stiffness (because of extension-
shear coupling). Studying only these results, one might (falsely, as shown
below) conclude that transverse shear deformation could be set equal to
zero at the outset and not hamper the predictive capability of the model.
In Fig. 6, the displacements of the beam with the antisymmetric laminate
(ET) are shown. The dashed lines are the Euler-beam results (Incorrect
“Classical”) obtained by setting shear deformation equal to zero in the strain
encrgy based on the full 6 x 6 stiffness matrix. These results are clearly in-
ferior because the model is considerably stiffer than it should be. However,
the theoretical results from the other three stiffness models, including the full
NABSA 6 x 6, the reduced NABSA 4 x 4, and the present result from VABS
(these last two being in the correct “Classical” form), all show as one curve
to within plotting accuracy. This shows that for this case the 4 x 4 stiffness
madel is sufficient for predicling the same behavior as the 6 x 6 model.

Box Beam (BI1)

A box beam case was taken from Stemple and Lee (Ref. 24) and has
the following stacking sequence

(B1): [20°/-70°720° /- 70° /- 70° / 20°]y

The corresponding geometric propertics are shown in Fig. 7. The material
is the T300/5208 Graphite/Epoxy and its properties can be found in Ref. 8.

This case presents a circumferencially uniform stiffness (CUS) config-
uration which produces extension-twist coupling. The cross section was
discretized with 360 eight-node isoparametric elements for a total of 1200
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Experiment — Minguet and Dugundji (1990)
NABSA, NABSAR, VABS
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Fig. 6: Displacements of antisymmetric beam (ET).
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Fig. 7: Box Beam (B1) cross section geometry and material.

nodes and 3600 degrees of freedom.

This box beam configuration was also studied by Hodges et al. (Ref.
25) and Berdichevsky et al. (Ref. 26). Table 1 shows the flexibility results
from the present classical theory in comparison with NABSA (Ref. 26),
and TAIL (Ref. 27) results. The flexibility coefficients F;; were obtained
by inverting the stiffness matrix and the numbers in parenthesis corre-
spond to the difference between that coefficient and the result obtained
from NABSA (used as a reference).

As one can see, the classical theory coincides very closely with the corre-
sponding NABSA results. Even though Ref. 26 is asymptotically correct to
the same order as the present “Classical” Theory, the inclusion of an addi-
tional small parameter, i.e., the thickness of the cross-sectional wall, appar-
ently eliminated terms that should be preserved due to material distribution.

Box Beam (B2)

A second box beam case was chosen among the experimental studics
presented in Ref. 28.

(B2): [45°]¢
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Fig. 8: Box Beam (B2) cross section geometry and material.

The corresponding geometric properties are shown in Fig. 8. The material
properties are based on the AS4/3501-6 Graphite/Epoxy (see Ref. 6).

This case presents a circunferencially asymmetric stiffness (CAS) con-
figuration which produces bending-twist coupling. It is also known by the
name symmelric configuration as adopted by Chandra ez al. (Ref. 28) and
Smith and Chopra (Ref. 29).

The cross scction was discretized with 540 six-node isoparametric ele-
ments for a total of 1260 nodes and 3780 degrees of freedom.

Table 1: Flexibility results for the Box Beam (B1)
(1 extension; 2 torsion; 3, 4 bending)

Flexibility ~NABSA  Ref. 26 TAIL VABS
Fpyx 106 1439 1449 (+0.7%)  1.449(+0.7%)  1.431(-0.5%)
Fpx 105  -4.178 _4.301 (+2.9%) -4301(+2.9%) -4.225(+1.1%)
Fax 105 3.121 3.236 (+3.6%) 3.236(+3.6%) 3.172(+1.6%)
Fyux 105 1837 1.886 (+2.6%)  1.729(+58%)  1.837(+0.0%)
Fyux 105 6143 6345(+32%)  S5.016(+184%)  6.194(+0.8%)

In Fig. 9, the induced twist angle of a cantilever beam due to a unit ver-
tical tip load is plotted against the spanwise coordinate. The present ap-
proach is put together with the experimental result and with the analytical
predictions of Berdichevsky ef al. (Ref. 26), Rehfield and Atilgan (Ref.
30), and Smith and Chopra (Ref. 29). As one can see, the correlation of
the present approach with the experimental results is quite good. Even
though Ref. 26 is based on a similar asymptotical approach, the thickness
clfect apparently prevents it from yielding better agreement with the ex-
perimental results. The complete thickness effect is included in the present
numerical formulation. The inclusion of new degrees of freedom does not
change this solution within plotting accuracy.

I-Beam (IB)

For the open-scction configuration, a particular case from the experi-
mental study done by Chandra and Chopra (Ref. 31) was chosen. It is a
bending-twist-coupled cantilever I-beam. The cross section is made with
graphite/epoxy malerial and Fig. 10 shows the geometric configuration.
The cross section was discretized using 590 6-node isoparametric ele-
ments for a total of 1277 nodes and 3931 degrees of freedom.

