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Elasticity Solutions Versus
Asymptotic Sectional Analysis of
Homogeneous, Isotropic,
Prismatic Beams
The original three-dimensional elasticity problem of isotropic prismatic beams has
solved analytically by the variational asymptotic method (VAM). The resulting class
model (Euler-Bernoulli-like) is the same as the superposition of elasticity solution
extension, Saint-Venant torsion, and pure bending in two orthogonal directions. Th
sulting refined model (Timoshenko-like) is the same as the superposition of ela
solutions of extension, Saint-Venant torsion, and both bending and transverse shear
orthogonal directions. The fact that the VAM can reproduce results from the theo
elasticity proves that two-dimensional finite-element-based cross-sectional analyses
the VAM, such as the variational asymptotic beam sectional analysis (VABS), have a
mathematical foundation. One is thus able to reproduce numerically with VABS the
results for this problem as one obtains from three-dimensional elasticity, but with or
of magnitude less computational cost relative to three-dimensional finite elements.
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Introduction

The variational asymptotic method~VAM ! is a mathematical
approach applicable to any problem governed by an energy f
tional having one or more small parameters. Contrary to the
mal asymptotic methods, VAM applies the asymptotic expans
to the energy functional instead of the system of differential eq
tions, @1#. Hence, dropping a small term in the functional
equivalent to neglecting such quantities in several differen
equations simultaneously. This implies that, when applica
VAM is more compact and less cumbersome than stand
asymptotic methods. The VAM includes the merits of both var
tional ~systematic! and asymptotic~without ad hoc kinematic as
sumptions! methods. It allows one to replace a three-dimensio
structural model with a reduced-order model in terms of
asymptotic series of certain small parameters inherent to the s
ture. Although there are different forms of this method, e.g., C
rlet and Destuynder@2# and Berdichevsky@3#, the method used in
the present work is more closely aligned with the latter.

The application of the VAM to model beams with general g
ometry and material has been demonstrated in the theory as
ated with the computer program VABS~variational asymptotic
beam sectional analysis!. VABS was first mentioned in@4#. Its
development over the past ten years is described in@5–10# and
takes the variational asymptotic method~VAM !, @3#, as the math-
ematical basis. By means of the VAM, a general thre
dimensional nonlinear elasticity problem for a beam-like struct
is rigorously split into a two-dimensional linear cross-sectio
analysis and a one-dimensional nonlinear beam analysis. It is
teresting to know that Trabucho and Viano@11# applied the VAM
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of Ciarlet and Destuynder@2# to construct mathematical mode
for rods. Their work is oriented more toward mathematicians th
engineers.

In accord with the theory behind it, VABS can perform a cla
sical analysis for initially twisted and curved inhomogeneous,
isotropic beams with arbitrary geometry, material properties,
reference cross sections. It captures both trapeze and Vlaso
fects, which are useful for specific beam applications. VABS
also able to calculate the one-dimensional stiffness matrix w
transverse shear refinement for initially twisted and curved, in
mogeneous, anisotropic beams with arbitrary geometry and m
rial properties. Finally, the three-dimensional stress and st
fields can be recovered, if required, for finding stress concen
tions, interlaminar stresses, etc.

There are a lot of beam theories in the literature. Howev
almost all published work is of the ad hoc variety, especially
the area of modeling composite structures. Because VABS de
ops stiffness models that use the same fundamental types o
formation that appear in traditional beam theories~such as those
of Euler-Bernoulli, Timoshenko, and Vlasov!, some researcher
may be tempted to believe that VABS is nothing more than
computerized adaptation of elementary theories. However, VA
is really very different from the traditional beam theories, and
assumptions behind it are far less restrictive. The fact that VA
uses the traditional types of deformation winds up creating
simple and smooth connection to traditional beam theories, so
the one-dimensional beam analyses will remain essentially
same. A large body of additional information regarding thre
dimensional behavior of the beam, which need not be conside
at all in a one-dimensional beam analysis, is actually taken
account by introducing three-dimensional warping functions t
are subsequently calculated.

In view of this, the main purpose of the present work is to ta
the reader, who is presumed to have a basic understandin
elasticity and calculus of variations, through an analytical deri
tion and application of the equations used by VABS for a spec
ized case so that its relationship with traditional theories will
clearer and its mathematical basis~VAM ! will appear less arcane
This paper is in essence ananalyticalvalidation of VABS against
the well-established theory of elasticity. Although numerous n
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Fig. 1 Schematic of beam deformation
e
h
f

t

t

i
e
o
i

a
e

x

o

o

e.
tate

e
y
con-

d

the
ht
er-
s a
merical validation examples have been provided in@6,7,10,12#,
the present extensive and rigorous validation is required to d
onstrate conclusively its versatility and accuracy. This paper t
should increase the reader’s confidence in results obtained
VABS.

