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VALIDATION OF THE VARIATIONAL
ASYMPTOTIC BEAM SECTIONAL

ANALYSIS (VABS)

Wenbin Yu,∗ Vitali V. Volovoi,† Dewey H. Hodges,‡ and Xianyu Hong§
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the vari-
ational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two-
dimensional linear cross-sectional analysis and a one-dimensional, nonlinear beam problem. This
is accomplished by taking advantage of certain small parameters inherent to beam-like structures.
VABS is able to calculate the one-dimensional cross-sectional stiffness constants, with transverse
shear and Vlasov refinements, for initially twisted and curved beams with arbitrary geometry and
material properties. Several validation cases are presented. First, an elliptic bar is modeled with
transverse shear refinement using the variational asymptotic method, and the solution is shown to
be identical to that obtained from the theory of elasticity. The shear center locations calculated by
VABS for various cross sections agree well with those obtained from common engineering analyses.
Comparisons with other composite beam theories prove that it is unnecessary to introduce ad hoc
kinematic assumptions to build an accurate beam model. For numerical validation, values of the
one-dimensional variables are extracted from an ABAQUS model and compared with results from a
one-dimensional beam analysis using cross-sectional constants from VABS. Furthermore, point-wise
three-dimensional stress and strain fields are recovered using VABS, and the correlation with the
three-dimensional results from ABAQUS is excellent. Finally, classical theory is shown to be insuf-
ficient for general-purpose beam modeling. Appropriate refined theories are recommended for some
classes of problems.

Introduction
In the past 20 years, composite materials have found

increasing applications in aerospace engineering. Many air-
craft components, such as rotor blades and high-aspect-ratio
wings can be modeled as one-dimensional (1-D) beam prob-
lems, thus leading to much simpler governing equations and
easy interpretation of the results. To take advantage of
this geometric feature without loss of accuracy, one has to
capture the behavior associated with the eliminated two di-
mensions (the cross sectional coordinates). Especially in
composite beams, there may be elastic couplings among all
forms of global deformation and among both in- and out-of-
plane components of the cross-sectional warping displace-
ment. This generally results in a fully-populated matrix of
cross-sectional stiffness properties.

The ability to accurately analyze and design composite
beam structures lags well behind the ability to manufacture
them. The only accurate and reliable analysis tools cur-
rently availably to industry are costly, labor-intensive, three-
dimensional (3-D) finite element analyses (FEA). Although
less costly beam modeling tools are available, they usually
cannot correctly model beams with arbitrary cross-sectional
materials and geometries. For example, conventional beam
analyses often fail to accurately calculate the uncoupled tor-
sional stiffnesses, and they cannot predict important elastic
couplings in composite structures that can be exploited by
designers to improve aeroelastic behavior. However, one
method for which preliminary results have shown to be quite
accurate is the Variational Asymptotic Beam Section Anal-
ysis (VABS), originally developed by Cesnik, Hodges, and
their co-workers.1,2 VABS holds great promise for meeting
industry’s requirements for an efficient, reliable analysis tool
for composite beams. This paper presents results from stud-
ies that seek to validate VABS. These studies are essential in
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demonstrating that VABS indeed has accuracy and analysis
flexibility comparable to the more costly, general-purpose
3-D FEA tools such as ABAQUS.

The variational asymptotic method (VAM)3 is the math-
ematical basis of VABS and is used to split a general 3-D
nonlinear elasticity problem for a beam-like structure into a
two-dimensional (2-D) linear cross-sectional analysis and a
1-D nonlinear beam analysis. This method exhibits the mer-
its of both variational (systematic) and asymptotic (without
ad hoc kinematic assumptions) methods. It allows one to re-
place a 3-D structural model with a reduced-order model in
terms of an asymptotic series of certain small parameters
inherent to the structure. For the present problem, these
parameters include the maximum strain in the beam, the
ratio of the characteristic diameter of the cross section to
the wavelength of the axial deformation (h/�), and the ratio
of the characteristic diameter of the cross section to the mag-
nitude of the radius of initial curvature/twist (h/R). VAM
applies the asymptotic expansion to the energy functional
instead of the system of differential equations.4 Hence,
dropping a small term in the functional is equivalent to
neglecting such quantities in several differential equations
simultaneously. This implies that, when applicable, VAM is
more compact and less cumbersome than standard asymp-
totic methods.

