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Introduction of Ciarlet and Destuynddr2] to construct mathematical models

The variational asymptotic methoAM ) is a mathematical feonrgri(r)](;se.r'sl'helrwork is oriented more toward mathematicians than

approach applicable to any problem governed by an energy func-

tional havi " i Cont to the f In accord with the theory behind it, VABS can perform a clas-
lonal having one or more smafl parameters. Lontrary 1o the 1ofi | analysis for initially twisted and curved inhomogeneous, an-

mal asymptotic me_thods_, VAM applies the asymp_totlc e)_(pans'c?gotropic beams with arbitrary geometry, material properties, and
to the energy functional instead of the system of differential equgsterence cross sections. It captures both trapeze and Viasov ef-
tions, [1]. Hence, dropping a small term in the functional igects which are useful for specific beam applications. VABS is
equivalent to neglecting such quantities in several differentigls aple to calculate the one-dimensional stiffness matrix with
equations simultaneously. This implies that, when applicablggnsyerse shear refinement for initially twisted and curved, inho-
VAM is more compact and less cumbersome than standaithgeneous, anisotropic beams with arbitrary geometry and mate-
asymptotic methods. The VAM includes the merits of both varigia| properties. Finally, the three-dimensional stress and strain
tional (systematig and asymptoti¢without ad hoc kinematic as- fields can be recovered, if required, for finding stress concentra-
sumptiong methods. It allows one to replace a three-dimensiongbns, interlaminar stresses, etc.
structural model with a reduced-order model in terms of an There are a lot of beam theories in the literature. However,
asymptotic series of certain small parameters inherent to the strefimost all published work is of the ad hoc variety, especially in
ture. Although there are different forms of this method, e.g., Ciake area of modeling composite structures. Because VABS devel-
rlet and Destuynddi2] and Berdichevsky3], the method used in ops stiffness models that use the same fundamental types of de-
the present work is more closely aligned with the latter. formation that appear in traditional beam theorissch as those
The application of the VAM to model beams with general gesf Euler-Bernoulli, Timoshenko, and Vlaspvsome researchers
ometry and material has been demonstrated in the theory assatay be tempted to believe that VABS is nothing more than a
ated with the computer program VAB&ariational asymptotic computerized adaptation of elementary theories. However, VABS
beam sectional analy$isVABS was first mentioned in4]. Its is really very different from the traditional beam theories, and the
development over the past ten years is describefd#10 and assumptions behind it are far less restrictive. The fact that VABS
takes the variational asymptotic meth®¢AM ), [3], as the math- uses the traditional types of deformation winds up creating a
ematical basis. By means of the VAM, a general threeimple and smooth connection to traditional beam theories, so that
dimensional nonlinear elasticity problem for a beam-like structutbe one-dimensional beam analyses will remain essentially the
is rigorously split into a two-dimensional linear cross-sectiongame. A large body of additional information regarding three-
analysis and a one-dimensional nonlinear beam analysis. It is fimensional behavior of the beam, which need not be considered
teresting to know that Trabucho and Viafid] applied the VAM  at all in a one-dimensional beam analysis, is actually taken into
account by introducing three-dimensional warping functions that
" Tpresently, Assistant Professor, Department of Mechanical and Aerospace Erfie Subsequently calculated.
neering, Utah State University, Logan, UT 84322-4130. In view of this, the main purpose of the present work is to take
e o s o s e e reader, who is presumed to have a basic understanding of
CHANICS. Manuscript receivercjl by the Applied Mechanics Division, Aug. 30, ZOOZ?IaStICIty and_ cal_culus of varlatlo_ns, through an analytical den\_/a-
final revision, June 16, 2003. Associate Editor: D. A. Kouris. Discussion on the padé@n and application of the equations used by VABS for a special-
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligded case so that its relationship with traditional theories will be

Mechanics, Department of Mechanical and Environmental Engineering, Universj ; ; Q@ i
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep; Jearer and its mathematical ba M) wil appear less arcane.

until four months after final publication in the paper itself in the ASMEJBNAL OF is paper is in essence analytical validation of VABS against
APPLIED MECHANICS. the well-established theory of elasticity. Although numerous nu-

Journal of Applied Mechanics Copyright © 2004 by ASME JANUARY 2004, Vol. 71 / 15



Undeformed State

—

Deformed State

Fig. 1 Schematic of beam deformation

merical validation examples have been provided6r7,10,12, The spatial position vectar of any point in the undeformed
the present extensive and rigorous validation is required to debeam structure can be written as

onstrate conclusively its versatility and accuracy. This paper then .

should increase the reader’s confidence in results obtained from F(X1,%X2,%3) =T (X1) +XaDy @)

VABS. wherer is the position vector of the points of the reference line.