To accomplish the above, the present work specializes
VABS general formulation for the analysis of isotropic, prisma
beams. Starting with the governing differential equations and
sociated boundary conditions of elasticity theory, we set ou
prove~a! that the results from the classical model of VABS are t
same as the superposition of elasticity solutions of extens
Saint-Venant torsion, and pure bending in two orthogonal dir
tions; and~b! that the results from the Timoshenko-like model
VABS are the same as the superposition of the elasticity solut
of extension, Saint-Venant torsion, and both bending and tra
verse shear in two orthogonal directions.

Three-Dimensional Formulation
As sketched in Fig. 1, a beam can be represented by a refer

line r measured byx1 , and a typical cross sections with h as its
characteristic dimension and described by cross-sectional C
sian coordinatesxa . Note that here and throughout the pap
Greek indices assume values 2 and 3 while Latin indices ass
1, 2, and 3. Repeated indices are summed over their range e
where explicitly indicated. For the convenience of comparing w
elasticity solutions, the locus of all cross-sectional centroids al
the beam is chosen as the reference line. An orthonormal triabi
is chosen for the purpose of resolving tensorial quantities in c
ponent form for actual computation. For convenience,bi is chosen
to be tangent toxi , respectively.
6 Õ Vol. 71, JANUARY 2004
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The spatial position vectorr̂ of any point in the undeformed
beam structure can be written as

r̂ ~x1 ,x2 ,x3!5r ~x1!1xaba (1)

wherer is the position vector of the points of the reference lin
Note for a prismatic beam, the beam axis in the undeformed s
is straight. Finally,r 85b1 and ~ !8 means the partial derivative
with respect tox1 .

After deformation, the particle that had position vectorr̂ in the
undeformed state now has the position vectorR̂ in the deformed
state. Another orthonormal triadBi is introduced to express th
deformed configuration, and theBi unit vectors are not necessaril
tangent to the deformed beam coordinates. However, for the
venience of applying VAM, we chooseBi to coincide withbi in
the case of zero deformation,B1 to be tangent to the deforme
beam reference axis, andBa determined by a rotation aboutB1 .
ThenBi can be related tobi by a rotation tensor which is called
the global rotation tensor,@13#, such that

CBb5Bibi . (2)

CbB is the inverse rotation to bringBi back tobi which means

CBb"CbB5I (3)

whereI is the identity tensor. Please note that we donot make any
restrictive assumption here by choosingB1 to be tangent tox1 .
Instead, the transverse shear deformation will be included in
warping functions introduced below and will be explicitly broug
into evidence when we fit the asymptotic model into an engine
ing model that can account for this type of deformation, such a
Timoshenko-like model.
Transactions of the ASME
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The position vectorR̂ can be represented as

R̂~x1 ,x2 ,x3!5R~x1!1xaBa~x1!1wi~x1 ,x2 ,x3!Bi~x1! (4)

whereR is the position vector to a point on the reference line
the deformed beam, andwi are the components of warping, bo
in and out of the cross-sectional plane. By introducing the
known three-dimensional warping functions into the formulatio
one takes into account all possible deformation.

One should note that Eq.~4! is four times redundant because
the way warping was introduced. One must impose four appro
ate constraints on the displacement field to remove the red
dancy. The four constraints applied here are

^wi&50 (5)

^x2w32x3w2&50 (6)

where the notation̂ & means integration over the reference cro
section. The implication of Eq.~5! is that warping does not con
tribute to the rigid-body displacement of the cross section. T
leads to one-dimensional displacement variables for extension
bending that have easily identifiable geometric meanings: t
correspond to the measure numbers in thebi basis of the average
displacement of the cross section. Equation~6! implies the tor-
sional rotation variable is the average rotation of the cross sec
aboutB1 .