VABS was first mentioned in Ref. 5. Its development over
the past ten years is described in Refs. 2, 6–10. VABS can
perform a classical analysis for beams with initial twist and
curvature with arbitrary reference cross sections. VABS is
also capable of capturing the trapeze and Vlasov effects,
which are useful for specific beam applications. VABS is
now able to calculate the 1-D stiffness matrix with trans-
verse shear refinement for any initially twisted and curved,
inhomogeneous, anisotropic beam with arbitrary geometry
and material properties. Finally, VABS can recover the 3-D
stress and strain fields, if required, such as finding stress con-
centrations, interlaminar stresses, etc. VABS is a 2-D FEA
with a typical element library (triangular elements with 3
– 6 nodes and quadrilateral elements with 4 – 9 nodes).
It is fully modularized and can be easily integrated into
any CAD/CAM software. VABS input is highly compatible
with formats used in commercial FEA packages, so any 2-D
meshed model of a cross section constructed in PATRAN or
ANSYS can be converted into an input for VABS with very
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Fig. 1 Sketch of a clamped prism

little extra effort.

Analytical Modeling of an Elliptic
Bar via VAM

Since the purpose of this paper is to present results from
the validation of VABS, we will not present the details of
the formulation here. Details for the most general and up-
to-date version of the formulation can be found in Ref. 2. To
proceed with the validation, we first undertake the modeling
of an elliptic prism analytically using VAM and then com-
pare it with the exact elasticity solution. This exercise will
give some insight to the VABS theoretical foundation and
serve as a benchmark test for numerical validation. Note
that here and throughout the paper, Greek indices assume
values 2 and 3 while Latin indices assume 1, 2, and 3. Re-
peated indices are summed over their range except where
explicitly indicated. From the general formulae in Ref. 2,
one can write the linear 3-D strain field Γij for a prism (see
Fig. 1) as:

Γ11 = γ11 + x3κ2 − x2κ3 + w′1

Γ22 = w2,2

Γ33 = w3,3

2Γ12 = w1,2 − x3κ1 + w′2

2Γ13 = w1,3 + x2κ1 + w′3

2Γ23 = w3,2 + w2,3 (1)

where wi are the warping components; γ11, κ1 and κα are 1-
D generalized strains, which consist of the beam extension,
torsion and bending curvatures, respectively; ( )′ denotes a
partial derivative with respect to the beam axial coordinate
x1; and ( ),α denotes a partial derivative with respect to
xα, the local Cartesian coordinates of the undeformed beam
cross-sectional plane.

For an isotropic elastic body with Young’s modulus E,
shear modulus G and Poisson’s ratio ν, twice the 3-D strain
energy per unit length can be written as11

2U3d = E
〈
Γ2

11

〉
+ 4G

〈
Γ2

12 + Γ2
13 + Γ2

23

〉
+

E

(1 + ν)(1− 2ν)〈{
νΓ11 + Γ22

νΓ11 + Γ33

}T [
1− ν ν
ν 1− ν

] {
νΓ11 + Γ22

νΓ11 + Γ33

}〉 (2)

where the notation

〈•〉 =
∫
S

• dx2 dx3

is used throughout this paper with S being the cross-
sectional plane.

The displacement field is four times redundant due to
the introduction of the warping displacement. To eliminate
this redundancy, four appropriate constraints have to be
imposed on the warping field. The most convenient way to
introduce such constraints is to eliminate from the warping
any contribution to the rigid-body motion of a cross section
that is caused by the classical 1-D deformation measures
(i.e., the stretching, torsion and bending in two directions).
This is accomplished in the VABS formulation by choosing

〈wi〉 = 0 (3)

〈x2 w3 − x3 w2〉 = 0 (4)

Such a choice of constraints implies that the 1-D variables
associated with these deformations do not have to be rede-
fined. Next, the functional Eq. (2) is minimized, subject to
the constraints in Eqs. (3) and (4).