To accomplish the above, the present work specializes tRgye for a prismatic beam, the beam axis in the undeformed state
VABS general formulation for the analysis of isotropic, prismatic, straight. Finally,r’=b, and ()’ means the partial derivative
beams. Starting with the governing differential equations and g, respéct tox, | ' !

sociated boundary conditions of elasticity theory, we set out to After deformation, the particle that had pgsition vedtan the

prove(a) that the results from the classical model of VABS are t Endeformed state now has the position vedoain the deformed
gy X d bending i h L di Qate. Another orthonormal trial; is introduced to express the
Saint-Venant torsion, and pure bending in two orthogonal diréfeormed configuration, and ti unit vectors are not necessarily
tions; and(b) that the results from the Timoshenko-like model ot yant 16 the deformed beam coordinates. However, for the con-
VABS are the same as the superposition of the elasticity So'““"@énience of applying VAM, we choosB, to coincide V\;ithb- in
of extension, Saint-Venant torsion, and both bending and tranfe case of zero deformatioB, to be tangent to the deformed
verse shear in two orthogonal directions. beam reference axis, amj, determined by a rotation abo, .
ThenB; can be related td; by a rotation tensor which is called

Three-Dimensional Formulation the global rotation tensof13], such that

As sketched in Fig. 1, a beam can be represented by a reference CBP=Bb;. 2)
line r measured by,, and a typical cross sectigwith hasits _ .. ) ) ) )
characteristic dimension and described by cross-sectional Cafte- IS the inverse rotation to bring; back tob; which means
sian coordinatex, . Note that here and throughout the paper, CBb.CbB | A3)
Greek indices assume values 2 and 3 while Latin indices assume
1, 2, and 3. Repeated indices are summed over their range exaeperel is the identity tensor. Please note that wendbmake any
where explicitly indicated. For the convenience of comparing witfestrictive assumption here by choosiBg to be tangent to; .
elasticity solutions, the locus of all cross-sectional centroids alohgstead, the transverse shear deformation will be included in the
the beam is chosen as the reference line. An orthonormaltifiadwarping functions introduced below and will be explicitly brought
is chosen for the purpose of resolving tensorial quantities in conmto evidence when we fit the asymptotic model into an engineer-
ponent form for actual computation. For convenierzés chosen ing model that can account for this type of deformation, such as a
to be tangent t;, respectively. Timoshenko-like model.
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The position vectoR can be represented as where (), means the partial derivative with respecitp. For an
isotropic elastic body with Young’s modulis shear modulu&
and Poisson’s ratio, twice the three-dimensional strain energy
whereR is the position vector to a point on the reference line gber unit length can be written ajs4],
the deformed beam, ang, are the components of warping, both
in and out of the cross-sectional plane. By introducing the un-
known three-dimensional warping functions into the formulation,
one takes into account all possible deformation.

One should note that E¢4) is four times redundant because of ~ 2II= E(T2)+4G(I'2,+T%,+T3)
the way warping was introduced. One must impose four appropri-

R(X1,X2,X3) = R(Xq) +XoBa(X1) +Wi (X1, X0, Xg) Bi(X1)  (4)

ate constraints on the displacement field to remove the redun- T1l—vw v
dancy. The f traints applied h + = {"rlﬁrzz}
ancy. The four constraints applied here are (A1 )(1-20) \ | 7T1+T s Y 1—y
(w;)=0 5)
ry+T
XoW3— X3Wo) =0 6 vigamlan
(XaW3—X3Wo) (6) X[VF11+F33]>' (12)

where the notatiof ) means integration over the reference cross

section. The implication of E(q5) is that warping does not con-

tribute to the rigid-body displacement of the cross section. This

leads to one-dimensional displacement variables for extension afilm energy principles, we know that the exact warping functions

bending that have easily identifiable_ geome_tric meanings: thgé{tisfying the constraints, EqE) and (6), should minimize the
cprrespond to the measure numbers mhhbasn_s of_the average o ain energy in Eq(12). However, the same difficulties as one
displacement of the cross section. Equati{éh implies the tor- > . 4 ) ’

aboutB; . be encountered if one tries to solve this minimization problem
To formulate this problem in an intrinsic form, we need thdlirectly. Fortunately, as demonstrated in publications related to
definition of the one-dimensional generalized Lagrangean straiVsBS, the VAM can be used to solve for the unknown warping
functions asymptotically to avoid the difficulty of the original
y=CPB-R'—b, (7) three-dimensional formulation. This will be illustrataedalytically
in the following sections.
B/ = «;B;XB; (8)
where the column matrices of the “force-strain” measurgs
=[y1,0 0|" and «; are the “moment-strain” measures. Based on
the concept of decomposition of rotation tengag), if the local
rotation is small, which is the case for all the framework of VABS|assical Model