To formulate this problem in an intrinsic form, we need t
definition of the one-dimensional generalized Lagrangean stra

g5CbB"R82b1 (7)

Bi85k jBjÃBi (8)

where the column matrices of the ‘‘force-strain’’ measuresg
5 bg11 0 0cT andk i are the ‘‘moment-strain’’ measures. Based
the concept of decomposition of rotation tensor,@13#, if the local
rotation is small, which is the case for all the framework of VAB
except the trapeze solution~not considered in this paper!, the
Jaumann-Biot-Cauchy strain components are given by

G i j 5
1

2
~Fi j 1F ji !2d i j (9)

whered i j is the Kronecker symbol, andFi j the mixed-basis com-
ponent of the deformation gradient tensor such that

Fi j 5Bi "Gkg
k"bj . (10)

Here Gk5]R̂/]xk is the covariant basis vector of the deform
configuration andgk5bk for prismatic beams.

Because of the small strain assumption, which is applicabl
the framework of a geometrically nonlinear formulation, we m
neglect all terms that are products of the warping and the o
dimensional generalized strains. Thus, one obtains the th
dimensional strain field as

G115g111x3k22x2k31w18

2G125w1,22x3k11w28

2G135w1,31x2k11w38

G225w2,2

2G235w3,21w2,3

G335w3,3 (11)
Journal of Applied Mechanics
of
h
n-
n,

f
pri-
un-

ss

his
and
ey

tion

e
ins:

n

S

d

in
y

ne-
ree-

where ( ),a means the partial derivative with respect toxa . For an
isotropic elastic body with Young’s modulusE, shear modulusG
and Poisson’s ration, twice the three-dimensional strain energ
per unit length can be written as,@14#,

2P5E^G11
2 &14G^G12

2 1G13
2 1G23

2 &

1
E

~11n!~122n! K H nG111G22

nG111G33
J TF12n n

n 12n
G

3H nG111G22

nG111G33
J L . (12)

From energy principles, we know that the exact warping functio
satisfying the constraints, Eqs.~5! and ~6!, should minimize the
strain energy in Eq.~12!. However, the same difficulties as on
finds in solving general three-dimensional elasticity problems w
be encountered if one tries to solve this minimization probl
directly. Fortunately, as demonstrated in publications related
VABS, the VAM can be used to solve for the unknown warpin
functions asymptotically to avoid the difficulty of the origina
three-dimensional formulation. This will be illustratedanalytically
in the following sections.

Classical Model

Before applying the VAM, one must define the small para
eters of the problem. It was mentioned above that products of
one-dimensional generalized strains and warping are assume
be small because of the small-strain assumption. The assum
of small strain is adopted for the purpose of deriving a geome
cally nonlinear beam formulation. It will be assumed and sub
quently validated from the results that the warping is of the or
of h« with h as the characteristic dimension of the cross secti
The smallness of the one-dimensional generalized strains is t
into account as follows. The stretching of the beam reference
is denoted byg11; the maximum strain induced by twist is of th
order ofhk1 , while the maximum strain induced by bending is
the order ofhka . This observation is consistent with the sma
local rotation assumption used to derive Eq.~9!. Now, let us de-
note the order of the maximum strain as«5max(g11,hk i). This
small parameter is then utilized when deriving the thre
dimensional strain field, Eq.~11!, so that the smallness of« need
not be used in the rest of derivation. Another small paramete
h/ l wherel is the wavelength of beam axial deformation. This
the only small parameter one needs for prismatic beams for
purpose of solving the unknown warping functions asymptotica
and obtaining a strain energy asymptotically correct up to a c
tain order.

The classical model of a prismatic beam is represented in te
of a strain energy per unit length that is asymptotically correct
to the order ofm«2 where m is of the order of the maximum
material constant. All the prime terms in Eq.~11! are of orderh/ l
higher than the rest and do not contribute to such an energy. T
this energy, which is called the zeroth-order energy, can be
tained from Eq.~12! as
JANUARY 2004, Vol. 71 Õ 17



2P05ESg11
2 1EIaka

21G^~w1,22x3k1!21~w1,31x2k1!21~w3,21w2,3!
2&

1
E

~11n!~122n! K H n~g111x3k22x2k3!1w2,2

n~g111x3k22x2k3!1w3,3
J TF12n n

n 12n
G H n~g111x3k22x2k3!1w2,2

n~g111x3k22x2k3!1w3,3
J L (13)

Fig. 2 Sketch of a clamped prism
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S5^1& I 25^x3
2& I 35^x2

2& (14)

whereS is the cross-sectional area andI a are the principal area
moments of inertia aboutxa . The warping functions that mini-
mize the above energy are governed by the Euler-Lagrange e
tions of this energy functional, given by

w1,221w1,3350 (15)