The response of an elastic body under a given set of loads
is completely determined by its strain energy. Hence, to
derive an accurate beam theory, one has to construct a
1-D model that comes as close as possible to reproducing
the 3-D strain energy. This dimensional reduction can-
not be done exactly. VAM is used to find a 1-D energy
that would approximate the 3-D energy as closely as possi-
ble taking advantage of the small parameters. We assume
ε = max(|γ11|, h|κ|), and usually it is true that ε << h/�
and ε << h/R. Because h/� and h/R both involve h, we
can regard h as the small parameter and expand all unknown
functions in asymptotic series of h as

wi = w
(0)
i + hw

(1)
i + O(h2) (5)

Considering only terms of order O(ε2) in the strain energy,
one can write the dominant terms of the energy expression,

including the unknown warping functions w
(0)
i , as 2U0. The

variational asymptotic procedure requires one to find the
warping functions which minimize this expression. For an
elliptic cross section with semi-axes a and b in the directions
of x2 and x3 respectively, it can be shown that the following
warping functions uniquely satisfy all the constraints and
minimize 2U0

w
(0)
1 =

(b2 − a2)x2x3κ1

a2 + b2
(6)

w
(0)
2 =

νκ3

8
(b2 − a2 + 4x2

2 − 4x2
3)− νx2(γ11 + x3κ2) (7)

w
(0)
3 =

νκ2

8
(b2 − a2 + 4x2

2 − 4x2
3) + νx3(x2κ3 − γ11) (8)

The resulting value of 2U0 is the first approximation of the
strain energy and coincides with the result of the classical
beam theory:

2U0 = πabEγ2
11 +

πa3b3G

a2 + b2
κ2
1 +

π

4
ab3Eκ2

2 +
π

4
a3bEκ2

3

= EAγ2
11 +GJκ2

1 + EI2κ
2
2 + EI3κ

2
3

(9)

Note that this result is obtained without any ad hoc assump-
tions such as “the cross section is rigid in its own plane” or
“ν = 0.”

To obtain a more refined theory, one can repeat the same
procedure in order to find the dominant terms of the strain
energy up to any desired order. For a prismatic beam it is
easy to prove that the correction to the strain energy of order
h is zero. Denoting the dominant terms of the energy in the
order of h2 as 2U1, we find that they contain the derivatives
of the unknown functions with respect to the axial coordi-
nate x1. Integration by parts with respect to x1 of 2U1 does
not affect the final result, but it does allow the strain energy
to be expressed in terms of the unknown functions instead
of their derivatives. Carrying out a minimization procedure,
which is similar to the one conducted to obtain the “classi-
cal” theory, one obtains the warping field that satisfies all
the constraints and minimizes the second-order strain en-
ergy. The warpings w

(1)
2 and w

(1)
3 are identically zero, while

w
(1)
1 is a complicated third-order polynomial, not given here

for the sake of brevity. The minimized value of 2U1 is

2U1

EAa4
=

(3ρ2 + ρ4)
[
ν2 + 2ρ2(1 + ν)2 + 5ρ4(1 + ν)2

]
κ′22

12(3 + ρ2)(1 + 3ρ2)(1 + ν)

+
(1 + 3ρ2)

[
ρ4ν2 + 2ρ2(1 + ν)2 + 5(1 + ν)2

]
κ′23

12(3 + ρ2)(1 + 3ρ2)(1 + ν)

(10)

where ρ = a/b is the aspect ratio.
Although Eq. (10) is an asymptotically correct expression

up to the order of h2, this form of the strain energy would be
impractical for use in engineering analysis. The expression
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involves derivatives of the 1-D generalized strain measures
with respect to x1, and applying appropriate boundary con-
ditions would be very difficult.12

A Timoshenko-like beam model is free from such draw-
backs, and can be expressed symbolically as

2U = εTXε + 2εTFγ + γTGγ (11)

where ε = [γ11 κ1 κ2 κ3]
T represents the 1-D generalized

strains associated with extension, torsion, and bending; and
γ = [2γ12 2γ13]