except the trapeze solutiofmot considered in this paperthe ) )
Jaumann-Biot-Cauchy strain components are given by Before applying the VAM, one must define the small param-
eters of the problem. It was mentioned above that products of the

one-dimensional generalized strains and warping are assumed to
be small because of the small-strain assumption. The assumption
of small strain is adopted for the purpose of deriving a geometri-
cally nonlinear beam formulation. It will be assumed and subse-
quently validated from the results that the warping is of the order
of he with h as the characteristic dimension of the cross section.
The smallness of the one-dimensional generalized strains is taken
Fij= Bi-Gkgk-bj . (10) into account as follows. The stretching of the beam reference line
(ijs denoted byy,4; the maximum strain induced by twist is of the
configuration andj*= by for prismatic beams. order ofhx,, while the maximum strain induced by bending is of

Because of the small strain assumption, which is applicable grﬁe order .ofh;cﬂ. ThIS. observation |s.con5|stent with the small
the framework of a geometrically nonlinear formulation, we ma{Pc@l rotation assumption used to derive £8). Now, let us de-
neglect all terms that are products of the warping and the orfédte the order of the maximum strain as-max(y.;,h«;). This
dimensional generalized strains. Thus, one obtains the thrégall parameter is then utilized when deriving the three-
dimensional strain field as dimensional strain field, Eq11), so that the smallness efneed

not be used in the rest of derivation. Another small parameter is
[11= Y117+ Xgko— XK+ W) h/l wherel is the wavelength of beam axial deformation. This is
the only small parameter one needs for prismatic beams for the
2T 1= Wy o— Xakq + W) purpose of solving the unknown warping functions asymptotically
' and obtaining a strain energy asymptotically correct up to a cer-
tain order.

The classical model of a prismatic beam is represented in terms
of a strain energy per unit length that is asymptotically correct up
to the order ofue? where u is of the order of the maximum
material constant. All the prime terms in E4.1) are of orderh/|
higher than the rest and do not contribute to such an energy. Then
this energy, which is called the zeroth-order energy, can be ob-
Faz=wss (11)  tained from Eq(12) as

1
Lij=5 (Fij+Fji) =4 9)

whereg;; is the Kronecker symbol, anfé; the mixed-basis com-
ponent of the deformation gradient tensor such that

Here szﬁli/ﬁxk is the covariant basis vector of the deforme

2T 3= Wy 3+ Xk + W3
Foo=wy,

2l 3= W3 ot Wy 3
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Fig. 2 Sketch of a clamped prism

2H0: ESyil-l- ElaKlzy‘i‘ G<(W1’2_ X3Kl)2+ (le3+ X2K1)2+ (W32+W2’3)2>

N E [V( )’11"‘X3K2_X2"<3)"‘Wz,zlT
(1+v)(1—2v) \ [ ¥(y11F+XaKk2—Xok3) T W33

1—-v v

[ v( Y11+ X3k — XoK3) +W2,2] >

13
v( Y11t Xgko—XaK3) T W33 (13)

v 1-v

with VK =1
. 3 2= I3
, , W2:W2:_V(X2711+X2X3K2)+T(Xg_x.§,+ S )
S=(1) l=(x3) I3=(x3) (14)
. . L R VK l,—1
whereSiis the cross-sectional area ahgdare the principal area  wa=Ws= — p(Xgy11— XoXaks) — —z(xg—x§+ 2 3
moments of inertia about,. The warping functions that mini- 2 S

mize the above energy are governed by the Euler-Lagrange equa- (22)

tions of this energy functional, given by Having obtained all the warping functions, the three-dimensional
strain field can be recovered by H4l) up to the zeroth order as
W1 20+ Wy 35=0 (15)
I'11= y11+Xako—XaK3
2(1—v)Wp o+ (1= 2v)W; 33+ W3 23— 2vk3=0 (16)
2T 1,= Wy ;= X3k
2(1—=v)W3 331+ (1= 2v)W3 o+ Wy o3+ 2k, =0 a7) 2T 1= Wy 5t Xok1

and the associated boundary conditions
[po= = v(y11+XaKo = XaK3)

N3(Xpk1+ Wy g) +Na(Wy o~ X3k1)=0 (18) 2T ,3=0
2n, [ag=— + Xako— XoK3). 23
N3(W 3+ W3 o) + 172V[V(711+X3K2_X2K3)+VW3,3+(1 35= ~ V(KoK XoKs) 23)
If one takes the definition of torsional rigidity from elasticity
— V)W ,]=0 (19) texts, which is

