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Chapter 1

Introduction

In the fi eld of wind turbine design, accurate structural modeling is one of the most important research areas.
Structural modeling is required to accurately predict the stress fi eld, which is important in determining
the turbine’s lifetime. Furthermore, it is a primary ingredient in both performance and stability analyses.
Finally, it is required for designing controls, which can signifi cantly increase the turbine’s effi ciency when
used properly. In order to be applicable to control design, a structural model needs to be effi cient; an
accurate but highly complex model might not be useful to a practical design of the control system. So, a
feasible structural model could involve some points of compromise between accuracy and effi ciency. An
advanced modeling methodology is then needed to accurately capture the dynamic behavior of the whole
system.

Wind turbines have certain characteristics that should be considered in their structural modeling. First,
there are frequently large differences in the stiffnesses of the various subsystems, which calls for the system
to be divided into two parts: (a) a collection of bodies that are suffi ciently stiff to be modeled as rigid
bodies, and (b) a collection of fl exible bodies that undergo large displacements and rotations, so they cannot
be treated as rigid. This raises research issues concerning how to appropriately model the rigid and fl exible
bodies and their connectivity. A second characteristic is that the derived mathematical system is time-
dependent and periodic. This means that three important factors must be kept in mind. First, a periodic
steady-state solution must be found instead of a constant steady-state solution, which is more common in
engineering models. Second, stability criteria must be determined in a manner appropriate for a periodic
system. Here, a conventional modal analysis would be meaningless, and Floquet theory [4, 10] must be used.
Finally, a linearized model that is truly useful in the design of controls must be obtained from linearization
about the periodic steady state.

The aim of this research has been to develop a theoretical and computational model for the structural
dynamic and aeroelastic analysis of wind turbines, one that is also applicable to control system design. The
model is intended to accurately analyze the dynamic and aeroelastic behavior of a wind turbine, which is
described as a periodic system, with symbolic computing capability. To achieve this goal, a multi-fl exible-
body approach is developed. This approach is composed of Kane’s method [9] for rigid body subsystem
modeling and their connectivity, a mixed fi nite element method [6] for the fl exible body modeling, and
blade element momentum theory [3] for the aerodynamic modeling. The unifi ed system model, obtained
by combining the subsystem models, is a set of nonlinear ordinary differential equations with periodic
coeffi cients. A computational framework for numerical analysis of the system equations is developed to
identify useful information for the system. A fi nite-element-in-time scheme [1] is built for performing
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nonlinear simulations, determining the nonlinear periodic steady-state solution, and analyzing the stability
of small perturbations linearized about the nonlinear periodic steady-state solution. Finally, linear system
matrices with explicit periodic coeffi cients are derived for application to control design.

The report is structured in the following manner. A brief description of this work is presented in Chap-
ter 2. Chapter 3 describes the theoretical background of the research. The development of the computational
framework is presented in Chapter 4. Chapter 5 presents a numerical validation of our method with numer-
ical results from other codes. A stability analysis of a full wind turbine model, with parametric studies
that exercise the key features of the present framework, is presented in in Chapter 6. Finally, Chapter 7
summarizes the contributions of this work. Appendix A presents a user's guide to the computer program WTFlex.
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Chapter 2

Description of the Work

The objective of the proposed work is to build a theoretical and computational framework for the aeroelastic
analysis of fl exible rotating systems, specifi cally with application to wind turbine control design. This
method is based on an integration of Kane’s approach [8] for the analysis of the multi-rigid-body subsystem
and a mixed fi nite element method for the analysis of the fl exible-body subsystem. The combined analysis
is then coupled with an aerodynamic model to form a unifi ed framework for aeroelastic analysis.

Theoretical Modeling

The multi-rigid-bodies subsystem is modeled as a set of interconnected rigid bodies using Kane’s method
[8]. This method is known to lead to simpler equations than conventional methods because of the possibility
of intelligent selection of generalized speeds that yield relatively simple dynamic equations [9].

The fl exible portions are represented by geometrically-exact, mixed, beam-fi nite elements derived from
the formulation of Ref. [6]. The use of the mixed formulation allows the direct determination of constraint
forces and moments within the beam-fi nite element and at the boundaries, and thus allows simple connectiv-
ity between the fi nite elements and rigid bodies. Although the number of equations and unknowns increases,
the resulting equations are simple and the coeffi cient matrices are very sparse. Thus, coupling these equa-
tions results in a set of nonlinear ordinary differential equations that is simpler in form than a set obtained
by other means.

The aerodynamic forces are derived from thin airfoil theory, and the infl ow model is from blade element
momentum theory. The aerodynamic forces are transformed to be written in terms of variables that are
appropriately expressed in the deformed blade frame for coupling of the structural model.

Computational Modeling

The strategy for solving the derived equations is to separate the solution into two parts: a nonlinear periodic
steady-state and a transient solution linearized about the periodic steady state. The computational framework
for the periodic steady-state can be built using fi nite elements in time [1]. To reduce the computational cost,
a half-period time integration scheme is developed for two-bladed, horizontal-axis wind turbines (HAWTs).
The scheme requires a boundary condition at beginning and ending time nodes instead of the more conven-
tional periodicity condition presented in [1]. The steady-state over the whole period then can be calculated
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from nonlinear simulation with the initial condition as the steady-state at the initial node, which is obtained
from a half-period time integration scheme.

A Floquet stability analysis can be directly undertaken from the framework used to extract the periodic
steady-state solution. The stability components implicitly mean the periodic stability of the linear system,
which is linearized about the periodic steady-state solution. In this study, a simple method to connect the
periodic steady-state and the Floquet stability is developed. Linearization about the periodic steady-state
solution yields a set of dynamic equations with periodic coeffi cients.

This analysis can be directly connected to the application of realistic composite blades with initial twist
and curvature. The beam model requires accurate cross-sectional stiffness and inertia coeffi cients, and these
cross-sectional properties can be calculated using VABS (Variational Asymptotic Beam Sectional Analysis)
[2]. The method was validated by the successful results of previous work, in which the mixed formulation
and VABS are combined for various models [7, 11]. Also, it is possible to use the present framework in
designing a controller for the whole wind turbine using symbolic tools.

The symbolic model resulting from the present formulation is one of the most important contributions
of the present study. Figure 2.1 shows the advantage of the present framework over other methods of control
design. This comparison must be tempered with the realization that there is a great deal of uncertainty
in the best of aerodynamic models, although great advances are being made in use of computational fl uid
dynamics (CFD). Thus, this comparison applies primarily to the structural dynamic response problem and
only secondarily to aeroelastic analyses. The fi rst method presented in the fi gure represents a code with only
multi-rigid-body modeling. The symbolic system matrix can be obtained using this methodology, but the
accuracy of the solution may not be suffi cient to obtain a realistic model, especially for realistic composite
blades. Of course the numerical accuracy of this approach may be improved by increasing the number
of the rigid bodies; but as the system model becomes larger, the ability of the code to derive a symbolic
system matrix becomes strained, and the usefulness of a symbolic system matrix in control design becomes
doubtful. The second method represents a code with numerical fi nite element method modeling. The results
of the code would be very accurate, but it is not possible to represent the system as a symbolic time-domain
model amenable to preliminary design or control synthesis. So, the model of the system can be marked as
a “ black box” that produces only time history responses to inputs. If one desires to model a given system
with the best possible tool, this would be it. When coupled with CFD it would provide the state-of-the-
art in predictive capability from “ fi rst principles.” The last method in the fi gure represents the approach to
multi-fl exible-body modeling described in this report. Using this framework, one can obtain a symbolic
system matrix similar to rigid-body modeling while maintaining the accuracy close to that of the numerical
FEM modeling. For a complete aeroelastic framework, computational costs would increase considerably.
Thus, symbolic computation for the structural modeling may have to be confi ned to expressing the boundary
forces and moments in terms of other state variables. Of course, the number of states appropriate for control
design would be problem dependent.
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Box
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Symbolic systemmatrix
Medium accuracy

Figure 2.1: Comparison of three types of models showing advantages and disadvantages of each
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Chapter 3

Theoretical Background

Structural Theory

All fl exible elements are represented as beams using mixed fi nite elements. The starting point of the fl exible
body analysis is the weakest variational formulation given in Eq. (74) of Hodges [6]. The weakest form
refers to a system description based on the extended Hamilton’s principle which contains the least number
of spatial or temporal derivatives of the variables. The governing equation in [6] was written as

∫ t2

t1

∫ `

0

{[(
δq

′
)T

− δq
T
K̃ − δψ

T
(ẽ1 + γ̃)

]
F +

[(
δψ

′
)T

− δψ
T
K̃

]
M

−

(
δ̇q

T
− δq

T
Ω̃ − δψ

T
Ṽ

)
P −

(
˙δψ

T
− δψ

T
Ω̃

)
H

+ δγT

[(
∂U

∂γ

)T

− F

]
+ δκT

[(
∂U

∂κ

)T

−M

]
− δV T

[
ρ
(
V − ξ̃Ω

)
− P

]

− δΩT
(
IΩ + ρξ̃V −H

)
+ δF

T
[
e1 + k̃u− CT (e1 + γ)

]
−
(
δF

′
)T

u

− δP
T (
v + ω̃u− CTV

)
+ ˙δP

T
u+ δM

T

(
∆ +

θ̃

2
+
θθT

4

)
(Ck − k − κ)

