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Abstract

A generalized Vlasov theory for composite beams with arbitrary geometric and material sectional

properties is developed based on the variational asymptotic beam sectional analysis. Instead of

invoking ad hoc kinematic assumptions, the variational-asymptotic method is used to rigorously split

the geometrically-nonlinear, three-dimensional elasticity problem into a linear, two-dimensional,

cross-sectional analysis and a nonlinear, one-dimensional, beam analysis. The developed theory is

implemented into VABS, a general-purpose, finite-element based beam cross-sectional analysis

code. Several problems are studied to compare the present theory with published results and a

commercial three-dimensional finite element code. The present work focuses on the issues

concerning the use of the Vlasov correction in the context of the accuracy of the resulting beam

theory. The systematic comparison with three-dimensional finite element analysis results helps to

quantitatively demonstrate both the advantages and limitations of the Vlasov theory.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Vlasov; Composite beams; Asymptotic method; Thin-walled; VABS

1. Introduction

For thin-walled beams with open sections it is well known that the classical beam

theory, which relies on four generalized strain measures associated with stretching of the

reference line (g11), twist (k1), and bending in two mutually orthogonal directions (k2 and

k3), does not suffice; and a refined beam theory becomes necessary. There are several ways
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to explain such a phenomenon. Perhaps the most revealing one is from the standpoint of

the St. Venant principle. One implication of the principle for beams is that any two

statically equivalent systems of forces at the end of a long beam provide practically

identical stress distributions far away from that end. More precisely, the difference

between the two stress distributions exponentially decays along the axis of the beam. This

provides validity for the classical beam theory since its generalized strain measures

adequately describe the non-decaying part of the three-dimensional (3-D) elasticity

solution. As a result, for static and low-frequency behavior of slender beams that are not

thin-walled with open section (what we will call ‘regular beams’), classical theory is

adequate. Technically speaking, the principle remains valid even for thin-walled, open-

section (TWOS) beams. However, application of a certain system of forces (usually

referred to as the ‘bi-moment’) at an end of a TWOS beam leads to a deformation mode

that decays away from that end much more slowly than any system of forces in a regular

beam. This implies that in most practical applications, even for relatively long TWOS

beams with slenderness ratios of 50 or more, the importance of this additional decaying

mode may remain significant [1].

Engineering theories that adequately model this effect for isotropic beams existed for a

good part of the last century. They rely on incorporation of the derivative of twist (k0
1) as an

independent generalized strain measure. Most commonly such a refinement is referred to

as Vlasov theory [2,3]; however, alternative names, such as Wagner theory [4], are in use

as well. Because the resulting governing equation for torsion in Vlasov theory is of fourth

order, rather than second order as in the St. Venant treatment of torsion, an additional

boundary condition is required at each end of the beam. The geometric form of this

boundary condition, i.e. specifying k1Z0 at a boundary, is often referred to as ‘restrained

warping.’ Indeed, within the context of this theory, only warping out of the cross-sectional

plane is present and its magnitude is proportional to k1. This leads to other common names

of such a refinement: ‘torsional theory with restrained warping’ (as opposed to the St.

Venant torsional theory where the warping is free) and ‘nonuniform torsion’ (as opposed

to uniform torsion in the St. Venant case). While those theories were based primarily on

engineering intuition, it was later rigorously shown that the slowly decaying deformation

mode in question is indeed related to torsion [5,6].

Primarily because the rotorcraft industry uses composite, TWOS beam structures in

such parts as bearingless rotor flexbeams, extension of the Vlasov theory to anisotropic

beams has attracted significant attention from researchers [7–10]. Such theories construct

beam models based on the classical, laminated plate/shell theory in conjunction with the

kinematic assumptions that were originally used in Vlasov theory for isotropic beams. In

particular, the beam cross-section is assumed to be rigid in its own plane, and the

transverse shear strains are neglected [7,8]. As discussed in detail in [6], such assumptions

lead to certain contradictions even for isotropic beams, while the consequences are even

less predictable for the generally anisotropic case. There exists an alternative approach to

constructing thin-walled beam theories that avoids ad hoc kinematic assumptions and