2n; GI=G(X5+ X5+ Xo 11 3~ Xathy ) (24)
Ny(Wy 3t Wy o)+ ——[v +XaKko—Xok3) + YWy o+ (1 . . . .
2(Wa gt Wa 2+ 377 T ( 710t Xara = Xors) 22+ whereJ is the Saint-Venant torsion constant, then the asymptoti-
cally correct three-dimensional energy, up to the ordeuef,

—V)W34]=0 (20)  can be written as

wheren,, is the direction cosine of outward normal with respect to 211o=ESyiy+ GIwi+Elps+Elaxs. (25)
Xo. Here, to maintain a simpler derivation, we do not use
Lagrange multipliers to enforce the constraints of E§sand(6).  This energy coincides with the result of classical beam theory;
Instead, we keep these constraints in mind and check whether tigyever, it is obtained without any ad hoc kinematic assumptions
can be satisfied by the solution. It can be observed that @§5. whatsoever. Such ad hoc assumptions as assuming the cross sec-
and(18) are just the equations of Saint-Venant warpic,,X3)  tion to be rigid in its own plane or setting=0 are common in the
in elasticity textbooks such akl5|, except development of traditional beam theories in the literature.
R For a straight beam clamped ®{=0 and under the tip load
W1 (X1,X2,X3) =Wq(X1,X2,X3) = (X2, X3) k1(X1).  (21) F;, M; atx;=L (see Fig. 2, the one-dimensional strain measures

] o . can be solved with the help of the strain energy &%) as
Hence the first approximation of the out-of-plane warpmgcan

be solved by the methods given in elasticity books. According to Fi M, M, M,

the theory of elasticitys can be determined up to a constant, and YUTEg 1T a3 "2=E_|2 K3=E_|3- (26)

one can choose the constant so that the const{ainf=0 is

satisfied. The following functions ofv, satisfy the other con- If a linear beam theory is used, the three-dimensional displace-
straints as well as Eq$16), (17), (19), and(20): ment field can be recovered as
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F. Mj M, 1 By a simple algebraic derivatior; and G can be expressed in
u; ESXl EI3x2xl EI2X3X1 l/IGJ terms of the components & B, andC as
r 2
= M, VM3( . |2—|3) Mj X2 E? Cals  Cadlols
Up= — VXgma— VXoXg=— + X5— X3+ +—= GC=——77
2= T PREgT VRS T oE, | 12T 8T TS El; 2 CaslCas—C% | Cadols  Cud?
F M M I,—1 M, X3 -
Ug=— vx3E—é+ Vx2x3E—|3 + ;E_IZ ( X5—x3 %) - E_|2 ?l (B41C33—B31Ca4)l3  (B31Cas—BaiCai)l
: 2 2(27) . E (B42Ca3—B3:Ca4)l3  (B3xCas—BaxCsil
which is essentially the superposition of elasticity solutions for C33Cas— C§4 (B4sCaz~BaiCals  (B3aCas—BaxCadl>
extension, pure bending in two directions and torsion. The only | (B44C33—B3Csa)ls (B3sCas—BulCsil

exception to this statement is that there is a difference of a con- (32)
stant from the elasticity solutions far, due to differences in the

way the clamped boundary condition is handled. Published elggrere the subscripted terms involviligand C are specified ele-
ticity solutions enforce the clamped condition at the beam refefiants in those matrices. Here. one can conclude Ghist deter-
ence line. In our case, however, since the one-dimensional Vaflined by the coefficients associated W“DK,E in the asymptotic

ables implied by the VAM solution are averages of the threes,o o “anF is determined by the coefficients associated with
dimensional displacement, the most straightforward solution i,

our framework constrains the average displacement to be zefo11 and KaKi '_Th's observation is very important _because i
Clearly, by enforcing a modified boundary condition in the on%gads to our finding a closed-form solution for the Timoshenko-
dimensional beam theory, so as to mimic the clamped conditigk¢ Mmodel for isotropic, prismatic beams. To obtain the second-
used in the elasticity solutions, the two solutions will becom@rder energy, we perturb the warping functions as

identical; in particular, the constant termstuipandus will simply
drop out.

From the above, it is clearly shpwn t.hat the above cla}ssm\%erevi is of the ordereh/l. Substituting the perturbed warping
model stores the complete three-dimensional energy of pr'smafgj%ctions back into Eq(11), one obtains
g ,

beams due to uniform extension, uniform torsion, and pure be
ing in two directions obtained by elasticity theory. The linearized
three-dimensional displacement field recovered by VABS is the
same as that obtained from elasticity theory.