−
(
δM

′
)T

θ − δH
T

(
∆ +

θ̃

2
+
θθT

4

)
(Cω − Ω) + ˙δH

T
θ

− δq
T
f − δψ

T
m

}
dx1dt

= −

∫ `

0

(
δq

T
P̂ + δψ

T
Ĥ − δP

T
û− δH

T
θ̂
)∣∣∣

t2

t1
dx1

+

∫ t2

t1

(
δq

T
F̂ + δψ

T
M̂ − δF

T
û− δM

T
θ̂
)∣∣∣

`

0
dt,

(3.1)

where u is the column matrix of displacement measures of the beam reference line in the b basis (the
undeformed beam cross-sectional frame basis), θ is the column matrix of Rodrigues parameters, so that the
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matrix of direction cosines C , relating the B basis (the deformed beam cross-sectional frame basis) to the b
basis, is given by

C =
∆
(
1 − 1

4
θT θ

)
− θ̃ + 1

2
θθT

1 + 1

4
θT θ

, (3.2)

F is the column matrix of section force resultant measures in the B basis, M is the column matrix of section
moment resultant measures in the B basis, P is the column matrix of section linear momentum measures
in the B basis, H is the column matrix of section angular momentum measures in the B basis, γ is the
column matrix of force strains, κ is the column matrix of moment strains, k is the curvature vector for the
undeformed beam in the b basis, K is the curvature vector for the deformed beam in the B basis, V is the
column matrix of velocity measures of the beam reference line in the B basis, Ω is the column matrix of
cross-sectional angular velocity measures in the B basis, ξ is the position of the section mass center of the
undeformed beam relative to the undeformed beam reference line in the b basis, f is the distributed applied
force per unit length in the B basis, m is the distributed applied moment per unit length (in the B basis),
U is the strain energy per unit length, v and w are the generalized speeds of the body/frame to which the
fl exible subsystem is attached, ∆ is the 3 × 3 identity matrix, e1 is b1, 0, 0cT , the tilde transforms a 3×1
column matrix into an antisymmetric 3×3 matrix, such as

θ̃ =




0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0


 , (3.3)

δq is the column matrix of virtual displacement measures in the B basis, δψ is the column matrix of virtual
rotation measures in the B basis, δF is the column matrix of virtual force transformed to the b basis, δM
is a column matrix of virtual moment test functions, δP is the column matrix of virtual linear momentum
measures transformed to the b basis, and δH is a column matrix of virtual angular momentum test functions.
The overbar of the virtual variables indicate they are not the variation of a function. All “ hatted” terms in the
right side of the equation are the variable values at the boundaries. All “ primed” terms and “ dotted” terms
represent the space and time derivative of the terms respectively.

The force variables (F and M ) are related to strain measures (γ and κ) in accordance with the 1-D
constitutive law as {

F
M

}
= [S]

{
γ
κ

}
, (3.4)

where [S] is the cross-sectional stiffness matrix. The stiffness matrix may be calculated using VABS or other
suitable means and is used to eliminate γ and κ in favor of F and M .

Moreover, the momentum variables (P and H) are related linearly to the velocity variables (V and Ω).
When the locus of cross-section mass centroids is chosen as the reference line, these relations can be written
for an arbitrary cross-section of the beam as

{
P
H

}
=

[
m∆ 0
0 I

]{
V
Ω

}
, (3.5)

where m is the mass per unit length of the beam element, and I is the moment of inertia matrix of the cross-
section. By virtue of Eq. (3.5), the quantities P and H are eliminated in favor of V and Ω, the “ generalized
speeds” of the beam element.
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The weakest form in Eq. (3.1) is integrated by parts in time, and the time integration is removed from
variational quantities. This way only the spatial dependence is accounted for in the fi nite element modeling.
The fi nal weak form is obtained by removing some variables using Eq. (3.4) and (3.5) then reduces to

∫ `

0

{[
δq

′T
− δq

T
κ̃− δψ

T
(ẽ1 + γ̃)

]
F + δq

T
Ṗ

+
(
δq

T
Ω̃ + δψ

T
Ṽ
)
P +

(
δψ

′T
− δψ

T
κ̃
)
M

+ δψ
T
(
Ḣ + Ω̃H

)
+ δF

T [
e1 − CT (e1 + γ)

]

− δF
′T
u− δM

T
(

∆ +
1

2
θ̃ +

1

4
θθT

)
κ− δM

′T
θ

− δP
T [
v + ω̃u− CTV + u̇

]

− δH
T
[(

∆ +
1

2
θ̃ +

1

4
θθT

)
(Cω − Ω) + θ̇

]

− δq
T
f − δψ

T
m

}
dx1

=
(
δq

T
F̂ + δψ

T
M̂ − δF

T
û− δM

T
θ̂
)∣∣∣

`

0
.

(3.6)

Dynamic Theory

Some elements of wind turbine systems are relatively stiff, and they are reasonably modeled as a multi-rigid-
body system. The current approach applies Kane’s approach to model the multi-rigid-body portion [8]. In
Kane’s approach, the equations of motion are described in terms of confi guration variables that are used in
conventional dynamic modeling, and motion variables that are a linear combination of the time derivatives
of the former. Here, the defi nition of the motion variables, which is expressed as kinematical differential
equations, strongly affects the length of the equations of motion. The following explains the procedure for
selecting appropriate generalized speeds, which produce a compact set of governing equations. Here, we
assume that the rigid bodies are connected to each other in such a way that there only one or two degrees of
freedom are introduced by the connectivity. The case for three degrees of freedom is excluded here, because
the selection of appropriate generalized speeds is not unique in that case [9].

If rigid bodies A and B have a single common axis, parallel to which is the unit vector i, the preferred
defi nition of the generalized speed is

Uo = n
ω

B · i. (3.7)

Here, n
ω

B is the angular velocity of body B with respect to the inertial frame n. If rigid bodies B and C
are connected in such a way that B

ω
C can be expressed as σ1i + σ2j, where σ1 and σ2 are time-dependent

scalars, while i and j are unit vectors permanently fi xed in B and C , respectively, the generalized speeds are

Ux =
(
n
ω

C − σ2j
)
· i

Uy = n
ω

C · j.
(3.8)
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Finally, if body A is clamped to a fl exible body, the following defi nition would match the kinematical
equations of the fi nite element model for the fl exible body:

bU1 U2 U3c
T = n

ω
T · bt1 t2 t3c

T

bU4 U5 U6c
T = n

v
T · bt1 t2 t3c

T .
(3.9)

Here, ti is the set of unit vectors at the point where the rigid-body system is connected to the fl exible body.
Using the choices of generalized speed described earlier, one can generate the nonlinear, time-dependent

equations of motion for the multi-rigid-body subsystem using Autolev,TM a commercially available symbol
manipulator capable of deriving equations of motion of rigid-body mechanisms using Kane’s method. (Au-
tolev was developed by Online Dynamics, Inc.) The equations of motion for the current model can be
represented in symbolic form as

Gi(U̇ , U, q, Fe,Me) = 0, i = 1, 2, · · · , n, (3.10)

where

U = bU1 U2 · · · Unc
T

q = bq1 q2 · · · qnc
T .

(3.11)

Here, Ui are generalized speeds, qi are generalized coordinates, and n is the degrees of freedom of the
multi-rigid-body system. Also, Fe and Me are the external force and moment components, which would be
calculated in the fl exible-body analysis.

The rigid-body subsystems are coupled with fl exible subsystems by transferring the information at the
interface between them. For example, in the mixed fi nite element model for a blade, the blade root is
clamped to a rigid-body called H , and thus the blade root displacement û0 and orientation variables θ̂0 are
set equal to zero. The inertial velocity of the mass center of H and angular velocity of H defi ne the motion
of the frame to which the blades are clamped and thus determine the variables v0 (the blade root velocity
written in b frame) and ω needed in the mixed fi nite element formulation. One can solve for the blade root
force F̂0 and moment M̂0 in terms of the element internal variables. This set of forces is applied at the points
where the blades are attached to the hub, and the moment is applied to H . Accomplishing the above transfer
couples the two systems, and one obtains the equations of motion for the complete system.

Aerodynamic Theory

Fig. 3.1 shows the frames used in aerodynamic modeling. Frame a is fi xed in the rotor hub at the rotor,
which is rotating with angular speed Ω about the a3 axis. Frame B is fi xed at the deformed beam reference
line, which coincides with B1 axis at each spatial node. Here it is assumed that the line of the aerodynamic
center coincides with the deformed beam reference line. Frame Z fi xes at the zero-lift line, which coincides
with the Z2 axis. For simplicity, the distinction between the Z and B frames is ignored, so that the zero-lift
line is along B2. The relative wind velocity vector is denoted by W = W2B2 + W3B3. Therefore, the
angle of attack is the angle between B2 and W.

The aerodynamic loads are derived from thin-airfoil theory. These distributed loads stem from the
circulatory lift, LC ; the noncirculatory lift, LNC ; the circulatory moment, MC ; the noncirculatory moment,
MNC ; and the profi le drag, D. In the mixed variational formulation, these loads are the force per unit length
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a2

a3

B2

B3

Z2

Z3

W

q

zero lift line

a.c.

Figure 3.1: Schematic of airfoil and aerodynamic forces

fB applied at the reference line and the moment per unit length mB about the reference line, both of which
are expressed in the deformed beam cross-sectional frame B:

fB =
ρ∞ca

2





0(
WB3

−
c

2
Ω1

)
WB3

−
cd
a
WB2

W
( c

2
Ω1 −WB3

)
WB2

−
cd
a
WB3

W −
c

4
V̇B3

+
c2

16
Ω̇1





mB = −
1

32
ρ∞c

3a





WB2
Ω1 − V̇B3

+
3c

8
Ω̇1

0
0




.

(3.12)

Here, Ω1 is the component of the cross-sectional angular velocity parallel to the B1 direction, ρ∞ is the mass
density of the air, c is the airfoil chord length, a is the lift curve slope, cd is the sectional drag coeffi cient,
VB3

is the cross-sectional reference line velocity component normal to the zero-lift line, W is the magnitude
of the relative wind velocity, and WB2

and WB3
are the components of the relative wind velocity in the B

basis. The expressions of WB2
and WB3

are

WB2
= eT2 (VB + CBaλe3) = eT2 C(vb + ω̃bub + u̇b + Cbaλe3)

WB3
= eT3 (VB + CBaλe3) = eT3 C(vb + ω̃bub + u̇b + Cbaλe3).