2~12n!w2,221~122n!w2,331w3,2322nk350 (16)

2~12n!w3,331~122n!w3,221w2,2312nk250 (17)

and the associated boundary conditions

n3~x2k11w1,3!1n2~w1,22x3k1!50 (18)

n3~w2,31w3,2!1
2n2

122n
@n~g111x3k22x2k3!1nw3,31~1

2n!w2,2#50 (19)

n2~w2,31w3,2!1
2n3

122n
@n~g111x3k22x2k3!1nw2,21~1

2n!w3,3#50 (20)

wherena is the direction cosine of outward normal with respect
xa . Here, to maintain a simpler derivation, we do not u
Lagrange multipliers to enforce the constraints of Eqs.~5! and~6!.
Instead, we keep these constraints in mind and check whether
can be satisfied by the solution. It can be observed that Eqs.~15!
and~18! are just the equations of Saint-Venant warpingc(x2 ,x3)
in elasticity textbooks such as,@15#, except

w1~x1 ,x2 ,x3!5ŵ1~x1 ,x2 ,x3!5c~x2 ,x3!k1~x1!. (21)

Hence the first approximation of the out-of-plane warpingŵ1 can
be solved by the methods given in elasticity books. According
the theory of elasticity,c can be determined up to a constant, a
one can choose the constant so that the constraint^ŵ1&50 is
satisfied. The following functions ofwa satisfy the other con-
straints as well as Eqs.~16!, ~17!, ~19!, and~20!:
18 Õ Vol. 71, JANUARY 2004
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w25ŵ252n~x2g111x2x3k2!1
nk3

2 S x2
22x3

21
I 22I 3

S D
w35ŵ352n~x3g112x2x3k3!2

nk2

2 S x2
22x3

21
I 22I 3

S D .

(22)

Having obtained all the warping functions, the three-dimensio
strain field can be recovered by Eq.~11! up to the zeroth order as

G115g111x3k22x2k3

2G125w1,22x3k1

2G135w1,31x2k1

G2252n~g111x3k22x2k3!

2G2350

G3352n~g111x3k22x2k3!. (23)

If one takes the definition of torsional rigidity from elasticit
texts, which is

GJ5G^x2
21x3

21x2c1,32x3c1,2& (24)

whereJ is the Saint-Venant torsion constant, then the asympt
cally correct three-dimensional energy, up to the order ofm«2,
can be written as

2P05ESg11
2 1GJk1

21EI2k2
21EI3k3

2. (25)

This energy coincides with the result of classical beam theo
however, it is obtained without any ad hoc kinematic assumpti
whatsoever. Such ad hoc assumptions as assuming the cros
tion to be rigid in its own plane or settingn50 are common in the
development of traditional beam theories in the literature.

For a straight beam clamped atx150 and under the tip load
F1 , Mi at x15L ~see Fig. 2!, the one-dimensional strain measur
can be solved with the help of the strain energy Eq.~25! as

g115
F1

ES
k15

M1

GJ
k25

M2

EI2
k35

M3

EI3
. (26)

If a linear beam theory is used, the three-dimensional displa
ment field can be recovered as
Transactions of the ASME
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u15
F1

ES
x12

M3

EI3
x2x11

M2

EI2
x3x11c

M1

GJ

u252nx2

F1

ES
2nx2x3

M2

EI2
1

nM3

2EI3
S x2

22x3
21

I 22I 3

S D1
M3

EI3

x1
2

2

u352nx3

F1

ES
1nx2x3

M3

EI3
1

nM2

2EI2
S x2

22x3
21

I 22I 3

S D2
M2

EI2

x1
2

2
(27)

which is essentially the superposition of elasticity solutions
extension, pure bending in two directions and torsion. The o
exception to this statement is that there is a difference of a c
stant from the elasticity solutions forua due to differences in the
way the clamped boundary condition is handled. Published e
ticity solutions enforce the clamped condition at the beam re
ence line. In our case, however, since the one-dimensional v
ables implied by the VAM solution are averages of the thr
dimensional displacement, the most straightforward solution
our framework constrains the average displacement to be z
Clearly, by enforcing a modified boundary condition in the on
dimensional beam theory, so as to mimic the clamped condi
used in the elasticity solutions, the two solutions will becom
identical; in particular, the constant terms inu2 andu3 will simply
drop out.

From the above, it is clearly shown that the above class
model stores the complete three-dimensional energy of prism
beams due to uniform extension, uniform torsion, and pure be
ing in two directions obtained by elasticity theory. The lineariz
three-dimensional displacement field recovered by VABS is
same as that obtained from elasticity theory.