T is the column matrix of transverse shear
strain measures. (It should be noted that ε is defined in
terms of the cross-sectional rotation variables of the Timo-
shenko beam model.) Following the general formulation in
Ref. 2, one can transform the strain energy that is asymp-
totically correct up to the order of h2 into a Timoshenko-like
model. Superposing the strain energies, Eqs. (9) and (10),
we can rewrite the strain energy in a matrix form as:

2U = εTAε + ε′
T
Cε′ (12)

where

A =

EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3

 (13)

C =

0 0 0 0
0 0 0 0
0 0 C2 0
0 0 0 C3

 (14)

C2 and C3 are the coefficients of κ′22 and κ′23 , respectively,
in Eq. (10).

Using the formulae given in Ref. 2, one can finally obtain
the Timoshenko model for the present problem as

2U =


γ11

κ1

κ2

κ3


T EA 0 0 0

0 GJ 0 0
0 0 EI2 0
0 0 0 EI3




γ11

κ1

κ2

κ3


+

{
2γ12

2γ13

}T [
S2 0
0 S3

] {
2γ12

2γ13

} (15)

where

S2 =
3a2(3a2 + b2)(1 + ν)2GA

2 [b4ν2 + 5a4(1 + ν)2 + 2a2b2(1 + ν)2]
(16)

S3 =
3b2(a2 + 3b2)(1 + ν)2GA

2 [a4ν2 + 5b4(1 + ν)2 + 2a2b2(1 + ν)2]
(17)

The shear stiffnesses in Eqs. (16) and (17) are identically
the same as those obtained from the elasticity solution for a
clamped, terminally loaded, elliptical prism.13 It is obvious
that those shear correction factors are the functions of the
aspect ratio and Poisson’s ratio. Poisson’s ratio will affect
the shear correction factor significantly, especially when the
aspect ratio is small.

One can find the shear stiffnesses for other cross-sectional
shapes using the same procedure. However, a closed-form
solution for the warping will not in general exist. One can
still use Ritz method to solve the variational problem ap-
proximately using any symbolic computing software. The
procedure used in VABS is essentially the same, except we
solve the variational problem using finite elements; the con-
vergence to the exact solution mainly depends on the mesh
refinement.

Locating Shear Center by VABS
The shear center for a beam is often defined as the point

through which a transverse force will only cause bending
and transverse shear deformation without twist.14 The lo-
cus of shear centers for all cross sections along the beam
axis is called the elastic axis of the beam. It is known that
the elastic axis is a natural reference line for describing the
elastic deformation of isotropic beams since it leads to sim-
pler resulting governing equations. For anisotropic beams,
the simplication is less advantageous for reasons explained
below.

To locate the elastic axis, one has to find the shear center
as accurately as possible, especially for thin-walled beams
with open cross sections. There the torsional stiffness is
much smaller than the bending stiffness, and even a very
small error in locating the shear center may result in un-
desirable twisting, with respect to which the design has to
be made robust. For thin-walled beams, it is not difficult
to locate the shear center for homogeneous beams made
from isotropic materials. But for thick-walled or compos-
ite beams, it is not possible in general to find a closed-form
solution for such a point.

However, if one has obtained an accurate 6 × 6 stiffness
matrix, finding the shear center becomes trivial. Suppose
one finds the following beam constitutive law:

γ11
2γ12
2γ13
κ1

κ2

κ3


=


S11 S12 S13 S14 S15 S16

S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36

S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56

S16 S26 S36 S46 S56 S66





F1

F2

F3

M1

M2

M3


(18)

To obtain the shear center location, it is sufficient to assume
that there are two transverse forces at the tip of a cantilever

beam F̂2, F̂3. Hence, M1 = F̂3e2− F̂2e3, M2 = −F̂3(L−x),

M3 = F̂2(L − x). According to the definition of the shear
center, we need to find e2 and e3 to locate a position where
an application of the transverse forces results in zero twist,
i.e., κ1 = 0. This can be written in terms of loading and
stiffness as:

[S24 − S44e3 + S46(L− x)] F̂2

+ [S34 + S44e2 − S45(L− x)] F̂3 = 0
(19)

Since this equation is valid for any arbitrary F̂2 and F̂3, the
location of shear center can be easily obtained:

e2 = −S34

S44
+

S45

S44
(L− x) (20)

e3 =
S24

S44
+

S46

S44
(L− x) (21)

This demonstrates that the position of the shear center
varies linearly with respect to the axial coordinate and is
thus not a cross-sectional property for beams with bending-
twist coupling. Clearly, the use of the locus of shear centers
as the beam reference line is not feasible in general. How-
ever, if there is no bending-twist coupling, then the shear
center becomes a cross-sectional property; and the use of
the locus of the shear centers provides a reference line that
decouples bending and twist, hence making it a popular
choice. For beams with bending-twist coupling such as com-
posite beams, one can modify the definition of shear center
by considering only the twist caused by the shear forces and
excluding the twist produced by bending moment through
the bending-twist coupling. In such cases the second term
in Eqs. (21) and (20) will drop out; and the shear center, by
this modified definition, becomes a cross-sectional property.
A similar conclusion is reached in Refs. 15 and 16.

As the first example, we investigate the shear center of a
channel section (see Fig. 2). Using the thin-walled assump-
tion, the elasticity solution for the shear center turns out to



2108 YU, VOLOVOI, HODGES, AND HONG

x2

x3

F2

b

b

e

O

S

t

Fig. 2 Sketch of a channel section
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(
t

b
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1

5
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t
b

)2
+ 7

3

(22)

The calculated location of the shear center, normalized by
the thin-walled result, versus the aspect ratio b/t is shown
in Fig. 3. It is clear that when the aspect ratio is very
large, the shear center location calculated from the 6 × 6
stiffness matrix of VABS converges to the result of thin-
walled theory.

There is no known exact solution for the shear center of a
solid, homogeneous, isotropic, triangular cross section such
as depicted in Fig. 4. The shear center location calculated
from VABS, versus the aspect ratio b/a is plotted in Fig. 5.
When b/a is very small, the triangular section acts as a thin,
rectangular section; and the shear center approaches the
mid-point. For an equilateral triangular section the shear
center is at the centroid. When b/a is very large, the shear
center moves toward the vertical edge.

VABS versus Other
Theories and 3-D FEA

An extensive comparison with other composite beam the-
ories was presented in Ref. 17. The validity of various
beam modeling schemes and the relative importance of var-
ious assumptions on which they are based were discussed
therein. It was shown that an asymptotically correct model,
which alone represents the 3-D model as closely as pos-
sible, can serve as a standard to evaluate other models.
Here only the popular uniaxial stress assumption is revis-
ited. This assumption yields a much simpler model due to

Fig. 4 Sketch of triangular section
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Fig. 5 Shear center location of triangular section

Table 1 Properties of thin-walled box-beam

Property Value
outer dimensions: width a = 0.953 in

thickness: h = 0.03 height b = 0.53 in
right and upper wall: (θ)3/(−θ)3

left and lower wall: (−θ)3/(θ)3
material properties: El = 20.59× 106 psi
Et = 1.42× 106 psi Glt = 8.7× 105 psi

Gtn = 6.96× 105 psi νlt = νtn = 0.42

the elimination of the in-plane warping from the formula-
tion, and it would appear to be quite reasonable to believe
that the beam constants based on this assumption would
differ only slightly from their asymptotically correct coun-
terparts. However, there are some cases which the difference
is not negligible at all. Indeed, it can be verified that the
hypothesis of vanishing stresses in the plane of cross section
only holds for isotropic beams.

To see the consequences of making this incorrect assump-
tion, consider a box beam as shown in Fig. 6, with s as
the positive fiber direction and n as the normal direction
indicating the stacking sequence. The geometry and mate-
rial properties are as listed in Table 1 with l as the fiber
direction, t is the transverse direction and n is the direction
normal to the ply plane. Fig. 7 shows that the torsional
rigidity is severely underpredicted when this assumption is
invoked.