(3.13)

where λ is the induced velocity, ωb is the column matrix of angular velocity measures of the undeformed
blade reference frame in the b basis, and Cba is the transformation matrix from rotating frame a to un-
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deformed blade reference frame b, which reduce to the identity matrix if there is no initial curvature and
twist.

The infl ow is calculated using the following equation from [3] as

λ = V∞ + Ω0R
(σa

16

)[
−1 +

√
1 +

32xθ

σaR

]
. (3.14)

where V∞ is wind free-stream speed, Ω0 is the nominal rotor angular speed, R is the radius of the rotor, σ
is the solidity, x is the minimum distance from the rotating axis to the point of interest, and θ is the angle
between the zero-lift line and the rotor’s plane of rotation. Equation (3.14) can be used with simplifying
assumptions that the lift coeffi cient is linear, the drag coeffi cient is small, and total vertical fl ow on the a3

axis is positive [5]. Otherwise, the second term in the right side of Eq. (3.14) would be a function of V∞.
To calculate θ, let h = CZa

21 a1 + CZa
22 a2 represent the projection of Z2 (the zero-lift line unit vector) in

the a1-a2 plane (i.e., the “ plane of rotation” ). Introduction of the rule of dot products,

Z2 · h = |Z2||h| cos θ (3.15)

leads to

θ = cos−1

[√(
CZA

21

)2
+
(
CZA

22

)2
]

sign
(
CZa

23

)
. (3.16)

The sign of θ was determined based on the orientation of Z2: if the a3 component of Z2 is positive, then the
airfoil is pitched nose up; the sign of θ can therefore be determined by the sign of CZa

23 since Z2 ·a3 = CZa
23 .

The remaining quantities needed to calculate the infl ow are

x =

√
(R · a1)

2 + (R · a2)
2 (3.17)

R = [x]x1=` (3.18)

σ =
bc

πR
, (3.19)

where R is the position vector from the point at the center of rotation to a point on the deformed reference
line, and b equals the number of rotor blades.

Note that the aerodynamic theory in this work is only applicable over the linear region of the lift curve.
So, it has very limited applicability for realistic analysis of wind turbines, which should include such phe-
nomena as nonlinear effects, the ground effect because of proximity to the ground, and unsteady wake
effects. For more practical applications, future research is recommended to incorporate more sophisticated
aerodynamic modeling. While such research is believed to be feasible, the calculation of symbolic system
matrices will almost certainly be impossible.
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Chapter 4

Development of the Computational
Model

The previously described models for the fl exible-body subsystem, the rigid-body subsystem, and aerody-
namics are integrated into a unifi ed framework for the aeroelastic analysis of a whole system. Also, the
framework can be easily used for structural dynamic analysis simply by removing the aerodynamic terms.

Nonlinear Simulation

The nonlinear simulation is essential to an investigation of the behavior of the system with various condi-
tions. The time-fi nite element method can be used to do the analysis. This is undertaken by converting the
formulation into its weakest form in both space and time. Thus, the spatial and temporal derivatives are
transferred to the variations via integration by parts and weak enforcement of boundary and initial and fi nal
conditions. The analytical form of the governing equation is given in Eq. (3.1), removing some variables by
Eq. (3.4) and Eq. (3.5). To obtain space-time fi nite elements, the following shape functions can be used:

δq = δqi (1 − η) (1 − τ) + δqjη (1 − τ)

+ δqkητ + δql (1 − η) τ

δψ = δψi (1 − η) (1 − τ) + δψjη (1 − τ)

+ δψkητ + δψl (1 − η) τ (4.1)

δF = δF i (1 − η) + δF jη

δM = δM i (1 − η) + δM jη

δP = δP k (1 − τ) + δP lτ

δH = δHk (1 − τ) + δH lτ,

where η and τ are dimensionless spatial and temporal coordinates within the element. With these shape
functions, along with constant shape functions for all element variables, the spatial and temporal integration
of the governing equation can be performed explicitly to obtain a set of nonlinear algebraic equations.
Figure 4.1 shows the composition of the space-time fi nite element with virtual variables.
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iiq Ydd , jjq Ydd ,
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ll HP dd ,

h

t

Figure 4.1: Space-time fi nite element and virtual variables

The state variables can be discretized using nodal variables at the four corners of a space-time fi nite
element. If a constant shape function is used, the state variables can be simply expressed as

u =
ui + uj + uk + ul

4

θ =
θi + θj + θk + θl

4

V =
Vi + Vj + Vk + Vl

4

Ω =
Ωi + Ωj + Ωk + Ωl

4
F = Fm

M = Mm,

(4.2)

where variables with subscripts i, j, k, or l denote the nodal variables, and the variables with subscript m
denote the element variables.

The alternative way to build the set of equations is to apply the shape function for the space fi nite element
to Eq. (3.6):

δq = δqi (1 − η) + δqi+1η

δψ = δψi (1 − η) + δψi+1η

δF = δF i (1 − η) + δF i+1η

δM = δM i (1 − η) + δM i+1η

δP = δP i

δH = δH i.

(4.3)

By collecting terms with various test function coeffi cients, one can obtain the set of fi nite element
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equations. The whole set of equations for a blade is

δq1 : −F 1 +
∆x

2

(
Ṗ 1 + Ω̃1 P 1 − κ̃1F 1 −mgB

)
+ F̂0 = 0

δqi : −F i+1 +
∆x

2

(
Ṗ i+1 + Ω̃i+1 P i+1 − κ̃i+1F i+1 −mgB

)
+ F i

+
∆x

2

(
Ṗ i + Ω̃i P i − κ̃iF i −mgB

)
= 0

δqn+1 : Fn +
∆x

2

(
Ṗn + Ω̃n Pn − κ̃nFn −mgB

)
= 0

δψ1 : −M1 +
∆x

2

[
Ḣ1 + Ω̃1H1 − κ̃1M1 −

(
ẽ1 + γ̃1

)
F 1

]
+ M̂0 = 0

δψi : −M i+1 +
∆x

2

[
Ḣi+1 + Ω̃i+1Hi+1 − κ̃i+1M i+1 −

(
ẽ1 + γ̃i+1

)
F i+1

]
+M i

+
∆x

2

[
Ḣi + Ω̃iHi − κ̃iM i −

(
ẽ1 + γ̃i

)
F i

]
= 0

δψn+1 : Mn +
∆x

2

[
Ḣn + Ω̃nHn − κ̃nMn −

(
ẽ1 + γ̃n

)
Fn

]
= 0

δF 1 : u1 +
∆x

2

[
e1 − C

T

1 (e1 + γ1)
]

= 0

δF i : ui+1 +
∆x

2

[
e1 − C

T

i+1

(
e1 + γi+1

)]
− ui +

∆x

2

[
e1 − C

T

i
(e1 + γi)

]
= 0

δFn+1 : −un +
∆x

2

[
e1 − C

T

n
(e1 + γn)

]
+ ûn+1 = 0

δM1 : θ1 −
∆x

2

(
∆ +

1

2
θ̃1 +

1

4
θ1 θ

T

1

)
κ1 = 0

δM i : θi+1 −
∆x

2

(
∆ +

1

2
θ̃i+1 +

1

4
θi+1 θ

T

i+1

)
κi+1

− θi −
∆x

2

(
∆ +

1

2
θ̃i +

1

4
θi θ

T

i

)
κi = 0

δMn+1 : −θn −
∆x

2

(
∆ +

1

2
θ̃n +

1

4
θn θ

T

n

)
κn + θ̂n+1 = 0

δP i : u̇i − C
T

i V i + v + ω̃
(xi

2
e1 + ui

)
= 0

δHi : θ̇i −

(
∆ +

1

2
θ̃i +

1

4
θi θ

T

i

)(
Ωi − Cω

)
= 0,

(4.4)

where ∆x is the length of a spatial element.
Here, the equations corresponding to δqi and δψi are the discretized equations of motions, equations cor-

responding to δF i and δM i are the discretized strain-displacement relations, and equations corresponding
δP i, δH i are the velocity-displacement kinematical equations. The overbar or hat of the variables indicates
the element or boundary variables, respectively and the subscript 1 or n+1 of the virtual variables indicates
the root or tip of the system, respectively. Note that using the equations above, the blade root forces (F̂0)
and moments (M̂0) can be explicitly written in terms of the other variables and can be easily transferred
to the discrete portion of the system. On the other hand, v and ω appearing in the kinematic equations are
calculated by the rigid-body analysis, as discussed in the next section. Also, note that P ,H , γ and κ are still
used in the equation above to represent the equation in a more compact manner, although they are eliminated
using V , Ω, F and M in the actual computation.
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To obtain the algebraic equations, one needs to transform the variables with time derivative to nodal
variables at the ends of the time element, so that

u̇ =
ūj+1 − ūj

∆t

θ̇ =
θ̄j+1 − θ̄j

∆t

V̇ =
V̄j+1 − V̄j

∆t

Ω̇ =
Ω̄j+1 − Ω̄j

∆t
,

(4.5)

where ∆t is the length of a time element.
The undifferentiated variables can be discretized as

u =
ūj+1 + ūj

2

θ =
θ̄j+1 + θ̄j

2

V =
V̄j+1 + V̄j

2

Ω =
Ω̄j+1 + Ω̄j

2
.

(4.6)

Here, if the above variables defi ned in a space element are transformed to the nodal variables at the ends of
a space element, the fi nal derived set of equations from the above central difference scheme is equivalent to
those from the fi nite element in time.