Wi = \;Vi + Vi (33)

Fy=ynt X3K2_X2K3+‘7Vi+\41

2F 12~ \’lez_ X3K1+ V112+ Wé + \Lé
Timoshenko-Like Model o

Elasticity theory has another set of equations to solve for the 2L 5= Wy 3+ XoK+ Vi gt Wat+ V3

so-called flexure problem, which involves both bending and trans-

verse shear. For this VABS provides a Timoshenko-like model. [ =Wy 5+ Vs,

Because a Timoshenko-like model can at most approximate the -

original three-dimensional energy up to the ordepef(h/1)?, a 2T p3=Wg o+ W, 3+ V3 o+ Vy g

strain energy that is asymptotically correct to the second order of ’ o

h/l is sought first Ta=Ws 3+ Vs (34)
2U;=€'Ae+2e'Be’ +€'"Ce’' +2€'De” (28) T

) ) where the underlined terms are of the orddr/|, the double
where A, B, C, and D are matrices carrying the geometry anq,nqerfined terms are of the orden?/I2, and the rest of the terms
material information of the cross section, elements ©f 4 of the ordee. Substituting this perturbed strain field into the

— T i i i i . .
=|v11 K1 k2 k3| are the generalized one-dimensional strain me@nergy functional Eq(12) and neglecting all the terms of order
sures of Euler-Bernoulli beam theory. For isotropic prlsmatlﬁigher thanw(h/1)2s2, one obtains

beams, in which the locus of cross-sectional centroids is taken a
the reference line and cross-sectional principal axes are alpng 211 = 2114+ 211, + 211, (35)
A becomes a diagonal matrix with diagonal terms given by the

extensional stiffnesgS, the torsional stiffnes§J, and bending wherell, is the energy obtained for the classical model, @5)
stiffnesse€1, andEl;. A Timoshenko-like model is then createdgng

out of the energy, Eq.28), as

2U= €/ Xe+26]Fy+7'Gy (29) IT; = E(W3( Y21+ X3k2— X2K3))

where €, are the classical strain measur@ut defined slightly
differently because of the framework of Timoshenko-like madel

and y=|2y,327,3|" transverse shear strains. The stiffness matri- - ny A -,
ces)zl, FL, gr%SGyégln be found bysee[9]) +{(W 2= Xgieq)Wa (Wy gt XK1 ) W3)]. (36)

+ G[((Wy 5~ X3k1) Vi o+ (Wy 3+ XoK1) V1 9)

— Ta-1 -1 -1
G=(Q'ACAQ) It is easy to prove that the underlined terms vanish for arbitrary

F=B'TA 1QG V;. According to Eq.(32), the double underlined terms will not
affect the Timoshenko-like model constructed from the second-
X=A+FG™'F' (30) order energy. Thus, the only terms of interest are
where T =E(Wi(X3k2— X2K3))- (37)
0o o 1"

Q:{O 0o -1 0} - (31) Note these terms will not necessarily vanish unless the Saint-
Venant warping, for which we have already solved, possesses
€, and e are related by, =e— Q1. some kind of symmetry. Thus, the second-order energy becomes
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201 ,=2E(V](y11+ X3k — Xakz) + W)+ G((Vq o+ W5)?

+ 2V (Wy 5= X3k1) )+ G{(Vy 3+ W3) 2+ 2V5(Wy g+ Xok1)

’
VK, l,—13
Vgt vkoXars+ —- ( X3—x3+

N3

VK 1,—1
+(V2,3+V3,2)2> =—Ny Vl,27 VX2X3K£+ T3(X§7X§+ 25 3)}
E VW4V, T[1-v v
Tarna-2 )<[u\7v}+v2'2 [ 1 (48)
(I+»)(1-2v trrss LY v One can introduce a special function as
YWy + Vs, VKS l,— 13
X{ WL+ Vg [ (38) Vi vXoXarh+ —- ( X5— x5+ S )
The underlined terms create difficulty to solve this problem in the = 3+ (1+ )Xo+ f(X3)
two-dimensional cross-sectional domain. However, our goal is to ' (49)

find an interior solution without consideration of boundary effects
at the ends of the beam. Hence, integration by parts with respect

’
VK, lo—13
Vigt vXoXari+ —= ( X5—x3+ S

to X, can be used, and the residual terms at the ends can be 5
considered as having no effect on the interior solution. This argu- == ¢ (L+v)X5K5+9(X2)

ment can be illustrated mathematically if one constrains the wary satisfy Eq.(47) automatically, wherd(x;) andg(x,) are arbi-

ing V; in such a way that

(Va(y11F Xak— Xak3) |y, =0) = (V1 Y11+ Xaka—XoK3) [x =L)-
(39)

trary functions. The advantage of introducidgis that Eq.(48)
can be made much simpler based on the choicd(gf) and
g(x,). Using Eq.(49), the boundary condition, E¢48) becomes