Timoshenko-Like Model
Elasticity theory has another set of equations to solve for

so-called flexure problem, which involves both bending and tra
verse shear. For this VABS provides a Timoshenko-like mod
Because a Timoshenko-like model can at most approximate
original three-dimensional energy up to the order ofm«2(h/ l )2, a
strain energy that is asymptotically correct to the second orde
h/ l is sought first

2U15eTAe12eTBe81e8TCe812eTDe9 (28)

where A, B, C, and D are matrices carrying the geometry an
material information of the cross section, elements ofe
5 bg11 k1 k2 k3cT are the generalized one-dimensional strain m
sures of Euler-Bernoulli beam theory. For isotropic prisma
beams, in which the locus of cross-sectional centroids is take
the reference line and cross-sectional principal axes are alongxa ,
A becomes a diagonal matrix with diagonal terms given by
extensional stiffnessES, the torsional stiffnessGJ, and bending
stiffnessesEI2 andEI3 . A Timoshenko-like model is then create
out of the energy, Eq.~28!, as

2U5e t
TXe t12e t

TFg1gTGg (29)

where e t are the classical strain measures~but defined slightly
differently because of the framework of Timoshenko-like mode!,
andg5 b2g13 2g23cT transverse shear strains. The stiffness ma
cesX, F, andG can be found by~see@9#!

G5~QTA21CA21Q!21

F5BTA21QG

X5A1FG21FT (30)

where

Q5F0 0 0 1

0 0 21 0GT

. (31)

e t ande are related bye t5e2Qg.
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By a simple algebraic derivation,F and G can be expressed in
terms of the components ofA, B, andC as

G5
E2

C33C442C34
2 F C33I 3

2 C34I 2I 3

C34I 2I 3 C44I 2
2 G

F5
E

C33C442C34
2 F ~B41C332B31C34!I 3 ~B31C442B41C34!I 2

~B42C332B32C34!I 3 ~B32C442B42C34!I 2

~B43C332B33C34!I 3 ~B33C442B43C34!I 2

~B44C332B34C34!I 3 ~B34C442B44C34!I 2

G
(32)

where the subscripted terms involvingB andC are specified ele-
ments in those matrices. Here, one can conclude thatG is deter-
mined by the coefficients associated withka8kb8 in the asymptotic
energy, andF is determined by the coefficients associated w
kag118 and kak i8 . This observation is very important because
leads to our finding a closed-form solution for the Timoshenk
like model for isotropic, prismatic beams. To obtain the seco
order energy, we perturb the warping functions as

wi5ŵi1Vi (33)

whereVi is of the order«h/ l . Substituting the perturbed warpin
functions back into Eq.~11!, one obtains

G115g111x3k22x2k31ŵ181V18=

2G125ŵ1,22x3k11V1,21ŵ281V28=

2G135ŵ1,31x2k11V1,31ŵ381V38=

G225ŵ2,21V2,2

2G235ŵ3,21ŵ2,31V3,21V2,3

G335ŵ3,31V3,3 (34)

where the underlined terms are of the order«h/ l , the double
underlined terms are of the order«h2/ l 2, and the rest of the terms
are of the order«. Substituting this perturbed strain field into th
energy functional Eq.~12! and neglecting all the terms of orde
higher thanm(h/ l )2«2, one obtains

2P52P012P112P2 (35)

whereP0 is the energy obtained for the classical model, Eq.~25!
and

P15E^ŵ18~g11=1x3k22x2k3!&

1G@^~ŵ1,22x3k1!V1,21~ŵ1,31x2k1!V1,3&

1^~ŵ1,22x3k1!ŵ281~ŵ1,31x2k1!ŵ38&]. (36)

It is easy to prove that the underlined terms vanish for arbitr
V1 . According to Eq.~32!, the double underlined terms will no
affect the Timoshenko-like model constructed from the seco
order energy. Thus, the only terms of interest are

P15E^ŵ18~x3k22x2k3!&. (37)

Note these terms will not necessarily vanish unless the Sa
Venant warping, for which we have already solved, posses
some kind of symmetry. Thus, the second-order energy beco
JANUARY 2004, Vol. 71 Õ 19
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2P252E^V18~g111x3k22x2k3!1ŵ18
2&1G^~V1,21ŵ28!2

12V28~ŵ1,22x3k1!&1G^~V1,31ŵ38!212V38~ŵ1,31x2k1!