0=mG

iX fX

it ft

mY

0=mG

iX fX

it ft

mY

Figure 4.2: Schematic of nonlinear simulation in a time step

Using one of the above procedures, one can derive a set of nonlinear algebraic equations that should be
satisfi ed for each time element, given in Fig. 4.2 as

Gm (Xf ,Xi, Ym) = 0, (4.7)

where Xf and Xi are the column matrix of state variables at the ending node and beginning node of the time
element, respectively and Ym is the column matrix of state variables within the time element. The column
matrices are expressed as

X = bq U u θ V ΩcT

Y = bF McT .
(4.8)

Since the operators have explicit expressions, the Jacobian matrix can be derived explicitly by differentia-
tion, and the solution of the equations at each time step can be calculated by the Newton-Rapson method.
So, the time history of the system can be obtained step by step with specifi ed initial conditions.
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Periodic Steady-State Analysis

Wind turbine blades in general, but especially those of HAWTs, the most common confi guration in the
industry, experience periodic excitation due to gravity. To fi nd the aeroelastic stability characteristics, the
periodic steady-state solution should be calculated. Also, the governing equations are then linearized about
the steady-state solution to obtain the perturbation equations. One way to obtain the periodic steady-state
solution is to build a closed form of equations for one period using the Jacobian matrix obtained from the
nonlinear simulation. In this case, one may use the periodicity conditions instead of the initial conditions.

1t

2t

Nt

1Z

2Z

NZ

1-NZ

1-Nt
NG

1 period

1G

2G

0X

1t

2t

Nt

1Z

2Z

NZ

1-NZ

1-Nt
NG

1 period

1G

2G

0X

Figure 4.3: Schematic of time integration over one period

The equations in one period, given in Fig. 4.3, are expressed as

Gi (X0, Zi) = 0, i = 1, 2, · · · ,N, (4.9)

where Zi = bXi Yic
T , and N is the number of time elements in one period. The periodicity condition is

XN = X0. (4.10)

The fi nal set of equations for one period can be expressed as

G (Z) = 0

Z = bZ1 Z2 · · ·ZNcT .
(4.11)

Fast Periodic Steady-State Analysis

The computational cost to obtain the periodic steady-state solution might be expensive, because the size
of Eq. (4.11) can be huge. And as the number of space elements increases, the cost would exponentially
increase to satisfy the level of aspect ratio (i.e., the ratio of the number of time elements to the number
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of space elements) for numerical stability. To make the algorithm as computationally effi cient as possible,
we can restrict the analysis to wind turbines with identical blades and make use of the symmetric dynamic
characteristics of the rotor1. This way all blades have the same values for their respective state variables
at a given azimuth angle in the periodic steady-state framework. Moreover, the time integral of the period
divided by the number of blades will produce the same answer as that determined from the time integral over
a period. Peters applied a similar idea to the Floquet analysis [12], making possible a signifi cant reduction
in computational effort.

The framework for realizing the idea is the same as the previous one, except for the periodicity condition
in Eq. (4.10). If the system is composed of only blades, the periodicity condition is

Xj+1
n = Xj

0
, j = 1, 2, · · · , b

n = N/b,
(4.12)

where j denotes each blade, b is the number of blades, and N is the number of time elements of the whole
period. There is no difference between states at a given azimuth angle relative to a reference azimuth
position. The mathematical expression for the periodicity condition depends on the composition of each
system.

This study describes a specifi c case for a whole wind turbine system composed of two blades, a teetering
hub, a rotating shaft, a yawing nacelle, and a fl exible tower fi xed in the ground. That is the most common
model of HAWT. The periodic steady state of the system can be obtained by the fi nite element-in-time
assembly over the half period, as given in Fig. 4.4.

The state vector in Eq. (4.9) can be symbolically expressed as

Xi = bXt
i X

n
i X

s
i X

h
i X

u
i X

l
i c

T , i = 1, 2, · · · ,N, (4.13)

where Xt, Xn, Xs, Xh, Xu, and X l denote the state vector for tower, nacelle, shaft, hub, upper blade, and
lower blade, respectively at a time node i.

The periodicity condition is

Xt
N/2

= Xt
0

Xn
N/2

= Xn
0

Xs
N/2

= Xs
0

Xh
N/2

= −Xh
0

Xu
N/2

= X l
0

X l
N/2

= Xu
0 .

(4.14)

A similar condition with a minor change in symbolic expression can be applied for state vector Y containing
state variables within an element. Eq. (4.11) can be rewritten as

G (Z) = 0

Z = bZ1 Z2 · · ·ZN/2c
T .

(4.15)

1The analysis could be confi gured to simulate the behavior of a wind turbine with nonidentical blades, but stability analysis of
such a system would be prohibitively expensive.
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Figure 4.4: Schematic of time integration over half period

The number of equations in Eq. (4.15) is half the number of equations in Eq. (4.11). Also, the dimension of
the Jacobian matrix for numerical computation is a quarter of the original one over the whole period.

By solving Eq. (4.15), one can obtain the periodic steady-state solution over the half period. The periodic
steady-state solution over the whole period can be performed by using the nonlinear simulation presented in
Eq. (4.7) over one period with the initial condition taken from the steady-state solution at time node 0 (X0),
which is obtained from the periodic steady-state analysis over the half period.

Floquet Stability from Periodic Steady-State Solution

The framework for the periodic steady-state solution can be easily modifi ed to fi nd the stability of a non-
linear steady-state solution. The Floquet theory describes the stability of the periodic systems based on the
eigenvalues of the Floquet transition matrix, expressed as

X̂T = [Φ]X̂0, (4.16)

where [Φ] is the Floquet transition matrix, X̂T is the perturbed state vector at time T , and X̂0 is the perturbed
state vector at time 0. For simplicity, column matrix Y denoting time-element variables can be inserted in
Z as

ẐT = [Φ̃]Ẑ0, (4.17)
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where
Ẑ0 = bX0 0cT . (4.18)

The effect of Y in the analysis is to produce corresponding eigenvalues with infi nity, which can be ignored
in Floquet analysis.

The previously described periodic steady-state solution can be used to obtain the Floquet transition
matrix. The perturbed form of Eq. (4.9) is

Ji,i−1Ẑi−1 + Ji,iẐi = 0 i = 1, 2, · · · ,N, (4.19)

where

Ji,i =
∂Gi

∂Ẑi

, (4.20)

By simple matrix algebra,

ẐT = [−J−1

N,NJN,N−1] · · · [−J
−1
1,1J1,0]Ẑ0. (4.21)

Therefore,
[Φ̃] = [−J−1

N,NJN,N−1] · · · [−J
−1
1,1J1,0]. (4.22)

Floquet transition matrix Φ is simply a submatrix of Φ̃.
Note that the method at this study is equivalent to that in [1]. This means that this procedure is to apply

the method in [1] to a specifi c time integration scheme with the fi nite element-in-time equation given in
Eq. (4.11).
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Chapter 5

Numerical Validation

Comparison with ADAMS

The present code has been validated by comparison with results from ADAMS,TM a commercially available
computer code. (ADAMS was developed by Mechanical Dynamics, Inc.) The ADAMS HAWT model was
developed at the National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory
(NREL), Golden, Colorado.

CART Model

CART (Controls Advanced Research Turbine) model was developed at NREL; specifi c information is given
in [13]. The CART is a modifi ed Westinghouse model WWG-0600 machine, with a rated power of 600
kW. The rotor is upwind of the tower and consists of two blades and a teetering hub. A diagram of the
CART model is shown in Fig. 5.1. This model is composed of a tower, nacelle, high-speed shaft, gear box,
low-speed shaft, spindle, and two blades. The tower and the blades are modeled as fl exible beams, the high-
speed shaft and the spindle are modeled as rigid body, and the lower speed shaft is modeled as a massless
fl exible body. (Because the shaft is modeled with zero mass, it can be represented as a mechanism to couple
rigid bodies together and hence is considered part of the rigid-body subsystem.) Geometric and material
properties are presented in Table 5.1. The material properties for tower and blades are presented in [13]. For
simplifi cation, the nacelle is assumed to be fi xed at the top of the tower.

The following conditions are specifi ed for running the program. The system is initially at rest, and the
gravitational force is neglected. Two external forces excite the system. One is external torque, which is
applied to the low-speed shaft. The other is a follower force for the fl apping direction at the tip of one blade.
Also, all the aerodynamic forces are zero, so the system moves in a vacuum. The time interval is 2 sec,
and number of time steps is 400. The number of spatial elements is 20 for the tower, 30 for a blade. The
ADAMS model has all the same properties, except that it has 13 stations for the tower and 19 sections for a
blade, and internal dampings for numerical stability are given as Cd = 0.0005Cs, where Cd is the damping
matrix and Cs is the stiffness matrix.
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Table 5.1: Physical properties of the CART model
cn distance from yaw axis to nacelle mass center 4.02 m
cs distance from yaw axis to gearbox 2.519 m
ch distance from teeter axis to hub mass center 0.0 m
dn2 distance from yaw axis to teeter axis 3.867 m
dh1 distance from teeter axis to blade root 0.0 m
dh2 distance from shaft axis to blade root 0.688 m
my mass of nacelle 23, 228 kg
ms mass of high-speed shaft 0.0 kg
mh mass of spindle 5, 852 kg
Iy1 moment of inertia of nacelle about lateral axis 3.659 × 107 kg m2

Iy2 moment of inertia of nacelle about longitudinal axis 1.2 × 107 kg m2

Iy3 moment of inertia of nacelle about yaw axis 3.659 × 107 kg m2

Islat moment of inertia of high-speed shaft about lateral axis 0.0 kg m2

Islong moment of inertia of high-speed shaft about longitudinal axis 34.4 kg m2

EAs axial rigidity of low-speed shaft 1.519 × 1010 N m2

EIs bending rigidity of low-speed shaft 4.776 × 107 N m2

GJs torsional rigidity of low-speed shaft 1.851 × 107 N m2

Ih1 moment of inertia of hub about teeter axis 1.5 × 104 kg m2

Ih2 moment of inertia of hub about shaft axis 0 kg m2

Ih3 moment of inertia of hub about lateral axis 1.5 × 104 kg m2

Kh teeter stiffness 0.0 Nm/rad
Ch teeter damper coeffi cient 0.0 Nms/rad
lb length of blade 19.995 m
lt length of tower 34.862 m
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Figure 5.1: CART model: turbine components and dimensions.