The effect of such a constraint will die out after a small distance — = —[f(X3) +(1+ ¥)x3k5]1N,—[g(Xo) — (1+ v)X3k5]N3

from the ends according to the Saint-Venant principle. Then, the

Euler-Lagrange equations for the functiond} are

V1201 V1 331 2(y11+ X3k~ Xok3) =0 (40)
2(1=v)Vo 0+t (1= 2v)Vy 33+ Vi st (20— 1)Xgkq + Wivzz 0
(41)
2(1-v)V333+ (1= 2v)V3 20+ Vo o5+ (1= 2v)XK]
+(1-2v)W; =0 (42)
and the associated boundary conditions given by
Na(VyatW3)+ny(Vy ot ws)=0 (43)
. . 2n, .,
n3(W213+ W3'2) + 1_—21/ [ VV3V3+ (1— V)V2'2+ VWl] =0
(44)

. . 2n .
No(Wp g+ Ws o) + l——23v [¥Vo ot (1= v)V3 3+ vwi]=0.
(45)

It is observed thaV, is decoupled fronV,; V, should be some
function multiplying x; and V, will be a linear combination of
v1, and k.. The terms associated with, will not affect the

Js

(50)
wheresis the contour coordinate along the cross-sectional bound-
ary. If the arbitrary functions are chosen such that on the boundary

—(1+v)X5k}4 if n,#0,
f(x3)= . . _
arbitrary if n,=0
(1+v)x3x,  if ng#0,
Xo) = 51
90x) arbitrary if n;=0 ®1)

then the right-hand side of E@50) vanishes andp is constant
along the boundary. For simply connected domains, one can
chooseq to vanish along the boundary. The governing differential
equations forgp can be deduced from E¢9) as

. dg(xp) . df(xg)
120t h135= —2VXoK+ d—)(2_2VX3K3_ ax (52)

This equation is the same as that governing the flexure problem in
both directions if one expresses, in terms of the tip transverse
force and multiplies¢ by the shear modulu&. Therefore, all
flexure problems that are solvable by elasticity theory can also be
solved analytically by the VAMthe procedure on which VABS is
based. After ¢ is obtained, one can find, up to a constant using
Eq. (49), where the constant can be determined by the constraint
(V1)=0. The portion of asymptotically correct energy E&8)

that is needed for constructing the Timoshenko-like model can be

Timoshenko-like model as shown in E@2). (In fact these terms found from Eqs.(35) and (46).

are related with the Vlasov theory and will be studied in later Although it is necessary to carry out an integration by parts
papen Hence, one can s&f, to be zero and drop all terms thatwith respect tox; for the sets of terms in the first bracket of Eq.
have no effect on the Timoshenko-like model. Then, after recalt6) to render the present problem as a purely cross-sectional

culatingIl,, one finds

2I1,=2E(V(X3Ka— X2K3))

o
vof
(46)

Then the corresponding Euler-Lagrange equation, (E6), and
boundary condition, Eq43), will be modified to

’ 2
VK3 l,—13
V1= vXoXars+ —- ( X5— x5+ S

VKé

2

Vl,3+ VX2X3Ké +

V120+ V135= 2(XoK3— X3K5) (47)
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problem, this operation should not be applied at the step where the
strain energy is obtained. Previous publicatidns9], are silent

on this seemingly inconsistent practice because a reasonable ex-
planation had not been formulated. However, for the present prob-
lem, the transverse shear energy is completely represented by the
last two sets of terms and the first set of terms is part of the energy
due to extension. If one integrates this first set of terms by parts,
this energy represented by it will be transformed into transverse
shear energy according to E2), which is at least physically
inappropriate; and, in the worst case, the total transverse shear
energy will turn out to be negative. Nevertheless, if one does the
integration by parts and also keeps the residual terms at the ends,
the fictitious transverse shear energy caused by integration by
parts will be canceled by the residual terms at the boundaries,
which means the final three-dimensional results will not be af-
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fected by this operation. Based on this fact and @§), the first
set of terms in Eq(46) for the present problem will not affect
the final Timoshenko-like model and will be discarded in later

calculations.
After constructing the Timoshenko-like model using E(32)

and(30) and using it to solve the one-dimensional beam problem,

the three-dimensional strain field can be recovered usind 3.
and the displacement field can be recovered similarly agZ0.

This procedure will be given in detail for some example cross

sections that follow.