The analytical solution is based on the thin-walled solu-
tion starting from shell theory. It yields the same result as
VABS because both of them are based on the variational
asymptotic method. It is important to note that that there
is no unique beam theory for a given order of asymptotical
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Fig. 6 Sketch of the cross section of a box beam
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Fig. 7 Torsional rigidity for a box beam

correctness. The expansions of two asymptotically correct
theories differ in their higher order terms, the ones that are
not asymptotically correct. However, one must be consistent
with the order of small parameters and extremely careful in
the neglect of small quantities when carrying out this ap-
proach analytically. The upper curve which overpredicts
the torsional rigidity is also from a variational asymptotic
approach in which κss was neglected by mistake.

Comparing only the values of beam stiffness matrix can
be very misleading if two models are derived from differ-
ent methodologies. One such example is Table 9 in Ref. 9.
A correct basis for comparison is to find how accurately
two different 1-D models approximate the 3-D strain energy.
There are two ways to carry out this comparison. One is to
extract the 1-D information from 3-D results based on the
definition of 1-D variables of the beam models. For the very
different stiffness matrices in Table 9 of Ref. 9, one natural
way to assess the difference is to compare a 1-D result (like
a tip defection) using various stiffness models with a 3-D
solution (obtained from the authors of Ref. 18). The plots
are shown in Fig. 8. The dashed line shows results from the
NABSA19 model and the solid line shows the results from
the VABS model. These curves are very close. The VABS
curve is closer to the 3-D results when the beam is slender,
and the NABSA results do a bit better in the limit of the
beam becoming fat (i.e., ceasing to be a beam). The sym-
bols depict results from running ABAQUS with degrees of
freedom on the order of 105 for the longer beams. It is clear
that both models capture the essential behavior and that
there is very little difference between the results predicted

J

J

J

J

J
J J J J J J J J1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

N
or

m
al

iz
ed

 ti
p 

de
fl

ec
tio

n

L/a

NABSA

VABS

J ABAQUS

Fig. 8 Comparison of NABSA, VABS, and 3-D FEA
results

by VABS and those from 3-D FEA.
Another way to compare these predictions is to recover

the 3-D stress or strain fields from the 1-D models and com-
pare them with the stress or strain from the 3-D FEA. Recall
that, as a consequence of decoupling the 3-D elasticity prob-
lem, the 3-D strain field can be recovered by 1-D strain
measures, cross sectional warping and their derivatives as
follows:

Γ =
1

h
Γh w + Γε ε + ΓR w + Γl w′ (23)

where Γ = [ Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33 ]T , w =
[ w1 w2 w3 ]T , ε = [ γ11 κ1 κ2 κ3 ]T . All of the operators
in Eq. (23) can be found in Ref. 2.

The warping is a function of the 1-D generalized strain
measures and the discretized cross-sectional warping already
obtained by VABS. The only remaining step is to solve
the beam problem in order to calculate the 1-D generalized
strain measures for a given set of loads. A geometrically-
exact, nonlinear 1-D theory is a natural and consistent
outcome of the dimensional reduction.20 However, for the
purposes of our validation studies here, it is sufficient to
use a linear version of the 1-D theory taken directly from
Ref. 20:

F ′ + k̃F + f = 0

M ′ + k̃M + ẽ1F + m = 0 (24)

where the operator ˜ is defined as •̃ij = −eijl•l, k =
�k1 k2 k3�T with k1 the initial twist and kα the components
of initial curvature along xα expressed in the beam cross-
sectional frame, e1 = �1 0 0�T , the column matrices F (x1)
and M(x1) contain the measure numbers of cross-sectional
force and moment stress resultants measured in the beam
cross-sectional frame, and the column matrices f(x1) and
m(x1) contain the applied distributed forces and moments
along the beam expressed in the beam cross-sectional frame.
Subject to any given boundary and loading conditions, and
given the 1-D stiffness matrix calculated by VABS and the
kinematical equations

γ = u′ + k̃u + ẽ1θ

κ = θ′ + k̃θ = 0 (25)
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Fig. 9 3-D stress σ12 distribution under torsional load-
ing

where u(x1) is the column matrix of displacement measures
expressed in the beam cross-sectional frame and θ(x1) is the
column matrix of infinitesimal cross-sectional rotations, one
can find all the 1-D variables. Making use of the warping
field obtained above, from Eq. (23) one can the find the 3-D
strain field. Finally, the 3-D stress field can be recovered
by using the general material constitutive law. Note VABS
does not restrict the 3-D material properties in any way, so
that one may use as many as 21 independent constants.