Modal Analysis

The most basic measure for deciding whether a computational framework for structural analysis is useful or
not is the natural frequency. Natural frequencies from this work are compared with those from experiments,
that were done by NREL.

The frequency is taken from the CART model with a nonrotating blade. Also, the nacelle and the hub
are fi xed at the tower top and at the shaft, respectively. To show the convergence, the number of elements in
the tower is 4, 8, 12, 16, 20, and the corresponding number of elements in a blade is 6, 12, 18, 24, 30.

Figures 5.2 through 5.7 show the natural frequencies for the case in which the rotor is vertical. The
natural frequencies converge well with those from experimental data, indicated by the dashed line. Also, the
convergence rate decreases as the number of elements increases.
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Figure 5.2: 1st natural frequency of CART (vertical)
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Figure 5.3: 2nd natural frequency of CART (vertical)
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Figure 5.4: 3rd natural frequency of CART (vertical)
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Figure 5.5: 4th natural frequency of CART (vertical)
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Figure 5.6: 5th natural frequency of CART (vertical)
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Figure 5.7: 6th natural frequency of CART (vertical)
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Figures 5.8 through 5.13 show the natural frequencies for the case in which the rotor is horizontal. As
in the vertical rotor cases, the natural frequencies converge well with those from experimental data (dashed
line). Also, the convergence rate decreases as the number of elements increases, so it is expected that 8 to
12 elements might be suffi cient for a structural analysis of medium numerical accuracy while maintaining
the high computational effi ciency. Also, the natural frequencies of the isolated blade and the isolated tower
converge very well with the experimental data, although they are not presented.
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Figure 5.8: 1st natural frequency of CART (horizontal)
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Figure 5.9: 2nd natural frequency of CART (horizontal)
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Figure 5.10: 3rd natural frequency of CART (horizontal)
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Figure 5.11: 4th natural frequency of CART (horizontal)
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Figure 5.12: 5th natural frequency of CART (horizontal)
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Figure 5.13: 6th natural frequency of CART (horizontal)
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Nonlinear Simulation

To compare results, nine channels are detected from the time history data: rotor azimuth angle, rotor speed,
hub teetering angle, displacements of blade tip for 3 directions, and displacements of tower top for 3 direc-
tions.

Figure 5.14 through 5.22 show the time history of the nonlinear simulation. In all the graphs, the solid
line represents the time history from ADAMS, and the dashed line represents that of this analysis. The
results for the teetering angle in Fig. 5.14, the blade tip displacement for the fl apping direction in Fig. 5.19,
and the tower top displacements in Fig. 5.20 through 5.22 all show the nearly exact match between the
results of the two codes. The biggest difference is in the low-speed shaft rotor speed given in Fig. 5.16.
Here, the gross motions of two sets of data match well, but there is a local chattering motion in the results of
this study; otherwise, the ADAMS results show smooth motion. A possible reason for this chattering motion
may be numerical, perhaps caused by the model of the low-speed shaft or the absence of internal damping
for numerical stability, such as that modeled in ADAMS, or both. The other graphs show minor differences
between the results of the two codes, and they can be explained as the transferring errors from the error in
rotor speed. Therefore, we might expect that the code in this study can capture the level of accuracy required
by industry.
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Figure 5.14: CART time history – hub teetering angle (deg)
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Figure 5.15: CART time history – rotor azimuth angle (deg)
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Figure 5.16: CART time history – rotor angular speed (rpm)
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Figure 5.17: CART time history – blade tip axial displacement (m)
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Figure 5.18: CART time history – blade tip edge-wise displacement (m)
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Figure 5.19: CART time history – blade tip fl apping displacement (m)
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Figure 5.20: CART time history – tower top axial displacement (m)
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Figure 5.21: CART time history – tower top lateral displacement (m)
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Figure 5.22: CART time history – tower top longitudinal displacement (m)
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Table 5.2: Physical properties of blade spin-up model
length of blade 19.995 m
mass per unit span 149.28 kg/m
cross-sec. mom. of inertia for fl apping 29.02 kg m2/m
cross-sec. mom. of inertia for lead-lag 149.28 kg m2/m
torsional rigidity 1.29 × 107 N m2

axial rigidity 2.59 × 109 N m2

bending rigidity in fl apping motion 4.54 × 107 N m2

bending rigidity in lead-lag motion 2.78 × 108 N m2

Comparison with DYMORE

Our results in comparison to those of ADAMS are satisfactory, except for the speed of the low speed shaft
and the blade lead-lag motion. To investigate the problems more specifi cally, here the structural model is
compared with another highly validated multi-body dynamics code, DYMORE, developed at the Georgia
Institute of Technology. The reason to compare with DYMORE is that we could obtain not ADAMS program
but ADAMS results.

Blade Spin-up Problem

To investigate the difference in blade lead-lag motion between the results of this study and those of ADAMS,
a single blade model with a specifi ed root angular speed is considered. Figure 5.23 is a diagram of the model.
The physical properties of the model are presented in Table 5.2. The physical properties are the same as
those of the blade parts in the CART model presented in Table 5.1.

Figure 5.24 and 5.25 respectively show the blade tip displacement for the lead-lag direction for root
angular speed with sinusoidal functions as

Ω =
2.5

2

[
1 − cos

(
πt

2

)]

Ω = 2.5 sin

(
πt

4

)
.

(5.1)

The time interval is from 0 to 2 seconds and the number of time steps is 100. The results show that the time
histories of the two codes match very well. Also, the local motion with sine input is bigger than that with 1
– cosine input, as expected, because the cumulative impact at the beginning of the time domain of the sine
input is larger than that of the 1 – cosine input.

We conclude that the difference in the lead-lag displacement between this study’s results and those
of ADAMS, given in Fig. 5.18, can be attributed to the differences in conditions other than those of the
structural model.

Flexible-Shaft Problem

To investigate the difference in results for the rotor speed of the fl exible shaft between this study and
ADAMS, a simple rotating system is considered. The system is composed of fi ve components: two fl exible
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Figure 5.24: Time response to 1 – cosine input of blade spin-up model (m)
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Table 5.3: Physical properties of fl exible-shaft model
mass of hub 5852 kg
mass moment of inertia of hub for H1 axis 0 kg m2/m
mass moment of inertia of hub for H2 axis 15000 kg m2/m
mass moment of inertia of hub for H3 axis 15000 kg m2/m
distance from hub mass center to blade root 1.388 m
length of shaft 1 m
mass per unit span of shaft 3 kg/m
cross-sec. mom. of inertia of shaft for bending 0.25 kg m2/m
cross-sec. mom. of inertia of shaft for rotating 0.5 kg m2/m
torsional rigidity of shaft 1.85 × 107 N m2

axial rigidity of shaft 1.52 × 1010 N m2

bending rigidity of shaft 5.89 × 109 N m2

point mass at root of shaft 1000 kg
teeter stiffness 0 Nm/rad
teeter damping 0 Nm/rad

blades, a rigid hub, a fl exible shaft, and a point inertia. The blades are clamped to the hub, which is teetering
with respect to the shaft about the H2 axis. The point inertia is located at the root of the shaft.

Figure 5.26 shows a diagram of the model. The physical properties of the blade are the same as those
given in Table 5.2. The physical properties of the other components are given in Table 5.3. The applied
torque is given as

T = 2.1 × 106 sin

(
πt

2

)
. (5.2)

Figure 5.27 shows the time history of the rotor speed taken from the current study. There is local
oscillation over the whole time interval. But the local motion can be removed by a fi ltering process:

X̄i =
(Xi+1 +Xi)

2
i = 1, 2, · · · ,N − 1, (5.3)

where X̄i denotes the fi ltered time history, Xi denotes the original time history, and N is the total number
of time steps.

Figure 5.28 presents the fi ltered time history of the rotor speed compared with the result from DYMORE,
showing that the rotor speed from the two codes match well. The results both for blade tip edge-wise and
fl apping displacement also match well those from DYMORE, as shown in Fig. 5.29 and Fig. 5.30. Our
results for the frequencies of the blade tip edge-wise displacement from the present work are about same as
those from DYMORE, which differ from those of ADAMS as shown in Fig. 5.18.