1~V2,31V3,2!
2&

1
E

~11n!~122n! K H nŵ181V2,2

nŵ181V3,3
J TF12n n

n 12n
G

3H nŵ181V2,2

nŵ181V3,3
J L . (38)

The underlined terms create difficulty to solve this problem in
two-dimensional cross-sectional domain. However, our goal i
find an interior solution without consideration of boundary effe
at the ends of the beam. Hence, integration by parts with res
to x1 can be used, and the residual terms at the ends ca
considered as having no effect on the interior solution. This ar
ment can be illustrated mathematically if one constrains the w
ing V1 in such a way that

^V1~g111x3k22x2k3!ux150&5^V1~g111x3k22x2k3!ux15L&.
(39)

The effect of such a constraint will die out after a small distan
from the ends according to the Saint-Venant principle. Then,
Euler-Lagrange equations for the functionalP2 are

V1,221V1,3312~g118 1x3k282x2k38!50 (40)

2~12n!V2,221~122n!V2,331V3,231~2n21!x3k181ŵ1,28 50
(41)

2~12n!V3,331~122n!V3,221V2,231~122n!x2k18

1~122n!ŵ1,38 50 (42)

and the associated boundary conditions given by

n3~V1,31ŵ38!1n2~V1,21ŵ28!50 (43)

n3~ŵ2,31ŵ3,2!1
2n2

122n
@nV3,31~12n!V2,21nŵ18#50

(44)

n2~ŵ2,31ŵ3,2!1
2n3

122n
@nV2,21~12n!V3,31nŵ18#50.

(45)

It is observed thatVa is decoupled fromV1 ; Va should be some
function multiplying k18 and V1 will be a linear combination of
g118 , and ka8 . The terms associated withVa will not affect the
Timoshenko-like model as shown in Eq.~32!. ~In fact these terms
are related with the Vlasov theory and will be studied in la
paper.! Hence, one can setVa to be zero and drop all terms tha
have no effect on the Timoshenko-like model. Then, after re
culatingP2 , one finds

2P252E^V18~x3k22x2k3!&

1GK FV1,22nx2x3k281
nk38

2 S x2
22x3

21
I 22I 3

S D G2L
1GK FV1,31nx2x3k381

nk28

2 S x2
22x3

21
I 22I 3

S D G2L .

(46)

Then the corresponding Euler-Lagrange equation, Eq.~40!, and
boundary condition, Eq.~43!, will be modified to

V1,221V1,3352~x2k382x3k28! (47)
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n3FV1,31nx2x3k381
nk28

2 S x2
22x3

21
I 22I 3

S D G
52n2FV1,22nx2x3k281

nk38

2 S x2
22x3

21
I 22I 3

S D G .
(48)

One can introduce a special function as

V1,22nx2x3k281
nk38

2 S x2
22x3

21
I 22I 3

S D
5f ,31~11n!x2

2k381 f ~x3!
(49)

V1,31nx2x3k381
nk28

2 S x2
22x3

21
I 22I 3

S D
52f ,22~11n!x3

2k281g~x2!

to satisfy Eq.~47! automatically, wheref (x3) andg(x2) are arbi-
trary functions. The advantage of introducingf is that Eq.~48!
can be made much simpler based on the choice off (x3) and
g(x2). Using Eq.~49!, the boundary condition, Eq.~48! becomes

]f

]s
52@ f ~x3!1~11n!x2

2k38#n22@g~x2!2~11n!x3
2k28#n3

(50)

wheres is the contour coordinate along the cross-sectional bou
ary. If the arbitrary functions are chosen such that on the bound

f ~x3!5H 2~11n!x2
2k38 if n2Þ0,

arbitrary if n250

g~x2!5H ~11n!x3
2k28 if n3Þ0,

arbitrary if n350
(51)

then the right-hand side of Eq.~50! vanishes andf is constant
along the boundary. For simply connected domains, one
choosef to vanish along the boundary. The governing different
equations forf can be deduced from Eq.~49! as

f1,221f1,33522nx2k281
dg~x2!

dx2
22nx3k382

d f~x3!

dx3
. (52)

This equation is the same as that governing the flexure proble
both directions if one expresseska8 in terms of the tip transverse
force and multipliesf by the shear modulusG. Therefore, all
flexure problems that are solvable by elasticity theory can also
solved analytically by the VAM~the procedure on which VABS is
based!. After f is obtained, one can findV1 up to a constant using
Eq. ~49!, where the constant can be determined by the constr
^V1&50. The portion of asymptotically correct energy Eq.~28!
that is needed for constructing the Timoshenko-like model can
found from Eqs.~35! and ~46!.