One can tlake only the most dominant mode associated with torsion
from the eigenanalysis. The “coeflicient of influence” indicates that mode
11 is the most dominant one. It is reproduced in Fig. 11. The mode matches
whal was expected from the engineering theory like Ref. 32.
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Fig. 9: Induced twist distribution along the beam length for the box
beam (B2) due to a unit vertical tip load.
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Fig. 10: I-Beam cross section geometry and material.

Therefore, considering only one extra degree of freedom g, one ob-
tains a 6 x 6 stiffness matrix. This result has to go to a cerlain short wave-
length extrapolation and the details of it is presented in Ref. 6. With the
corrected stiffness matrix, the present theory predicts a behavior which is
in good agreement with the experimental results from Ref. 31 (see Fig.
12). The other solutions shown on Fig. 12 are from Badir et al., (Ref. 33)
which also uses the variational-asymptotical approach, and from Chandra
and Chopra (Ref. 31). As expected, the reduced 4 x 4 stiffness matrix
(“Classical” theory) is unable to reproduce such behavior, introducing up
to 100% error in the prediction of the induced twist angle at the tip.

Variable Angle-Ply Laminates (APs) and (APa)
To study some of the effects of initial twist and curvature in the stiff-

ness constants of a beam, consider a thin rectangular cross section with di-
mensions 26.8 mm by 2.68 mm. (We note that s here is the larger dimen-
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Fig. 11: Non-Classical Mode 11 for the composite I-Beam (IB).
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Fig.12. Twist distribution along the beam length for the I-Beam (IB)
due to a unit tip torsional load.

sion 26.8 mm.) Two layups were studied, following Ref. 34, and both were
discretized using a 12 x 20 6-node-element mesh (with quadratic interpo-
lation across the width). They are defined as:

(APs):
(APa):

[0/-0];
[62/-65]

where the first is a symmetric layup with bending-twist coupling and the
second is an antisymmetric configuration which presents extension-twist
coupling. The material used is T300/5208 Graphite/Epoxy (Ref. 34). The
cross-sectional dimension used to non-dimensionalized the curvature mea-
sure is the width of the blade, thus h = 26.8 mm.

Blades with Initial Twist.

Few results are available in the literature for highly pretwisted com-
posit beams. Here, we compare VABS results with the numerical results of
Kosmatka (Ref. 34) for pretwisted beam stiffness and flexibility constants.
This seems to be a very consistent approach, even though there is no way
al this point to assess its level of asymptotical correctness. Non-dimen-
sionalized cross-sectional constants were used in order to set a common
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basis for comparison. The following definitions are used:

0
cf(2,2)

Flia2)

Torsional Rigidity Ratio =

Alte)

0
Ac£(2,2)

Torsional Stiffness Ratio =

Fon)
c8(1,1)

Axial Rigidity Ratio =

E cUe(s,s) 3 33(4,4)

Bending Rigidity Ratio =

Fiss co(4,4)
AT‘T
Extension-Bending Stiffness Ratio = _..._0':“3(1*4)
Acyapyh
¥
Twist/Extension Ratio = fg_-‘il,_ﬂh
cb(1,1)

where FY = (A% )~! is the flexibility matrix for a prismatic unidirectional
(6 = 0°) thin strip, and AL} = (Fr5)-! is the stiffness matrix including qua-
dratic corrections on the small parameter ;—; (= hk;) when initial curvature
is zero, thus symbolically representing the effect of initial twisL.

Figs. 13 and 14 describe cross-sectional constants related to the antisym-
metric layup and Figs. 15 and 16 to the symmetric layup, cach with respect
to the ply angle (0) and the level of non-dimensional pretwist (hk; = %}
In these plots, the symbols represent the results from Ref. 34 (abbreviated
by “K”) and the present results by lines (VABS). As one can seg, the basic
trends are the same between the two numerical methods, indicating that
significant changes in the stiffness constants are introduced by applying an
initial twist on the rotor, an issue of great importance mainly for tilt-rotor
design. Figs. 13 and 15 show a dicrepancy between VABS results and the
ones from Ref. 34 for high levels of pretwist. At the highest level of
pretwist shown,—R = hk; = 0.3, the maximum difference between the two
numerical approaches is of the order of 10%. Based on independent analy-
sis* we have concluded that the VABS results are closer to the exacl solu-
tion than are those of the theory of Ref. 34 for the highest levels of pretwist
presented herein. However, this is an issue that should be further addressed
in light of experimental results and additional analytical research.

Blades with Initial Curvature.

A preliminary study of the influence of initial curvature in the stiffness
constants of a composite blade was also done. The initial curvature (again
non-dimensionalized by h, leading to fik; = g) was taken about x; direction,
so that k3 = 0. For this case we have no other available result for comparison.