Figure 5.31 shows the log convergence of our study results to the reference value from DYMORE, with a
much larger number of time and space elements. The results show that the convergence matches with typical
trends for convergence study. In Fig. 5.31, x is the maximum value of the blade tip edge-wise displacement
from our study, xe is the corresponding reference value from DYMORE with an extremely large number of
elements, and Ns is the number of spatial elements in our current study. Therefore, we conclude that the
structural model of this study is successfully validated by comparison with ADAMS and DYMORE results.
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Figure 5.25: Time response to sine input of blade spin-up model (m)
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Figure 5.27: Rotor speed of fl exible-shaft problem without fi ltering process (rad/s)
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Figure 5.28: Rotor speed of fl exible-shaft problem compared with DYMORE (rad/s)
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Figure 5.29: Blade tip fl apping displacement of fl exible-shaft problem compared with DYMORE
results (m)
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Figure 5.30: Blade tip edge-wise displacement of fl exible-shaft problem compared with DYMORE
results (m)
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Figure 5.31: Convergence of our results to the DYMORE result for the fl exible-shaft problem
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Table 5.4: Physical properties of CART model
dh longitudinal distance from hub mass center to blade root 0 m
Ω0 nominal rotor speed 1.4π rad/s
β precone angle 0 rad

Kh teeter stiffness 105 Nm/rad
Ch teeter damper coeffi cient 105 Nms/rad
Ky yaw stiffness 105 Nm/rad
Cy yaw damper coeffi cient 105 Nms/rad

Convergence Study

To validate the accuracy of this code to calculate the periodic steady-state, a convergence study was per-
formed. The model is based on the CART model, its properties are given in Table 5.1. The result in
Fig. 5.16 shows the rotor speed to be chattering. To avoid any possible negative infl uence of this chattering
when calculating the periodic steady-state, we use a rigid shaft model. Additional or different properties
from those in shown Table 5.1 are given in Table 5.4.

Figures 5.32– 5.34 show the periodic steady-state response of the teetering angle, blade tip edge-wise
displacement, and tower top fore-aft displacement with the change in the number of time elements. All the
results converge well as the number of time elements increases from 10 to 40 per period. Here, the number
of space elements is 4 for each blade and tower.

Figures 5.35– 5.37 show the periodic steady-state response of the teetering angle, blade tip edge-wise
displacement, and tower top fore-aft displacement with the change of the number of the space elements.
Similarly to the convergence with a change in the number of time elements, all the results converge well
as the number of space elements increases from 2 to 8 in one blade. But the convergent speed in the tower
top fore-aft displacement is slower than in the other cases. Here, the number of time elements is 40 per one
period.

From the convergence study, it appears that quite a few elements are needed in order for the periodic
steady-state solution to convergence. The convergence of the corresponding Floquet results from the lin-
earized model, however, may or may not be consistent to that of the periodic steady-state solution. a model
with minimal states may not be suffi ciently accurate for control design without some tweaking (such as
adjusting the stiffnesses to give agreement between the linearized model and lower-frequency results from
a high-fi delity model). Another possibility is to undertake additional research to develop a suitable modal
reduction scheme.
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Figure 5.32: Periodic steady-state solution – hub teetering angle (rad) with the change in the num-
ber of the time elements
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Figure 5.33: Periodic steady-state solution – blade tip edge-wise displacement (m) with the change
in the number of the time elements
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Figure 5.34: Periodic steady-state solution – tower top fore-aft displacement (m) with the change in
the number of the time elements
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Figure 5.35: Periodic steady-state solution – hub teetering angle (rad) with the change in the num-
ber of the space elements
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Figure 5.36: Periodic steady-state solution – blade tip edge-wise displacement (m) with the change
in the number of the space elements
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Figure 5.37: Periodic steady-state solution – tower top fore-aft displacement (m) with the change in
the the number of the space elements
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Chapter 6

CART Dynamic Analysis

A stability analysis of a wind turbine is presented in this chapter; it is based on the computational framework
developed in Chapter 4. The model is the same as that for the convergence study described in Chapter 5.
The number of space elements in the tower and the blade is 4, and the number of time elements is 40 in a
period. To investigate the Floquet stability, we present the trend of the maximum real part of the stability
components with respect to various parameters.

Effect of Precone Angle

Figure 6.1 shows that the steady-state response of the hub teetering angle has a symmetric mirror image
with the change of the sign in the precone angle, or it could be explained by the shift in the phase at 180◦.
The sign change in the precone angle does not much change the shape of the graph shown in Fig. 6.2, but
it causes a shift in the amplitude as well as in the phase of the blade tip fl apping displacement, as shown
in Fig. 6.3. The amplitude of the tower top fore-aft displacement is shifted with the change of the precone
angle, as shown in Fig. 6.4.

Figure 6.5 shows the trend of the log of the instability measure versus the precone angle. The instability
measure slightly increases as precone varies from −10◦ to 0◦ and stiffl y increases as precone varies from
0◦ to 10◦. Note that the possibility always exists for some of the instabilities to be numerical as opposed to
physical. This issue is initially explored below but should be further investigated in future research.

Effect of Rotor Speed

Figure 6.6 shows the amplitude of the steady-state response of the hub teetering angle increases as the rotor
speed increases; the shape of the function for high-speed cases is not a simple harmonic function. The
blade tip edge-wise displacement, shown in Fig. 6.7, also has the maximum amplitude for the case with the
highest rotor speed; but the shape of the function is simple, and the frequency content of the shape is the
same. Figure 6.8 shows that the increase in amplitude is most dramatic in tower top fore-aft displacement.
Figure 6.9 shows that instability measure increases, as the rotor speed increases.
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Figure 6.1: Periodic steady-state solution – hub teetering angle (rad) with changes in precone angle

Effect of Teetering Stiffness and Damping

Figure. 6.10 shows that the amplitude of the steady-state response of the hub teetering angle decreases as
the teetering stiffness and damping increase. The results in the blade tip edgewise displacement and tower
top fore-aft displacement are very similar with changes of stiffness and damping as shown in Fig. 6.11 and
Fig. 6.12, respectively.

Figure 6.13 shows that the instability measure is maximum in the case Kh = Ch = 105, and Fig. 6.14
shows the results near the maximum point with high resolution.
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Figure 6.2: Periodic steady-state solution – blade tip edge-wise displacement (m) with changes in
precone angle
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Figure 6.3: Periodic steady-state solution – blade tip fl apping displacement (m) with changes in
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Figure 6.4: Periodic steady-state solution – tower top fore-aft displacement (m) with changes in
precone angle
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Figure 6.5: Maximum real part of Floquet stability components with changes in precone angle
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Figure 6.6: Periodic steady-state solution – hub teetering angle (rad) with changes in rotor speed
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Figure 6.7: Periodic steady-state solution – blade tip edge-wise displacement (m) with changes in
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Figure 6.8: Periodic steady-state solution – tower top fore-aft displacement (m) with changes in
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Figure 6.9: Maximum real part of Floquet stability components with changes in rotor speed
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Figure 6.10: Periodic steady-state solution – hub teetering angle (rad) with changes in teetering
stiffness and damping
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Figure 6.11: Periodic steady-state solution – blade tip edge-wise displacement (m) with changes in
teetering stiffness and damping
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Figure 6.12: Periodic steady-state solution – tower top fore-aft displacement (m) with changes in
teetering stiffness and damping
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Figure 6.13: Maximum real part of Floquet stability components with changes in teetering stiffness
and damping

67



4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
0

0.5

1

1.5

2

2.5

3
x 10

−3

Teetering stiffness and damping

M
ax

im
um

 p
os

iti
ve

 r
ea

l p
ar

t o
f s

ta
bi

lit
y 

co
m

po
ne

nt
s

10X 

Figure 6.14: Maximum real part of Floquet stability components with changes in teetering stiffness
and damping (high resolution)
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Effect of Yawing Stiffness and Damping

Figure 6.15 shows that the amplitude of the steady-state response of the hub teetering angle decreases with
a phase shift as the yawing stiffness and damping increase; it identifi es the coupling between the yawing
motion of the nacelle and the teetering motion of the hub. The results in the blade tip edgewise displacement
and tower top fore-aft displacement are very similar with changes of stiffness and damping, as shown in
Fig. 6.16 and Fig. 6.17, respectively, except that the stiffness and damping are very low in Fig. 6.17.
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Figure 6.15: Periodic steady-state solution – hub teetering angle (rad) with changes in yawing
stiffness and damping

Figure 6.18 shows that the instability measure decreases as stiffness and damping increase. The measure
decreases dramatically in the case Kh = Ch = 103.

Effect of Teetering Hinge Offset

As expected, the periodic response of teetering angle and blade tip fl apping displacement have mirror images
as the sign of the hinge offset changes, and the amplitude increases as the magnitude of the hinge offset
increases, as shown in Fig. 6.19 and Fig. 6.21. The results of the blade tip edgewise displacement look
identical, as shown in Fig. 6.20.There are shifts in amplitude, i.e., differences in the static response, for the
tower top fore-aft displacement, as shown in Fig. 6.22.

Figure 6.23 shows that the instability measure decreases as the teetering hinge offset increases from
−0.2m to 0.2m, which is quite reasonable.
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Figure 6.16: Periodic steady-state solution – blade tip edge-wise displacement (m) with changes in
yawing stiffness and damping

Effect of Linearization

A conventional Floquet stability analysis is based on linearization about an approximate constant steady-
state (approximate linearization). In this research, we perform the Floquet stability analysis with lineariza-
tion about the periodic steady-state (consistent linearization), which is more realistic. Here, the instability
measures, i.e., the maximum real part of the Floquet stability components, are calculated to investigate the
effect of the different type of the linearization with the changes of parameters.

Figure 6.24 and 6.25 illustrate that the difference in the instability is not much affected by the change
in teetering stiffness or damping and the change in the teetering hinge offset. In those cases, the instability
measures from the approximate linearization are slightly larger than those in the consistent one. The effect
of change in the precone angle is more evident, as shown in Fig. 6.26. While the precone angle is negative,
the instability measures are about the same for both the approximate and the consistent linearization. As the
precone angle increases into the positive region, however, the instability from the approximate linearization
is larger than in the consistent one.