relies instead on equilibrium equations. This in general leads to more rigorous thin-walled

beam theories [11,12]. Some attempts to apply this method to the development of Vlasov

theory have been made [10], but the procedure is not straightforward because there are not

enough equilibrium equations to solve for all the necessary quantities.
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A third approach, and the one advocated by the authors, relies on the direct use of

certain small parameters inherent to slender structures, which we would like to model as

beams, by applying the variational-asymptotic method (VAM) [13]. This rigorous

mathematical procedure does not invoke any ad hoc kinematic assumptions, and its results

are fully consistent with those from the equilibrium approach where appropriate

comparisons can be made. However, it provides more flexibility and allows one to

circumvent many of the problems that would be faced in use of the equilibrium approach.

The first attempt to apply this method to TWOS beams [14] provided some insights into

the nature of the Vlasov phenomenon, but the paper contains certain inconsistencies.

These are corrected in later works where a fully consistent theory for TWOS beams was

developed using the VAM [6,15]. Therein it was shown that, compared to the classical

terms, the Vlasov effect is caused by correction terms of the second order with respect to

the beam small parameter a/ll, where a and ll are the characteristic cross-sectional

dimension and the wavelength of elastic deformation along the beam axis, respectively.

However, for TWOS beams these terms become very important due to the presence of the

inverse of another small parameter, h/a, where h is the wall thickness. Remarkably, terms

involving the inverse of this small parameter are absent when one considers a closed

section, which leads to the conclusion that the Vlasov correction is relatively unimportant

for slender beams with closed cross-sections.

The TWOS beam theory presented in [6,15] did not include Timoshenko corrections,

which are also second-order corrections with respect to a/ll. In order to obtain a

meaningful Vlasov model, a Timoshenko model has to be first constructed, from which the

shear center location is deduced. This is followed by moving the origin to the shear center

and finally constructing a generalized Vlasov theory using appropriate terms from the

second-order approximation. This procedure can be incorporated into the versatile cross-

sectional analysis code VABS (variational asymptotic beam sectional analysis) [16,17] so

that the Vlasov model can be constructed for general composite beams with arbitrary

geometry shape (not necessarily thin-walled) and materials.

The goal of this paper is to illustrate the procedure of constructing a generalized Vlasov

model for composite beams as a component of VABS, the mathematical foundation of

which is the VAM, and provide some benchmark results with which other theories can be

compared. This task of providing a comprehensive set of benchmark problems is of

particular importance due to the false sense of security that often follows when there are

relatively few published results that practically all analyses predict accurately. That is, a

theory might provide quite reasonable results for these few cases but totally erroneous

ones for other (untested) configurations.
2. Construction of a generalized Vlasov model

The Vlasov beam theory can be considered as a truncation of a beam theory that is

asymptotically correct to the second order. Hence, the first step of constructing a Vlasov

theory requires the determination of the second-order energy, which has been done in
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Ref. [17] and can be expressed as

2U1 Z 3T A3 C23TB30 C30TC30 C23T D300 (1)

where A, B, C, and D are matrices carrying the geometry and material information of the

cross-section, 3Z g11 k1 k2 k3b c
T are the generalized strain measures defined in

the classical beam theory, and () 0 means a derivative with respect to the beam axial

coordinate x1.

A generalized Timoshenko model [18] can be constructed from this energy expression,

such that
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(2)

here 2g12 and 2g13 are the generalized strain measures associated with two shear

deformations; Fi and Mi, are beam stress resultants and moment measures, expressed in the

deformed beam cross-sectional frame basis. (Here and throughout all the paper, Greek

indices assume values 2 and 3 while Latin indices assume 1, 2, and 3. Repeated indices are

summed over their range except where explicitly indicated.) The shear center can be

obtained based on the flexibility matrix in Eq. (2) as

e2 ZK
S34

S44

e3 Z
S24

S44

(3)

Finally, the origin is moved to the shear center and the second-order energy, Eq. (1), is

sought based on the new coordinate system. In the framework of the Vlasov theory, it is

assumed that k0
1 is much larger than the derivatives of the other classical generalized strain

measures g0
11, k0

2, and k0
3. By setting the latter quantities to zero, a strain energy expression

can be expressed in terms of the five ‘degrees of freedom’ of the Vlasov beam theory, and a

Vlasov model can be constructed as
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(4)

here Mu is the bi-moment (conjugate to the k0
1 strain measure). Eq. (4) can be used as input

in a one-dimensional (1-D) Vlasov beam analysis to solve for the global deformation, 1-D

strain measures, and stress resultants along the beam axis. This generalized Vlasov model

is constructed within the framework of VABS [17] to take advantage of its versatility
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and generality. We will term the model in Eq. (4) as the VABS generalized Vlasov model

in the rest of the development.