Example Cross Sections

In this section two typical examples listed in the elasticity text
of Timoshenko and Goodidid5] are studied here using the ana-

lytical procedures formulated in previous sections.

Elliptical Section.
axesa andb in the directions ofx, and x5, respectively, ang

=al/b as the aspect ratio, the Saint-Venant warping is found to be

(b?=a?)x,X3

= 53
a’+b? 3)
If one chooses thé(xs) andg(x,) according to Eq(51)
2
2 1 X3 2 1
f(xg)=—(1+v)xeks=—(1+v)| 1— bz 3K
X3
9(%2) = (1+v)X3r5=(1+v)| 1— = | bk} (54)
a
then both Eqs(50) and (52) will be satisfied by
X5 x5 X5 X3
d=m ¥+E_l X3z+nNn ;‘Fg—l Xo (55)
with
P vt (1+w)p? , |
=———F5—D%;
1+3p?
vp?+(1+v
_ [ i )] 2. (56)
3+p
Then one can obtaiN; by Eq.(49) as
X3K£ XzKé
Vi=p 2 2 (57)
24(3+p*) 24(1+3p°)

with

p=—4x3[4+ v+ (2—v)p?]—12X5(2— v+ vp?) + 3bY 16+ 8p?
+13v+2vp?+ vp*
13v+2vp“+vp”)] (58)
q=4x3[(4+v)p?+2—v]—12x3[(2— v)p?+ v]—3b%[16p*
+8p2+13vp*+ 2vp2+v)].

Then the energy of the ordeh/1)? excluding the terms that do

not affect the final Timoshenko-like model can be computed as

211,

EAL'

[p*12+2p%(1+v)2+5(1+ V)Z]Kéz
12(3+ p?)(1+v)

P V24 2p%(1+ v)%+5p*(1+ v)?] k52
+
12(1+3p?)(1+v)

(59)
The final Timoshenko-like model can be expressed as
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For an elliptical cross section with semi-

ifES 0 0 0
Y1 Y11
K1 0 GJ O 0 K1
2U=
K2 0 0O EI, O K2
K3 0 0O 0 Elg]"*s
2y 1S, 0](2
{712] [7’12} (60)
2y13) |0 S5](2713
where
B madhs T T
S=mab J= 21 b2 I Zab I3—Zab (61)
and
5= 3a%(3a’+b?)(1+»)°GS
2[b*v?+5a*(1+ v)?+2a%b?(1+v)?]
3b%(a®+3b?)(1+v)°GS
(62)

T o[a%2+ 5bA(1+ v)2+ 2a%0%(1+ 1)7]

The results are the same as thosd 1], but in that work the
results are obtained by using the Ritz method and assuming a
third-order polynomial which is of the exact form as shown here.
This result is the same as what ig[it6] which has been obtained
through elasticity theory. However, the result provided ii] is

an approximation of the exact solution.

Rectangular Section. For a rectangular section of widtha2
in x,-direction and height B in x;-direction (see Fig. 3, the
Saint-Venant warping can be expressed in a form of infinite series
such as

h=—XoX3
i 2n+1 7TX2
32 S (1" T2 b ,(2n+1ﬁx3
w2 a0 (2n+1)3 2n+1 ma sin 2 b
cos —_—
2 b
(63)

To solve for¢, we should choose the arbitrary functidi{x) and
g(x,) first. Along x,==*a, n,#0, so we can choosé(xs)

—(1+v)a%kj andg(x,) can be arbitrary. Along=*b, ng

#0, we can choosg(x,) =(1+ r)b?«x, and f(x3) can be arbi-
trary. Solving Eq.(52), one finds

14
¢:—§(x§—a2)xzxé
7TX3 ) n7TX2
3, « (—=1)"cos sin
4va KZE a a Vo,
) ) r(nv-rb) 3%
n° cosh —
a
(1" }‘( wx) _(mwx3)
3, = (—=1)Mcos sin
k! b b b
sTe = 3 I{mwa
m* cosh ——
(64)

Then one can deriv¥; to be
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L4

Fig. 3 Sketch of a rectangular cross section

4a%vih a
1= 3 2 nab
T n=1 3 }‘( ™ )
n- cosh ——
1 m o m7TX2 m7TX3
avbiey & (TSI b
=1 s r(mwa
m®° cosh| ——
b
v 1|, ) 5a%v by VXoX3 ,
+ 6+§X2_ a“+ 6 _?XZ_TK3
v 1 5b%y  a’v UX2X
|[5+3pe- o T T e 2
(65)

Then the energy of the ordeh/l)? excluding the terms that do
not affect the final Timoshenko-like model can be computed a