The differences in the instability measure with the change of the rotor speed (made dimensionless by
Ω0) and yawing stiffness/damping are more dramatic, as shown in Fig. 6.27 and Fig. 6.28. In the range
of rotor speed larger than 3Ω0, the instability in the consistent linearization is much larger than that in the
approximate one, and the difference is maximum when the rotor speed is 5Ω0. This means that a wind
turbine that is structurally designed on the basis of the stability analysis from the constant steady-state
might actually be quite unstable at some rotor speeds. (The CART model does not operate at such high rotor
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Figure 6.17: Periodic steady-state solution – tower top fore-aft displacement (m) with changes in
yawing stiffness and damping

speeds, however, and is thus quite safe.) Similarly, where the yawing stiffness/damping is less than 104,
the instability measure from the calculation based on consistent linearization is much larger than that of the
approximate one.
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Figure 6.18: Maximum real part of Floquet stability components with changes in yawing stiffness
and damping
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Figure 6.19: Periodic steady-state solution – hub teetering angle (rad) with changes in the teetering
hinge offset
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Figure 6.20: Periodic steady-state solution – blade tip edge-wise displacement (m) with changes in
the teetering hinge offset
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Figure 6.21: Periodic steady-state solution – blade tip fl apping displacement (m) with changes in
the teetering hinge offset
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Figure 6.22: Periodic steady-state solution – tower top fore-aft displacement (m) with changes in
the teetering hinge offset
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Figure 6.23: Maximum real part of Floquet stability components with changes in the teetering hinge
offset
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Figure 6.24: Maximum real part of Floquet stability components with changes in teetering stiffness
and damping
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Figure 6.25: Maximum real part of Floquet stability components with changes in teetering hinge
offset
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Figure 6.26: Maximum real part of Floquet stability components with changes in precone angle
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Figure 6.27: Maximum real part of Floquet stability components with changes in rotor speed
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Figure 6.28: Maximum real part of Floquet stability components with changes in yawing stiffness
and damping
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Chapter 7

Conclusion

The goal of this work has been to develop a theoretical model for the aeroelastic analysis of rotating systems
and a corresponding computational framework for application to wind turbine control design. Achievements
have been made in the following areas:

Aeroelastic formulation

The research integrated the mixed variational formulation and Kane’s method. The integration successfully
derives system equations of relatively small size, which is important in control design for computational
effi ciency. The use of Kane’s method with conventional generalized speeds is already highly advantageous
over Lagrangian equations. Using the generalized speeds of this study further reduces the size of the equa-
tions by 30% for the general horizontal-axis wind turbine model. The reduction in computational cost for
simulation or control design with the reduction in equations may be signifi cant, but it was not investigated
in this work.

The research develops the computational framework for an aeroelastic analysis of the whole wind tur-
bine. The nonlinear simulation scheme is developed using a fi nite element in time, and the periodic steady-
state solving procedure is achieved by the composition of the Jacobian matrix from the nonlinear simulation
and the periodicity condition. To reduce the computational cost, a half-period time integration scheme is
developed with the appropriate boundary conditions. The periodic steady-state framework is directly used
for Floquet stability analysis, and it is equivalent to results of a conventional system matrix analysis, which
is linearized about the periodic steady-state solutions.

This research can produce aeroelastic system equations linearized about the periodic steady-state solu-
tion, which is not common in the wind turbine dynamics fi eld. The system equations are explicit functions
of time, so they can be directly applied to control design.

Finite element program

A structured computer program, called WTFlex, has been developed for a horizontal-axis wind turbine
aeroelastic analysis based on the methodo in this research. The code includes all the aspects described
in this work; nonlinear simulation, periodic steady-state solution, Floquet analysis, and system equation
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manipulation. The main contribution of this research and the code is fi rst its achievement as a bridge directly
connecting the fl exible structural analysis and control design in wind turbine research.

Numerical validation

The methodology of the present research has been validated with other highly validated codes. Most results
compared with ADAMS are satisfactory in numerical accuracy, except for results for the rotor speed of
the fl exible shaft and blade edge-wise motion. But they were validated with DYMORE, developed at the
Georgia Institute of Technology, by studying more specifi c cases in great detail. Also, the results from the
convergence study show the code is self-evident.

Wind turbine dynamic stability analysis

The analysis presents a dynamic analysis of CART (Control Advanced Research Turbine) with parametric
studies, including precone angle, rotor speed, teetering/yawing stiffness and damping, and teetering hinge
offset. Changes in these parameters cause changes in the amplitude and phase of the periodic steady state
without a change in the frequency. Also, the periodic response identifi es that there is a dynamic coupling
between the yawing motion of the nacelle and the teetering motion of the hub. The instability measure, which
is the maximum real part of the eigenvalues of the Floquet transition matrix, increases as the precone angle
and rotor speed increase, and it decreases as yawing stiffness/damping and teetering hinge offset increase.
Especially with the change in teetering stiffness and damping, it has the maximum value when stiffness and
damping have unique values. Also, the Floquet instability is affected by the type of linearization. In the
range where instability is low, i.e., the more stable case, the instability measure is not much affected by the
type of linearization. But when the instability is high, i.e., the less stable case, the measure is very much
affected by the linearization.
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Appendix A 
WTFlex User’s Guide 
 

Introduction 
 
This manual describes a new research computer code for the analysis of flexible Horizontal Axis 
Wind Turbines (HAWT’s) called WTFlex, version 1.0. The work leading to the development of 
this code was sponsored by the National Wind Technology Center, NREL, under subcontract No. 
XCX-9-29204-03. The code was developed under the oversight of the principal investigator, Prof. 
Dewey H. Hodges. Dr. Donghoon Lee wrote the code as a graduate research assistant and was 
awarded the Ph.D. degree in December 2003.  
 
The purpose of this manual is to provide a simple and practical explanation of how to use the 
code. The theoretical basis of the methodology for this code has been presented in [9] as well as 
in the body of this report. 
 
We first explain how to install the code and set the data files. Next we show the capabilities and 
limitations of the code by presenting the basic assumptions of the methodology and analysis and 
the fixed and free parameters of the model. We then describe how to perform a Floquet stability 
analysis and check the results, especially mode shapes. Finally we describe how to perform 
nonlinear simulations. 
 
The present code and graphical user interface (GUI) for WTFlex 1.0 are only for structural 
dynamics analysis of HAWT’s. An aeroelastic analysis and code has been developed as well, 
making use of the aerodynamic model described in the text. However, WTFlex proved to be far 
less robust in its ability to extract a periodic solution when running with the aerodynamics 
module than it is without it. Moreover, since NREL’s own aerodynamic theories are better suited 
for HAWT’s, a new aerodynamics module should be developed along with a modified GUI.  
 

Getting Started with WTFlex 
 
Installation of WTFlex 
 
Once you have the zip file “WTFlex.zip” please follow the following procedure: 
Step 1. Extract the zip file into a new folder named “WTFlex.” You should find that there are 2 
sub-folders named “WTFlex_Flq” and “WTFlex_TM.” The former is for Floquet stability 
analysis with constant rotor speed, and the latter is for time simulation with external excitations. 
Step 2. Launch “Matlab” on your computer. 
Step 3. Set “MatLab path” of the folder “WTFlex_Flq” or “WTFlex_TM” depending on your 
purposes. If your version of MatLab is higher than 6.0, just set your current directory as the 
folders. 
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Step 4. Copy and paste the appropriate data files for blade and tower into folder “data”, if you 
want to use discretized data for the bodies (this will be explained later). 
Step 5. Type “WTFlex_Flq” or “WTFlex_TM” in the MatLab command window, depending on 
your purposes. The program’s GUI should be shown on your monitor 
Step 6. Input the running parameters (this will be explained later). 
Step 7. Run WTFlex by pushing the button <Solve>. 
Step 8. Get results (this will be explained later). 
 
Setting of Data Files 
 
To perform the analysis for nonuniform flexible bodies, WTFlex requires users to set data files, 
which are compatible with the format the code requires: 

• The file name for blade and tower properties are respectively should be “blade.txt” and 
“tower.txt”. 

• Each row should represent the station of the body along with the axial direction, and each 
column represents the type of material properties. 

• The first column should represent the distance from the root of the body to the station. 
 
The recent paper [14] contains an appropriate example of data files. 
 

Scope and Graphical User Interface (GUI) 
 
Figure 1 shows the general model of HAWT’s. Here the rigid bodies subsystem is composed of 
the nacelle, the shaft, and the rotor hub. The flexible body subsystems are comprised of the two 
blades and the tower.  
 
Basic Assumptions 
 

• There is no air 
• Number of blades is two, and they are identical and equally spaced 
• Nacelle is one rigid body which has 1 degree of freedom, yaw motion with respect to the 

tip of the tower 
• Generator and shaft is one rigid body which has 1 degree of freedom, rotational motion 

with respect to the nacelle 
• Hub is a rigid body which has 1 degree of freedom, teetering motion with respect to the 

shaft 
• Bed plate is a point mass fixed at nacelle 
• Teeter axis is at the end of the rigid shaft 
• Tilt axis is at the tower top 
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Figure 1. Schematic of HAWT Model 
 
User-Controllable Parameters (in GUI) 
 
Figure 2 shows the geometric parameters of HAWT. The free parameters including the 
geometric parameters are as follows: 

(1) Lumped parameters 
(a) Geometry  
• c_n1: longitudinal distance from yaw axis to nacelle c.g. 
• c_n2: vertical distance from bed plate to nacelle c.g. 
• c_s: distance from yaw axis to shaft c.g.  
• c_h: distance from teetering axis to hub c.g. (note carefully that it is positive in the 

longitudinal direction) 
• d_h1: longitudinal distance from hub c.g. to blade root. 
• d_h2: lateral distance from hub c.g. to blade root. 
• L_b: length of blades 
• L_t: length of tower 
• tilt: tilt angle of nacelle with respect to tower top  
• pcon: precone angle of blade (β0) 
• pitch: pitch angle of blade 
where the units for all lengths and angles are [m] and [deg], respectively. 
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Figure 2: Geometric parameters of HAWT 
 

 (b) Material 
• m_n: total mass of nacelle  
• In_1: moment of inertia of nacelle about lateral axis 
• In_2: moment of inertia of nacelle about longitudinal axis 
• In_3: moment of inertia of nacelle about vertical axis 
• m_s: total mass of shaft 
• Is_lt: moment of inertia of shaft about lateral axis 
• Is_lg: moment of inertia of shaft about longitudinal axis 
• m_h: total mass of hub 
• Ih_1: moment of inertia of hub about lateral axis 
• Ih_2: moment of inertia of hub about longitudinal axis 
• Ih_3: moment of inertia of hub about vertical axis 
where the units for all masses and moment of inertias are [kg] and [kg-m2], respectively, 
and all the moment of inertias are defined at each body’s center of mass and in the basis of 
each body’s frame. 
 