Fig. 17 shows the variation of the extension-bending stiffness constants
for the APs configuration (the APa configuration shows similar trends
(Ref. 35)). The maximum values of the coupling terms occur for § = +15°
The effects of the symmetric or antisymmetric layups are not significant
for the general behavior. This is also the case for all the other constants. In
fact, the effective axial rigidity as well as the effective bending rigidity
(F7 (3,3)) are insensitive for the variation of k5. Both effective torsional
rigidity and the other effective bending rigidity (Ffj (4 4)) present similar

*The authors thank Mr. Dineshkumar Hafursampal.h for providing results from his
unpublished analysis, based on arbitrarily large twist for an anisotropic strip-like
beam.
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Fig.13. Torsional rigidity ratio of APa for different levels of initial
twist.

results, with the difference that there is an influence of initial curvature of
up to 10% localized around 6 = +45° and 6 = 0°, respectively.

Rotor Blade (RB)

As one can sce from the above results, VABS is well suited for evalu-
ation of stiffness constants for a given cross section. In the following, the
code provides stiffness results for an airfoil-shaped blade. This is done by
modeling all the different components of the cross-sectional geometry and
the different malerials present in each of them. At this point, there is no
need for simplification of the airfoil external geometry or its interior sub-
structure, as often done by simple theories (the actual blade is far from
having a box-beam shape or any other simplified geomelry.) The way
VABS is conceived, the form of the cross section is immaterial, and the as-
ymplotical stiffness constants are cvaluated within the same accuracy as
the simplified ones showed before. Unfortunately, actual rotor blade data
are not cxtensively available in the literature, so we present results for a
simulated blade section, based on the geometric configuration described in
Ref. 17.

Fig. 18 shows the blade geometry. As indicated there, four different
materials were used which exemplify a typical material distribution for a
rotor blade. The cross section was discretized by using 412 6-node ele-
ments with a total of 3915 warping degrees of freedom. VABS takes ap-
proximately 2.5 minutes of CPU time in an HP9000/735 machine in order
to do this cross-scclional analysis once.

Any of the analyses previously presented can be similarly done for this
rotor blade. Fig. 19 shows the appearance of extension-twist coupling due
to initial twist and ils consequence in the axial rigidity ratio, Fig. 20; the
torsional rigidity and torsional stiffness ratios, Fig. 21; and finally in the
bending rigidilics ratios, Fig. 22.

The modes and frequencics, as well as aeroelastic stability, could be
calculated in the same way Lhey are done, for example, in Refs. 11 and 12.
3-D stress/strain recovery is also possible, and a few such cases are dis-
cussed in Ref. 17, including the same rotor blade geometric configuration.
This provides the rotor designer with great flexibility in exploring differ-
ent design options with the actual rotor blade configuration using a high-
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Fig.14. Twist/extension ratio of APa for different levels of initial
twist.
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fidelity low-cost computational tool.
Concluding Remarks

A general framework for beam modeling is presented that allows an
enginecr to take advantage of composite matcrials when designing rotor
blades. It is able to take into consideration anisotropic, nonhomogeneous
materials and represent general cross-sectional geometries. The frame-
work naturally leads to two separate analyses, one over the cross section
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Fig.17. Extension-bending coupling stiffness ratio of APs for
different levels of initial curvature (k;).

(VABS) and the other along the beam. (Note that VABS is derived from
the same framework as the geometrically-cxact mixed formulation for
beam dynamics of Rel. 2.) Results obtained by using this framework are
presented, and their accuracy indicates that this framework yields excel-
Ient predictive capability and, consequently, should lower costs from ex-
perimental tests and further adjustments. Thus, the designer does not need
to bear either the cost of 3-D finite element discretization or the loss of ac-
curacy inherent in any simplified representation of a blade cross section,
such as a box beam. Although VABS is intended to be used along with a

0.795in
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geometrically-exact, mixed finite element formulation derived from the
same framework, the 4x4 “classical” matrix can also be used with the non-
linear beam element of 2GCHAS (Ref. 36). Finally, VABS is suitable for
use as a Lool in structural dynamics optimization procedures and aeroelas-
tic tailoring.

VABS takes into account all possible deformation in the 3-D represen-
tation. Although it is a useful and powerful tool in its present form for
analysis of composite rotor blades with arbitrary cross sections, the code
still needs to be improved for certain non-classical refinements in the 1-D
theory. For example, for bearingless rotor flexbeams (a beam with open
section) one must account for restrained warping in the 1-D model, which
may require the use of a rather complex procedure known as short-wave-
length extrapolation. Here “non-classical” 1-D variables must be redefined

Graphite/Epoxy
T300/5208 E-Glass/Epoxy

Steel AISI 304

4.3in

Fig.18. Rotor blade (RB) test case.
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Fig.19. Twist/extension ratio of the rotor balde (RB) for different
levels of initial twist.

and incorporated into both the stiffness and dynamic models. A more ¢n-
gineering-oriented approach to this aspect of the problem is in progress
under the sponsorship of the National Rotorcralt Technology Center,
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