2I1, | 16v?ba+96b%a(1+v)? 32v%a°

G 45 5
bnw
» tan T
XE ETE— K5
n=1 n
16v2b%a+96a°b(1+ v)?
45
¢ ammr
320%8 & M b ,
- > K52, (66)
775 m=1 m5
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The final Timoshenko-like model can be expressed ad .
with
S=4ab J=pab® | 2 b3 | 2 *p s—GS
=4a 7Ba 273a 3*33 o ka
(67)
where 8 can be found in elasticity textbooks such[a§] andk,
are the so-called shear correction factors, given by

6 vy \2 |1 18 & tanhmm
k2:—+( . Hmp)

5 1+v 5 o1 mP

6 v \2 |1 18 tanhnarp 1)

=—+ 4 __ _ - - 7
ka=3 (1+v Pls" e (68)

Although the form of the shear correction factors are different
from those of Rentol6], the numerical values for different as-
pect ratios are the same. The reason the two results are of different
form is because in16] the flexure problem is solved by using a

Jouble trigonometric series while here hyperbolic series are used

along with the trigonometric series which converge to a fixed
value more rapidly. Please note that altho{gH is also based on
the VAM, the shear correction factors presented therein for the
rectangular section are approximations of the elasticity solution.

Conclusions

The variational asymptotic method, on which the finite-
element-based cross-sectional analysis VAB@®ariational
asymptotic beam sectional analysis based, has been used to
analytically solve the isotropic prismatic beam problem. The same
governing equations for Saint-Venant warping and the general
flexure problem have been shown to correspond with those of the
theory of elasticity. Identical results have been found between
elasticity and VAM solutions for beams with elliptical and rectan-
gular cross sections. It has been proven mathematically that for an
isotropic prismatic bar with an arbitrary cross section the classical
model of VABS is the same as the superposition of elasticity
solutions for extension, pure bending in two directions and tor-
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sion. Moreover, the Timoshenko-like model of VABS consists of [6] Cesnik, C. E. S., and Hodges, D. H., 1997, "VABS: A New Concept for
these plus the solution for the genera| flexure problem in both Composite Rotor Blade Cross-Sectional Modeling,” J. Am. Helicopter Soc.,
directions. 42(1), pp. 27-38.

. . 71P B., and Hod D. H., 1999, “On Asymptotically Correct
The fact that the numerical procedure in VABS reproduces the " ~opesc: B. and Hodges, 1999, On Asymptotically Correc

. Timoshenko-Like Anisotropic Beam Theory,” Int. J. Solids Strusf(3), pp.
results of elasticity theory clearly demonstrates that the VAM, the  gz5 g
mathematical foundatl_on of VA_B_S, IS a valid m?thOdc_)lOgy that [g] popescu, B., Hodges, D. H., and Cesnik, C. E. S., 2000, “Obliqueness Effects
can be used to avoid the difficulties of dealing with three- in Asymptotic Cross-Sectional Analysis of Composite Beams,” Comput.
dimensional elasticity while obtaining results that are coincident  Struct.,76(4), pp. 533-543.
with the exact solutions. Although it may not be possible to vali- [9] Yu, W., Hodges, D. H., Volovoi, V. V., and Cesnik, C. E. S., 2002, “On
date the genera| theory of VABS for anisotropic beams in this Timoshenko-Like Modeling of Initially Curved and Twisted Composite
same way, it is a natural deduction from the above demonstratiodrijs] sja\r/\n/chI)Ttt)vil ?IOTSHS;;“‘;’;?QS 9:’{ pg'msjl: jn_ 51; 1'2002 walidation of the
to conclude that the results for generally anisotropic beams sho ! Yu. W V. V., TIOCGES, 2. M, g i

Variational Asymptotic Beam Sectional Analysis,” AIAA 3((10), pp. 2105—

be the same as those calculated by methods based on three-,;;,
dimensional elasticity theor_y, SUC_h as thr_ee-dlmensmnal finite ef11] Trabucho, L., and Viano, J., 1996, “Mathematical Modeling of Roddand-
ements. Indeed, as three-dimensional finite elements allow one to book of Numerical Analysis, Vol. J\P. Ciarlet and J. Lions, eds., Elsevier,
go beyond the limitations of three-dimensional elasticity, VABS  New York, pp. 487-974.
may also be considered as a means for going beyond those limit€] Volovoi, V. V., Hodges, D. H., Cesnik, C. E. S., and Popescu, B., 2001, “As-

when considering the cross-sectional analysis of beams. sessment of Beam Modeling Methods for Rotor Blade Applications,” Math.
Comput. Modell.,33(10-11, pp. 1099-1112.

[13] Danielson, D. A., and Hodges, D. H., 1987, “Nonlinear Beam Kinematics by
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