One of the main applications of the VABS generalized Vlasov model is thus exhibited

in Eq. (4). These constitutive relations obtained from VABS can be used as input for

various 1-D beam analyses (such as static, dynamic, buckling, aeroelastic, and etc.)

considering the restrained warping effects. It is worthy to emphasize that, although VABS

casts the strain energy into a form similar to that of Vlasov theory, it does not invoke any

kinematic assumptions of this theory as what is usually done in the literature. In fact, the

VABS generalized Vlasov theory considers all possible 3-D deformation but still creates a

seamless connection to traditional beam theories so that the 1-D beam analysis remains

essentially the same. Any general 1-D Vlasov beam analysis that can make use of a fully

populated 5!5 stiffness matrix should be able to directly use the VABS generalized

Vlasov model, as long as the 1-D analysis uses generalized strain measures equivalent to

the standard ones used in Eq. (4) and defined in Ref. [17].
3. One-dimensional Vlasov beam analysis

Having obtained the constitutive model, Eq. (4), corresponding to the Vlasov beam

theory, we can derive the governing equations for the 1-D beam analysis. Following [19],

we can derive the 1-D beam static equilibrium equations for anisotropic, initially curved

and twisted TWOS beams using an intrinsic formulation, such that

F 0
1 KF2K3 CF3K2 C f1 Z 0

F 0
2 KF3K1 CF1K3 C f2 Z 0

F 0
3 KF1K2 CF2K1 C f3 Z 0

M 0
1 KM2K3 CM3K2 KM 00

u Cm1 Z 0

M 0
2 KM3K1 CM1K3 K ð1 Cg11ÞF3 KK3M 0

u Cm2 Z 0

M 0
3 KM1K2 CM2K1 C ð1 Cg11ÞF2 CK2M 0

u Cm3 Z 0

(5)

where fi and mi are applied distributed forces and moments, respectively, and KiZkiCki

with ki being the initial twist and curvature measures in the undeformed beam cross-

sectional frame basis. Eq. (5) is as general as a geometrically exact nonlinear Vlasov beam

theory allows. General analytical solutions of these equations are not known; hence,

numerical solutions based on 1-D finite element methods are usually employed.

For later purpose of validating the present theory, we consider only prismatic beams

with no distributed applied loads, so that fiZmiZkiZ0. The load comes in through the

boundary conditions, such that F1(L)ZF2(L)ZF3(L)ZM2(L)ZM3(L)ZMu(L)Z0 and

M1(L)ZT. The rotation and the warping displacement of the root are restricted so that

q1(0)Zk1(0)Z0. Under these specialized conditions Eq. (5) can be solved once the cross-

sectional constants of Eq. (4) are determined. The cross-sectional constants for the strip

and the I-beam have analytical solutions from the VAM for the stiffnesses based on
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the assumption of thin-walled geometry [6,15]. The stiffnesses without the thin-walled

assumption must be determined numerically using VABS.