Although it is necessary to carry out an integration by pa
with respect tox1 for the sets of terms in the first bracket of E
~46! to render the present problem as a purely cross-secti
problem, this operation should not be applied at the step where
strain energy is obtained. Previous publications,@7,9#, are silent
on this seemingly inconsistent practice because a reasonabl
planation had not been formulated. However, for the present p
lem, the transverse shear energy is completely represented b
last two sets of terms and the first set of terms is part of the ene
due to extension. If one integrates this first set of terms by pa
this energy represented by it will be transformed into transve
shear energy according to Eq.~32!, which is at least physically
inappropriate; and, in the worst case, the total transverse s
energy will turn out to be negative. Nevertheless, if one does
integration by parts and also keeps the residual terms at the e
the fictitious transverse shear energy caused by integration
parts will be canceled by the residual terms at the boundar
which means the final three-dimensional results will not be
Transactions of the ASME
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fected by this operation. Based on this fact and Eq.~32!, the first
set of terms in Eq.~46! for the present problem will not affec
the final Timoshenko-like model and will be discarded in la
calculations.

After constructing the Timoshenko-like model using Eqs.~32!
and~30! and using it to solve the one-dimensional beam proble
the three-dimensional strain field can be recovered using Eq.~34!
and the displacement field can be recovered similarly as Eq.~27!.
This procedure will be given in detail for some example cro
sections that follow.

Example Cross Sections
In this section two typical examples listed in the elasticity te

of Timoshenko and Goodier@15# are studied here using the an
lytical procedures formulated in previous sections.

Elliptical Section. For an elliptical cross section with sem
axesa and b in the directions ofx2 and x3 , respectively, andr
5a/b as the aspect ratio, the Saint-Venant warping is found to

c5
~b22a2!x2x3

a21b2
. (53)

If one chooses thef (x3) andg(x2) according to Eq.~51!

f ~x3!52~11n!x2
2k3852~11n!S 12

x3
2

b2D a2k38

g~x2!5~11n!x3
2k285~11n!S 12

x2
2

a2D b2k28 (54)

then both Eqs.~50! and ~52! will be satisfied by

f5mS x2
2

a2
1

x3
2

b2
21D x31nS x2

2

a2
1

x3
2

b2
21D x2 (55)

with

m52
r2@n1~11n!r2#

113r2
b2k38

n52
@nr21~11n!#

31r2
b2k28 . (56)

Then one can obtainV1 by Eq. ~49! as

V15p
x3k28

24~31r2!
1q

x2k38

24~113r2!
(57)

with

p524x3
2@41n1~22n!r2#212x2

2~22n1nr2!13b2@1618r2

113n12nr21nr4!]
(58)

q54x2
2@~41n!r2122n#212x3

2@~22n!r21n#23b2@16r4

18r2113nr412nr21n!].

Then the energy of the order (h/ l )2 excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2P2

EAb4
5

@r4n212r2~11n!215~11n!2#k28
2

12~31r2!~11n!

1
r2@n212r2~11n!215r4~11n!2#k38

2

12~113r2!~11n!
. (59)

The final Timoshenko-like model can be expressed as
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ss
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2U5H g11

k1

k2

k3

J TF ES 0 0 0

0 GJ 0 0

0 0 EI2 0

0 0 0 EI3

G H g11

k1

k2

k3

J
1 H2g12

2g13
J TFS2 0

0 S3
G H2g12

2g13
J (60)

where

S5pab J5
pa3b3

a21b2
I 25

p

4
ab3 I 35

p

4
a3b (61)

and

S25
3a2~3a21b2!~11n!2GS

2@b4n215a4~11n!212a2b2~11n!2#

S35
3b2~a213b2!~11n!2GS

2@a4n215b4~11n!212a2b2~11n!2#
. (62)

The results are the same as those in@10#, but in that work the
results are obtained by using the Ritz method and assumin
third-order polynomial which is of the exact form as shown he
This result is the same as what is in@16# which has been obtained
through elasticity theory. However, the result provided in@17# is
an approximation of the exact solution.