(c) Stiffness and Damping 
• K_y: yawing stiffness 
• C_y: yawing damping 
• K_h: teetering stiffness 

Teeter hinge 

Bedplate c.g. 
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• C_h: yawing dampingWhere the unit of all the stiffnesses and dampings are 
respectively [N-m/rad] and [N-m/rad2] 

(2) Distributed Parameters (per unit length) 
Users can set distributed parameters with constant values (for uniform beams) or 
discretized values (for a non-uniform beams). Also, one can model blades as anisotropic 
beams by setting the off-diagonal components of stiffness matrix of blade (for example, 
S14). WTFlex and its GUI supports the input of the anisotropic materials by means of the 
4×4 or 6×6 cross-sectional stiffness matrix, which is represented as  

F
M









= [S]
γ
κ









 
where F and M are column matrices the elements of which are components of cross-
sectional force and moment vectors in the deformed beam frame, and γ and κ are column 
matrices of cross-sectional strain measures, extensional and transverse shear measures in 
the former and twist and curvature measures in the latter. To use discretized data, the user 
should mark on the blank of each item, and set the number of the column corresponding to 
the item in the data file. Also the symbols in the GUI represent: 
 
• m_b: mass of blades 
• Ib_2: moment of inertia of blades per about tangential axis  
• Ib_3: moment of inertia of blades about rotational axis  
• m_t: mass of tower 
• It_1: moment of inertia of tower about lateral axis  
• It_2: moment of inertia of tower about longitudinal axis  
• GJt: torsional stiffness of tower  
• EIt1: bending stiffness of tower about lateral axis 
• EIt2: bending stiffness of tower about longitudinal axis  
• EAt: axial stiffness of tower 

 
(3) Running options 

• OMEGA (WTFlex_Flq): nominal speed of shaft  
• Time Int (WTFlex_TM): the time interval for nonlinear simulation 
• Time Steps: number of time elements respectively in one period (WTFlex_Flq) and in 

the time interval (WTFlex_TM) 
• Blade Elements: number of space elements in one blade 
• Tower Elements: number of space elements in tower 

(4) Results (WTFlex_Flq) 
• Stability Exponents: by checking the blank, a data file, which contains the results of 

stability exponents (to be explained later), is saved into folder “results”. 
• Dominant Eigenvalue: by checking the blank, a data file, which contains the results of 

dominant eigenvalues (to be explained later), is saved into folder “results”. 
• Mode shape: after all the calculations are finished, this button will pop up. If a user 

clicks this button, another window will pop up to show mode shapes and eigenvectors 
(to be explained later). 
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(5) Excitations (WTFlex_TM) 

All the excitation is defined as form of sinusoidal function as 
F = Asin(xt + y)  

where A is the amplitude, x is the coefficient of time, t is the time, and y is the phase angle. 
• TOR: torsion applied to shaft 
• Fu_2: body fixed force applied to upper blade tip for edgewise direction 
• Fu_3: body fixed force applied to upper blade tip for flapping direction 
• Fd_2: body fixed force applied to lower blade tip for edgewise direction 
• Fd_3: body fixed force applied to lower blade tip for flapping direction 
• Ft_1: body fixed force applied to tower top for lateral direction 
• Ft_2: body fixed force applied to tower top for fore-aft direction 

 
Stability Analysis (WTFlex_Flq) 

 
Calculation Procedure 
 
By clicking the button “Solve” after setting all the parameters as previously explained, the user 
will find the following messages consecutively on the “MatLab command window”: 

• <Constant Steady State>: means that the code is calculating constant steady-state 
solutions, used as an initial guess for calculating the periodic steady-state solution. 

• <ErrCSS = number>: represents the numerical error at the current iteration in 
calculating the constant steady-state solution, which is defined as the L2 norm of the 
equation vector using the current temporary solutions. 

• <Periodic Steady State & Floquet Stability>: means that the code is calculating the 
periodic steady-state solutions and the Floquet stability analysis with linearization 
about the periodic steady-state solutions. 

• <ErrPSS = number>: represents the numerical error to calculate the periodic steady-
state solution, which is defined as the L2 norm of equation vector with the temporary 
solutions of the iteration. If this value diverges, we recommend that the user increase 
the number of time elements. 

• <Dominant Eigenvalue>: means that the code is calculating the dominant eigenvalues. 
• <All the calculation is finished>: All the results are calculated. 

 
Types of Results 
 
(1) Stability Exponents: They are found by the Floquet analysis for the system and are references 
for dynamic stability of the system, represented as 

si =
1
T

log λi + j
1
T

tan−1 Im(λi )
Re(λi )  

where λi is the ith eigenvalue of the Floquet transition matrix. 
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(2) Dominant Eigenvalues: They are found by the DFT (Discrete Fourier Transform) of the time 
history of variables, with the initial condition being the eigenvector corresponding to the 
eigenvalue of the Floquet transition matrix. This procedure can be represented as 

Ẑ(t) = Z(t)eλt

λdom = λ + max[FFT(Ẑ(t))]  

where Z(t) is the time history of a typical variable of the state vector, with initial condition being 
the eigenvector of the Floquet transition matrix; λ is the eigenvalue per revolution of the Floquet 
transition matrix (eigenvalue/period); FFT is the fast Fourier transform function; and λdom is the 
dominant eigenvalue. 
(3) Mode shapes: There are three Figures that show the mode shapes corresponding to each 
eigenvalue: front view, side view, and plane view. The directions are shown in Figure 3.  
 
The components of eigenvector for torsional motion of blades are presented with values instead 
of the mode shape because it is not effective to estimate the modes. The resulting window 
showing the information on the mode shapes is presented in Figure 4. There are the arrows and 
numbers to explain the buttons and figures.  
1. Dominant eigenvalue (per revolution) of the present mode 
2. Button to move to the next and previous mode shape 
3. Button to see the components of eigenvector for the side view 

• Teeter: teeter angle of the hub 
• Tower: fore-aft bending motions of the tower elements 
• Ublade: flapping motions of the upper blade elements 
• Lblade: flapping motions of the lower blade elements 

4. Button to see the components of eigenvector for the plane view 
• Yaw: yaw angle of the nacelle 
• Tower: twisting motions of the tower elements 

5. Button to see the components of eigenvector for the front view 
• Tower: lead-lag motions of the tower elements 
• Ublade: lead-lag motions the upper blade elements 
• Lblade: lead-lag motions of the lower blade elements 

6. Button to see the components of eigenvector for the blade torsion 
• Ublade: torsional motions of the upper blade elements 
• Lblade: torsional motions of the lower blade elements 

From 3 to 6, please note the eigenvector is normalized by its maximum component 
7. Side view 

• Yellow: tower 
• Black: shaft 
• Blue: upper blade 
• Green: lower blade 
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Figure 3. Directions for viewing mode shapes 
 
8. Plane view 

• Blue: the original orientation of the nacelle 
• Green: nacelle and shaft 

9. Front view 
• Yellow: tower 
• Red: hub 
• Blue: upper blade 
• Green: lower blade 

 
Nonlinear Simulation (WTFlex_TM) 

 
For nonlinear simulation, the initial condition of the wind turbine is stationary with rotor vertical 
position. Same as the “Stability Analysis”, clicking the button “Solve” activates the code to 
calculate. After the message “All the calculation is finished” 10 graphs will pop up on the 
monitor: 

• Yawing angle of nacelle [rad] 
• Teetering angle of hub [rad] 

Front view 

Side view 

Plane view 



 93

• Rotational angle of shaft [rad] 
• Rotational speed of shaft [rad/sec] 
• Tower top lateral displacement [m] 
• Tower top fore-aft displacement [m] 
• Upper blade (initially) tip edgewise displacement [m] 
• Upper blade (initially) tip flapping displacement [m] 
• Lower blade (initially) tip edgewise displacement [m] 
• Lower blade (initially) tip flapping displacement [m] 

 
Figure 4. Windows for mode shapes 
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Abstract

A computational framework for aeroelastic analysis of Horizontal Axis Wind Turbines (HAWT’s) is pre-
sented. The structural model is separated into multi-rigid-body and fl exible-body parts. Equations for the
former are derived using Kane’s method, and the fl exible portions are assumed to be beam-like structures,
and are described using a mixed formulation. This formulation leads to equations of motion of a relatively
low order in terms of geometrically-exact beam fi nite elements. The fl exible and rigid subsystems are cou-
pled with an aerodynamic model to form an aeroelastic analysis. A nonlinear, periodic, steady-state solution
and a linearized transient solution about the periodic steady state are obtained. The computational frame-
work for two-bladed, horizontal axis wind turbines is built using time fi nite elements over a half-period. The
linearized ordinary differential equations have periodic coeffi cients in time, and a Floquet stability analysis
for the linearized system is directly undertaken using quantities obtained in the periodic steady-state cal-
culation. Numerical results are presented for horizontal axis wind turbines including steady-state response
and Floquet characteristic exponents and operating mode shapes. Effects are investigated of parameters
such as pre-cone, rotor speed, teetering hinge lateral offset, teetering and yawing stiffness and damping, and
composite blade properties on the dynamics of the system.
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