So that an analytical solution can be obtained, let us consider the case of small rotations,

so that the equations become linear. For the case of loading outlined above, one finds the

torsional equation reducing to

M 0
1 KM 00

u Z 0 (6)

For the case of, say, elastic coupling between k1 and k2

M1 Z C22k1 CC23k2; Mu Z C55k0
1 (7)

where for the isotropic case C22 is typically denoted as GJ and C55 as EC. The loading

gives rise to zero bending moment, so that C23k1CC33k2Z0, thus allowing k2 to be

eliminated. Finally, k1 is written as q0
1 so that Eq. (6) becomes

dq1

dx
Kg

d3q1

dx3
Kt Z 0 (8)

where xZx1/L and

t Z
TL

C22 1 K
C2

23

C22C33

� � ; g Z
C55

L2C22 1 K
C2

23

C22C33

� � (9)

the solution of which can be written as

q1

t
Z x K

ffiffiffi
g

p
sinh

xffiffiffi
g

p

� �
C

ffiffiffi
g

p
tanh

1ffiffiffi
g

p

� �
cosh

xffiffiffi
g

p

� �
K1

� �
(10)

Although a more comprehensive numerical solution based on Eq. (5) could be used, this

simplified analytical solution will be used exclusively for the examples studied in this

paper to calculate the 1-D variables from Vlasov analysis. For the anisotropic case, the

coupling terms are not zero; hence, deformations other than twist may present.
4. Recovery relations

The uniqueness of the present Vlasov beam theory is that the original 3-D, nonlinear

elasticity problem is reduced to a 2-D, linear, cross-sectional analysis and a 1-D, nonlinear,

Vlasov beam analysis, which have been dealt with in the above two sections, respectively.

To compare the present theory with standard solutions to the 3-D problem, a final step is

needed to assemble results from the above two analyses to recover the original 3-D fields,

including displacements, stresses, and strains.

Although it is necessary for a Vlasov model to provide accurate results for the various

types of beam global behavior (i.e., static deflections, natural frequencies, mode shapes,

nonlinear transient behavior, buckling loads, etc.), this is not sufficient. Indeed, it is

misleading to focus only on the 1-D behavior, per se, because an insufficiently detailed

study of published results may lead one to believe that differences among the various

composite beam theories are insignificant. Actually, a composite beam model should be
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judged by how well it predicts 3-D behavior of the original 3-D structure. Therefore,

recovery relations should be provided to complete the modeling. By recovery relations we

mean expressions for the 3-D displacements, strains and stresses in terms of 1-D beam

quantities and the local cross-sectional coordinates, xa.

For an initially curved and twisted beam, the warping that is asymptotically correct

through the first order of h/R and h/l can be expressed as

wðx1; x2; x3Þ Z ðV0 CV1RÞ3 CV1S30 (11)

where w(x1, x2, x3) is a column matrix of the components of the 3-D warping functions, V0,

V1R, and V1S are the asymptotically correct warping functions of the zeroth-order

approximation, the correction due to initial curvatures/twist, and the refined warping of the

order of h/l, respectively. Among the derivatives of components of 3 in the generalized

Vlasov beam model, k0
1 dominates the others. This allows us to take

30 Z 0 k0
1 0 0

� �T
(12)

The recovered 3-D displacement field of the VABS generalized Vlasov theory can be

expressed as

Uiðx1; x2; x3Þ Z uiðx1ÞCxa½Caiðx1ÞKdai�CCijwjðx1; x2; x3Þ (13)

where Ui(x1, x2, x3) are the 3-D displacements, ui(x1) are the 1-D beam displacements,

Cij(x1) are components of the direction cosine matrix representing the rotation of the beam

cross-sectional triad caused by deformation, and dai is the Kronecker symbol. According to

the VAM, a second-order asymptotically correct energy requires the warping field

asymptotically correct only through first order, and consequently the 3-D fields can only be

recovered through the first order. To recover the 3-D fields that are accurate through second

order requires calculation of the second-order warping field, which means additional

complexity and computation. Here the 3-D results are recovered based on the first-order

warping and all the other information we have. Numerical examples show that such

recovery relations yield accurate results without introducing additional computational cost.

The 3-D strain field can be expressed symbolically in terms of the 1-D strain measures

and the warping functions obtained in the modeling process as

G Z Ghw CG33 CGRw CGlw
0 (14)

where G is the column matrix representing the 3-D strain components, Gh, G3, Gl, and GR are

operators that are functions of the cross-sectional geometry, and w is a column matrix of the

cross-sectional warping functions, with both in- and out-of-plane components. Let us recall

[20] that w actually consists of the warping for the classical approximation and a first-order

correction, expressed in terms of 3 and 30. Therefore, once the beam problem is solved and 3 is

known as a function of the axial coordinate, all the terms in the 3-D strain field are known.