Rectangular Section. For a rectangular section of width 2a
in x2-direction and height 2b in x3-direction ~see Fig. 3!, the
Saint-Venant warping can be expressed in a form of infinite se
such as

c52x2x3

1
32b2

p3 (
n50

`
~21!n

~2n11!3

sinhS 2n11

2

px2

b D
coshS 2n11

2

pa

b D sinS 2n11

2

px3

b D .

(63)

To solve forf, we should choose the arbitrary functionsf (x3) and
g(x2) first. Along x256a, n2Þ0, so we can choosef (x3)
52(11n)a2k38 and g(x2) can be arbitrary. Alongx356b, n3

Þ0, we can chooseg(x2)5(11n)b2k28 and f (x3) can be arbi-
trary. Solving Eq.~52!, one finds

f52
n

3
~x2

22a2!x2k28

1
4na3k28

p3 (
n51

` ~21!n coshS npx3

a D sinS npx2

a D
n3 coshS npb

a D 2
n

3
~x3

2

2b2!x3k381
4nb3k38

p3 (
m51

` ~21!m coshS mpx2

b D sinS mpx3

b D
m3 coshS mpa

b D .

(64)

Then one can deriveV1 to be
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V152
4a3nk28

p3 (
n51

` ~21!n sinhS npx3

a D cosS npx2

a D
n3 coshS npb

a D

1
4nb3k38

p3 (
m51

` ~21!m sinhS mpx2

b D cosS mpx3

b D
m3 coshS mpa

b D
1F S n

6
1

1

3D x2
32S a21

5a2n

6
2

b2n

6 D x22
nx2x3

2

2 Gk38

2F S n

6
1

1

3D x3
32S b21

5b2n

6
2

a2n

6 D x32
nx2

2x3

2 Gk28 .

(65)

Then the energy of the order (h/ l )2 excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2P2

G
5F 16n2ba5196b5a~11n!2

45
2

32n2a6

p5

3(
n51

` tanhS bnp

a D
n5

Gk28
2

1F 16n2b5a196a5b~11n!2

45

2
32n2b6

p5 (
m51

` tanhS amp

b D
m5

Gk38
2. (66)
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The final Timoshenko-like model can be expressed as Eq.~60!
with

S54ab J5bab3 I 25
4

3
ab3 I 35

4

3
a3b Sa5

GS

ka
(67)

whereb can be found in elasticity textbooks such as@15# andka
are the so-called shear correction factors, given by

k25
6

5
1S n

11n D 2

r24F1

5
2

18

rp5 (
m51

`
tanh~mpr!

m5 G
k35

6

5
1S n

11n D 2

r4F1

5
2

18

p5 (n51

`
tanh~npr21!

n5 G . (68)

Although the form of the shear correction factors are differe
from those of Renton@16#, the numerical values for different as
pect ratios are the same. The reason the two results are of diffe
form is because in@16# the flexure problem is solved by using
double trigonometric series while here hyperbolic series are u
along with the trigonometric series which converge to a fix
value more rapidly. Please note that although@17# is also based on
the VAM, the shear correction factors presented therein for
rectangular section are approximations of the elasticity solutio

Conclusions
The variational asymptotic method, on which the finit

element-based cross-sectional analysis VABS~variational
asymptotic beam sectional analysis! is based, has been used
analytically solve the isotropic prismatic beam problem. The sa
governing equations for Saint-Venant warping and the gen
flexure problem have been shown to correspond with those of
theory of elasticity. Identical results have been found betwe
elasticity and VAM solutions for beams with elliptical and recta
gular cross sections. It has been proven mathematically that fo
isotropic prismatic bar with an arbitrary cross section the class
model of VABS is the same as the superposition of elastic
solutions for extension, pure bending in two directions and t
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sion. Moreover, the Timoshenko-like model of VABS consists
these plus the solution for the general flexure problem in b
directions.

The fact that the numerical procedure in VABS reproduces
results of elasticity theory clearly demonstrates that the VAM,
mathematical foundation of VABS, is a valid methodology th
can be used to avoid the difficulties of dealing with thre
dimensional elasticity while obtaining results that are coincid
with the exact solutions. Although it may not be possible to va
date the general theory of VABS for anisotropic beams in t
same way, it is a natural deduction from the above demonstrat
to conclude that the results for generally anisotropic beams sh
be the same as those calculated by methods based on t
dimensional elasticity theory, such as three-dimensional finite
ements. Indeed, as three-dimensional finite elements allow on
go beyond the limitations of three-dimensional elasticity, VAB
may also be considered as a means for going beyond those l
when considering the cross-sectional analysis of beams.
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