VABS can recover the 3-D stress-strain field for many
classical problems solvable by elasticity theory, such as the
Saint-Venant solution and flexure problem for elliptical and
rectangular prisms. We will now investigate some cases
where the exact elasticity solution cannot be obtained. Nat-
urally, a comparison is made with results from 3-D FEA.

For classical modeling, we take a rectangular cantilever
beam with 0 ≤ x1 ≤ 20, −0.5 ≤ x2 ≤ 0.5, and −1 ≤ x3 ≤ 1
(the dimensions are in inches), under a tip twisting moment
of magnitude 1 lb.-in. The cross section is divided into four
layers made with two different isotropic materials along the
x3 direction. This section is discretized with 192 8-noded
quadrilateral elements. The Young’s modulus E for the top
and bottom layers is 2.6 × 107 psi, and for the middle two
it is 2.6× 106 psi; Poisson’s ratio is 0.3. The recovered 3-D
stress σ12 is plotted in Fig. 9. From the plot, one can ob-
serve that there is a stress discontinuity along the boundary
between the two different materials. To compare the re-
sults with 3-D FEA using ABAQUS, we plot the 3-D strain
and stress along the height through the middle of the cross
section in Figs. 10 and 11. The solid lines are the results
recovered from VABS and the symbols are from ABAQUS.
Although the strain is continuous, there are obvious jumps
in the stress distribution at the junction of the two materi-
als, as expected. The VABS results are right on top of those
from the 3-D FEA.

Another example is the Timoshenko-like modeling of an
initially curved (k3 = 0.01 rad/in.), isotropic, rectangular,
cantilever beam with the same cross section (E = 2.6 ×
107 psi, ν = 0.3) subject to a unit tip shear force in the
x2 direction. This time the cross section is meshed with
200 8-noded quadrilateral elements. The reference line of
this beam spans an arc of 10◦. The 3-D stress component
σ12 at the mid-span is plotted in Fig. 12. The agreement
with ABAQUS result is also excellent as one can observe
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Fig. 11 3-D stress σ12 along x2 = 0

from Figs. 13 and 14. To achieve the same accuracy, the
ABAQUS model uses 15,872 C3D20R 3-D brick elements.

Additional Considerations for Refined Beam Theories
A classical theory that accounts for extension, torsion,

and bending in two directions provides excellent results
in many situations, namely when the beam is slender, is
not thin-walled with open section, and undergoes long-
wavelength deformation (i.e., static behavior in response
to loads that vary slowly over the length or low-frequency
modes of vibration). However, a refined theory is required
for high accuracy in other situations. VABS can calculate
stiffness and recovery relations for the following two refine-
ments: (1) the Timoshenko (transverse shear) refinement,
needed for short-wavelength deformation; (2) the Vlasov
refinement, typically needed for thin-walled, open-section
beams when the torsional stiffness is very small compared
to other stiffnesses. VABS is also able to capture the non-
linear Trapeze effect due to moderate local rotations. The
significance of the Timoshenko refinement can be observed
from Fig. 8. For example, using a classical model for stubby
beams with aspect ratio less than 5 will introduce errors of
the order of 32%. Even when the aspect ratio is equal to
10, there is still an error around 8%, which might be not
acceptable for some applications. A Timoshenko-like model
may also be required for accurate recovery of stresses other
than σ11.