Expressing the solution for the warping in terms of 3 and 30, one finds the 3-D strain

field to be

G Z ½ðGh CGRÞðV0 CV1RÞCG3�3 C ½ðGh CGRÞV1S CGlðV0 CV1RÞ�3
0 CGlV1S300

(15)
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where the V terms are coefficients of 3 and 30 in the warping expresssion, Eq. (11). Here the

3-D strain field is

G Z G11 2G12 2G13 G22 2G23 G33

� �T
(16)

and 300 is obtained by the derivative of Eq. (12). All the operators in Eq. (15) are defined in

[17]. Although it is easier and more convenient to recover the 3-D strain and stress using 1-

D stress resultants for the VABS generalized Timoshenko model [18], such an advantage

is not found for the Vlasov model because the derivative of stress resultants, particularly

the bi-moment Mu, cannot be expressed explicitly in terms of the stress resultants

themselves. For an analytical 1-D beam analysis, the availability of k0
1 and k00

1 is not an

issue. However, if the 1-D Vlasov beam analysis is finite-element based, shape functions

of sufficiently high order should be used so that the two differentiations of k1 do not

introduce large errors.

Finally, the 3-D stress field can be obtained from the 3-D strain field using the 3-D

constitutive law.
5. Numerical results

In this section, results obtained from a 1-D beam solution that uses the VABS cross-

sectional constants as input are compared with 3-D finite element results for loaded strips

and I-beams. The loading considered here is a twisting moment applied at the beam tip,

where x1ZL, and all displacement is constrained to be zero at the beam root, where x1Z0.

5.1. Strips

A strip is a beam with a thin, rectangular cross-section with height h, width b, and

length L, and h/b/L. End effects (or boundary-layer effects) have been noted to exist

for strips, but their importance for engineering analysis is not generally agreed upon in the

literature. Here we consider a strip with bZ0.953 in., hZ0.03 in., and LZ10 in. A

schematic of the strip is shown in Fig. 1.

5.1.1. Analysis

The 2-D cross-sectional model for VABS was meshed with 2 elements through the

thickness and 60 elements across width. The 3-D model maintained the same mesh for the

cross-section as the 2-D model, but with 100 elements along the length, giving a total of
h

θ

Fig. 1. Schematic of the strip.



Table 1

Sectional properties for isotropic strip

Source Property Value Units

VABS GJ 32.3418 lb.-in.2

Vlasov GJ 32.3317 lb.-in.2

Analytical (VAM) GJ 32.3317 lb.-in.2

VABS EC 1.78635 lb.-in.4

Vlasov EC 2.10971 lb.-in.4

Analytical (VAM) EC 1.78336 lb.-in.4
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12,000 elements. The aspect ratio of each element then becomes 6.35:1.06:1 (L:b:h). The

strip was loaded with two opposite point loads (F) at each end of the horizontal plane of

symmetry of the cross-section, creating a twisting moment of M1ZFb. Displacements

were extracted from the 3-D model and used to compute the rotation angle, which was

computed by assuming a rigid-body rotation for each cross-section.
5.1.2. Results

For the isotropic case, we take EZ10!106 psi and nZ0.3. Sectional properties are given

in Table 1. 1-D results for the isotropic case are shown in Fig. 2 with a blow-up of the portion

around the restrained end in Fig. 3. Results indicate reasonable agreement among VABS, the

analytical asymptotic results, Vlasov’s original theory, and the 3-D finite element results from

ABAQUS. The result for the warping rigidity from Vlasov’s original theory differs slightly

from VABS and the analytical asymptotic theory [15]. Vlasov’s original theory gives

EC Z
Eh3b3

144
(17)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 2. Twist angle for isotropic strip versus nondimensional axial coordinate.
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Fig. 3. Twist angle for isotropic strip versus nondimensional axial coordinate—blow-up of end-zone effect.
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while the asymptotic result can be found as

EC Z
Eh3b3

144ð1 Kn2Þ
(18)

The difference between the asymptotic results and Vlasov’s approximation is practically

negligible.

For the orthotropic and anisotropic cases, the material properties are given in Table 2.

The anisotropic strip has one layer with ply angle qZ158, whereas the orthotropic case has

qZ0. Sectional properties are given in Tables 3 and 4. In Table 4 �C22 ZC22 KC2
23=C33

corresponds to the effective torsional rigidity that takes bending-twist coupling into

consideration. 1-D results for the orthotropic case are shown in Fig. 4 and for the

anisotropic case in Fig. 5. The 1-D results with VABS properties lie right on top of those

extracted from ABAQUS 3-D finite element results.

It is interesting to note that strips present a unique class of thin-walled sections that is

neither open nor closed. While the Vlasov effect is not as significant as for open sections,

the results presented indicate that Vlasov’s correction can correctly describe the end effect

associated with the torsional deformation.
Table 2

Material properties for anisotropic strip and I-beam

Property Value

Material properties: ElZ20.59!106 psi

EtZ1.42!106 psi GltZ8.7!105 psi

GtnZ6.96!105 psi nltZntnZ0.42



Table 4

Sectional properties for anisotropic strip

Source Property Value Units

VABS �C22 7.96547 lb.-in.2

VABS C55 1.82499 lb.-in.4

Table 3

Sectional properties for orthotropic strip

Source Property Value Units

VABS C22 7.31562 lb.-in.2

VABS C55 3.39251 lb.-in.4
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5.2. I-Beams

Consider an I-beam with width aZ0.5 in., thickness hZ0.04 in., and height bZ1.0 in.

Both isotropic and anisotropic cases are considered. A schematic of the anisotropic I-beam

is shown in Fig. 6 and the material properties in Table 2. For those layers that have a

variable ply angle, it is chosen to be qZ158.
5.2.1. Analysis

The I-beam was loaded with two opposite point loads (F) at each end of the vertical

plane of symmetry of the cross-section, creating a twisting moment of M1ZFb. Once
0.0

0.4

0.8

1.2

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

ABAQUS

VABS

1θ 
 ×

 1
0 3

' 1θ 
 ×

 1
0 3

Fig. 4. Twist angle for orthotropic strip versus nondimensional axial coordinate.
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Fig. 6. Schematic of I-beam.
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again, the displacements were extracted from the 3-D model and used to compute the

rotation angle, which was computed by assuming a rigid-body rotation of each of the

cross-section.

For the isotropic case, the 2-D cross-sectional model for VABS was meshed with 2

elements through the thickness, 20 elements across the flange and 10 elements along the

web. The 3-D model maintained the same cross-sectional mesh as the 2-D cross-sectional

model, but with 100 elements along the length, giving a total of 10,000 elements. The

aspect ratio of each element then becomes 5:2.5:1 (L:b:h). In an attempt to reduce end

effects at the free end, two cases were run with distinct b/L ratios, case 1 with 1/10, and

case 2 with 1/20.

For the anisotropic case, the 2-D cross-sectional model for VABS was meshed with 8

elements through the thickness, 20 elements across flange and 10 elements along the web.

The 3-D model maintained the same cross-sectional mesh as the 2-D model, but with 100

elements along the length, giving a total of 40,000 elements. The aspect ratio of each

element then becomes 20:10:1 (L:b:h). Only the case with b/LZ1/10 was run for the

anisotropic I-beam.
5.2.2. Results

For the isotropic case, sectional properties are given in Table 5. As was demonstrated in

[6,15], Vlasov’s original theory is asymptotically correct for isotropic TWOS beams. As a

result, VABS and the analytical asymptotically correct theory (Vlasov’s) agree well for the

torsional rigidity although they provide somewhat different warping rigidities. 1-D results

for the two cases are shown in Figs. 7 and 8. One can clearly observe an improvement of

the VABS results over the TWOS analytical approximation when compared to the results

derived from 3-D modelling.

For the anisotropic I-beam, sectional properties are given in Table 6 where, as in the

case of the anisotropic strip, �C22 ZC22 KC2
23=C33 corresponds to the effective torsional

rigidity that takes bending-twist coupling into consideration. 1-D results are shown in

Fig. 9.