Vlasov’s theory was developed for thin-walled beams with
open cross sections. It addresses the problem that the cross
sections of such beams cannot warp freely as assumed in the
Saint-Venant solutions. There is a strong restraining effect
at the ends of the beam which will result in an significant
increase in the effective torsional rigidity. A well-studied
case21 is the composite I-beam as shown in Fig. 15, where
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θ = 15◦, a = 1 in., b = 0.5 in., h = 0.04 in., and the length of
the beam is 30 in. The material properties are the same as
those listed in Table 1 except Gtn = 8.9×105 psi. This con-
figuration exhibits strong bending-twist coupling, and the
torsional rigidity is nearly an order of magnitude less than
the coupling. For a unit twisting moment applied at the tip,
results for the tip twist angle and bending slope obtained
from the classical and Vlasov models are plotted in Fig. 16.
It is shown that classical theory overpredicts the tip angles
by a factor of 2 relative to the corrected result. Although
the Vlasov term does not yield much of a correction for the
tip bending slope for this beam under a unit tip shear force
(see Fig. 17), there is still a large correction for the tip twist
under this loading. There are also other analytical models
with the Vlasov refinement plotted in this figure (Volovoi
et al.,22 Chandra et al.,21 and Badir et al.23), all of which
exhibit excellent agreement with the VABS result.

There is still another subtle refinement that has not
attracted much attention in the literature. It is shown
in Ref. 2 that the initial curvatures and twist will affect
the stiffness model and introduce classical and nonclassi-
cal couplings. These effects will be more significant for
anisotropic beams which are designed to use the couplings.
As pointed out in Ref. 8, analysts sometimes use the stiff-
ness constants from a prismatic beam sectional analysis
in the geometrically-exact 1-D equilibrium and kinematical
equations for curved/twisted beams. From the asymptotic
point of view this practice will clearly introduce errors that
are sometimes significant. To demonstrate this, a simple
isotropic rectangular cross section with dimensions as 2
in. by 1 in. and Young’s modulus as E = 2.6 × 109 psi
and Poisson’s ratio ν = 0.3 is studied. In Fig. 18 results are
presented for a beam that is initially twisted and clamped
at x1 = 0 and loaded at the tip where x1 = L = 15 in. with
F3 = 1, 000 lb. The dashed line is calculated by using
prismatic stiffness model in the geometrically-exact 1-D gov-
erning equations, and the solid line is calculated using the
corrected stiffness model. As one can see, there is a large
difference (up to 40%) even for a moderate initial twist
(k1 = 0.2 rad/in.). This is not surprising, since initial twist
introduces extension-twist and bending-shear couplings into
the stiffness model and also modifies the diagonal terms.

Experience with VABS in a practical setting24 shows that
realistic helicopter rotor blades can be modeled in VABS
with a high level of detail (even to the point of actually
modeling paint and adhesive layers) using 10,000 – 30,000
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Fig. 16 Tip twist and bending slope under tip torsional
load

2-D elements. By modern computer standards, this is a
problem of modest size and makes detailed stress analysis
practical and feasible. A comparable level of detail in 3-D
finite element analysis requires several million elements and
about three orders of magnitude more computing time than
analyzing the problem using VABS and a suitable beam
code.

The present validation is not claimed to be exhaustive.
Indeed, given adequate resources, one could carry out a sys-
tematic comparison of the 3-D FEA and the 1-D models (in
both of the ways noted above), while carefully maintaining
similar mesh geometries and monitoring pointwise behavior
of all field variables.

Conclusion
It has been demonstrated herein that VABS can repro-

duce the results of the theory of elasticity and correctly
locate the shear center for beams of arbitrary cross-sectional
material and geometry. VABS also can evaluate other the-
ories and maintain an accuracy comparable to that of 3-D
finite element codes. All of this is very important for prelim-
inary as well as detailed design calculations. VABS shares
many features with standard finite element codes. It re-
quires the same kinds of input as found in other finite
element codes and takes advantage of standard finite el-
ement procedures, including commercially available mesh
generation and post-processing. Moreover, it relies on so-
lution procedures found in standard finite element codes.
Although VABS is restricted to beam applications, it pro-
vides a level of accuracy comparable to that of standard 3-D
finite element codes, but with far smaller computing and
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preprocessing requirements. Moreover, the cross-sectional
stiffness matrix, once computed, can be used to solve many
beam problems with varying boundary conditions, loading,
and motion.
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