Next, let us look into stress recovery. From the point of view of Vlasov theory, stresses

in the axial direction provide the best test of the correction. In recovering these stresses

first one needs to calculate q00
1. Fig. 10 demonstrates a good correlation with 3-D results

for two isotropic I-beams. Figs. 11 and 12 demonstrate recovered axial stresses as

predicted by ABAQUS and VABS, respectively. Although different visualization tools

somewhat obscure the similarities, correlation is very good, especially if the VABS mesh

is refined.
Table 5

Sectional properties for isotropic I-beam

Source Property Value Units

VABS GJ 199.944 lb.-in.2

Analytical (VAM) GJ 198.901 lb.-in.2

VABS EC 3553.43 lb.-in.4

Analytical (VAM) EC 2083.33 lb.-in.4



0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

3

6

9

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ABAQUS
VABS
Analytical (VAM)

x

θ 1
 1

0
2

θ 1
 1

0
2

St. Venant

Fig. 8. Twist angle for isotropic I-beam versus nondimensional axial coordinate, L/bZ20.

Table 6

Sectional properties for anisotropic I-beam

Source Property Value Units

VABS �C22 55.8658 lb.-in.2

VABS C55 4232.17 lb.-in.4
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Fig. 7. Twist angle for isotropic I-beam versus nondimensional axial coordinate, L/bZ10.
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Figs. 13 and 14 demonstrate recovered axial stresses as predicted by ABAQUS and

VABS, respectively, for the anisotropic I-beam. As with the isotropic case, the different

visualization tools somewhat obscure the similarities, but correlation is still very good,

especially when the VABS mesh is refined. We note here that interlaminar stresses can be

recovered by VABS.
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Fig. 10. q00
1 for isotropic I-beam versus nondimensional axial coordinate, L/bZ10 (top) and L/bZ20 (bottom).



Fig. 11. s11 for isotropic I-beam at the midspan of the beam from ABAQUS (3-D).
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5.3. Closed-section beams

Finally, let us briefly address closed sections. The box-beam configuration of [20] is

analyzed by both the VABS generalized Vlasov theory and 3-D finite elements. While it is

not expected that the theory will correctly predict the end-zone behavior of a closed-

section beam, such an application will no doubt be attempted by VABS users. Fig. 15
Fig. 12. s11 for isotropic I-beam at the midspan of the beam from VABS.



Fig. 13. s11 for anisotropic I-beam at the mid-span of the beam, ABAQUS (3-D).
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shows that the results are not satisfactory. The reason is that the mode of deformation for

TWOS beams contains a significant amount of the torsional mode of deformation. On the

other hand, the mode of deformation in the end-zone of a closed-section beam is

completely different and must be determined by other means, such as the use of dispersion

equations [21]. In fact, the VABS classical theory (here equivalent to St. Venant theory)

provides a better correlation with 3-D results than the VABS generalized Vlasov theory. It

is important to realize that the Vlasov mode for a box-beam is a fast decaying one and

therefore cannot be picked up using asymptotic considerations. Clearly, the VABS

generalized Vlasov theory should not be used for closed-section beams.
Fig. 14. s11 for anisotropic I-beam at the mid-span of the beam, VABS.
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6. Concluding remarks

A generalized Vlasov theory for composite beams has been developed based on the

variational asymptotic beam sectional analysis without invoking any ad hoc kinematic

assumptions. As long as the VABS generalized Vlasov theory is applied to beams with

thin-walled, open cross-sections, one finds excellent agreement between the developed

theory and the 3-D finite element results from ABAQUS in the regime near a fixed

boundary. Both the decay length and the end-zone behavior are predicted accurately.

When a box-beam is analyzed in this fashion, the ‘restrained warping effect’ for this

closed-section beam is not insignificant. However, the generalized Vlasov theory is based

on a particular mode of deformation, which is not significant in closed-section beams. The

end-zone effect for the closed-section beam is caused by another type of deformation

mode, which requires additional analysis of the boundary layer. The VABS generalized

Vlasov theory has been shown to be extremely useful for beams with open cross-sections.

However, it should not be used for closed-section beams. Instead, the VABS classical or

generalized Timoshenko theory should be used in such cases.
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