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Abstract

An asymptotically correct theory for initially twisted, thin-walled, composite beams has been

constructed by the variational asymptotic method. The strain energy of the original, three-

dimensional structure is first rigorously reduced to be a two-dimensional energy expressed in terms

of shell strains. Then the two-dimensional strain energy is further reduced to be expressed in terms of

the classical beam strain measures. The resulting theory is a classical beam model approximating the

three-dimensional energy through the first-order of the initial twist. Consistent use of small

parameters that are intrinsic to the problem allows a natural derivation for all thin-walled beams

within a common framework, regardless of whether the section is open, closed, or strip-like. Several

examples are studied using the present theory and the results are compared with a general cross-

sectional analysis, VABS, and other published results.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A thin-walled beam is characterized as a flexible body that has different magnitudes for

all three of its characteristic dimensions [1]. To be classified as a beam, c, the

characteristic dimension of the cross-section, must be much smaller than l, the wavelength
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of the deformation along the beam, i.e. c/l/1. Moreover, for a beam to be classified as

thin-walled implies that the maximum thickness of the walls, h, is much smaller than c, so

that h/c/1. Although one can analyze thin-walled beams using three-dimensional (3D)

elasticity theory, thin-walled beam theories take advantage of the small parameters, h/c

and c/l, to derive a one-dimensional (1D) model. This model consists of 1D constitutive

equations (cross-sectional elastic constants) and ‘recovery relations’. The former are used

in the 1D equilibrium and kinematic equations to analyze the original 3D structure, and the

latter provide approximate values of the 3D displacement, strain, and stress from the 1D

solution.

Thin-walled beam theories strive to present closed-form expressions for cross-sectional

stiffness constants and stresses (or stress flows). There are mainly two types of thin-walled

beam theories. The first type can be classified as ad hoc models [1–5]. In these models,

assumptions are invoked based on engineering intuition. These can be assumptions that the

beam deforms in specific modes or that certain components of the displacement/strain/

stress are negligible. Usually, these assumptions are based on experience with thin-walled

beams made with isotropic materials, which can be justified by some exact solutions.

However, for anisotropic materials, various modes of deformation can be coupled, and

these theories might fail for some special cases which cannot be properly represented by

the invoked assumptions [6]. Nevertheless, some of these models such as [4,5] can provide

a good prediction for many cases, and it is straightforward to refine the model by

incorporate additional deformation such as transverse shear to remedy possible errors

introduced by ad hoc assumptions.

The second type encompasses asymptotic models [6–9]. Therein, the original 3D

elasticity equations are mathematically reduced to a 1D model using small parameters

inherent to the problem. While application of traditional asymptotic methods is possible,

the authors prefer the Variational Asymptotic Method (VAM) [10]. In these models,

the material anisotropy is accounted for in a consistent and systematic manner, and

those deformation modes that contribute most significantly to the energy emerge naturally.

In our formulation, elastic couplings among all deformations are accounted for by

using the 3D material law, which uses 21 elastic constants for anisotropic materials.

However, the refined models constructed directly using the VAM are of little practical use,

perse. Usually, some transformation, which might detract from the asymptotical

correctness, has to be carried out to convert such models into a form that is of practical

use for engineers [11].

The present paper was originally planned to serve as a natural extension of the work in

[9] to enhance the capability of that theory to accommodate initial twist, so that more

realistic problems (such as pretwisted composite rotor blades or wind turbines) can be

analyzed. It was later found out that it is very complicated, if not impossible, to incorporate

the initial twist into that, already complex, formulation. Instead, the present formulation is

cast in an intrinsic form and the derivation departs from previous work at the outset. First,

the 3D elasticity representation is rationally reduced to the classical shell approximation of

Berdichevsky [10] with geometric correction by considering h/c as the main small

parameter and taking into account all first-order corrections from the initial twist of the

thin-walled beam. Then the two-dimensional (2D) variables are expressed in terms of

intrinsic beam variables and unknown warping functions. Substituting these relations back
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into the 2D strain energy, which is an asymptotic approximation of the original 3D energy,

one can use the VAM to solve for the unknown warping functions to minimize the 2D

strain energy. The final result is a strain energy for the thin-walled beam with first-order

correction from initial twist. For validation, several examples of thin-walled beams are

studied; and the results are compared with some available in the literature and VABS [11],

a general-purpose finite element program for arbitrary cross-sections that does not take

advantage of the smallness of the wall thickness.
2. Kinematics

A general thin-walled beam can be depicted as in Fig. 1; note that this picture does not

show the initial twist. Here, O is a fixed point in space, �O is on the beam axis specified by

the position vector ro, and Ô is on the contour intersecting the reference surface

(considering the thin-walled structure as a shell) with the beam section cut through the

point �O. Here, two dextral coordinate systems xi and yi are introduced; y1 is the running

length coordinate along the beam axis with b1 as the unit vector; ya are the local Cartesian

coordinates of the beam section with ba as the unit vectors; x1 is parallel to y1, x2 is the arc

length along the contour, and x3 is the outward normal of the reference surface. (Here and

throughout the paper, Greek indices assume values 1 and 2 while Latin indices i, j,.,z

assume 1, 2, and 3 and a, b,.,h assume 2 and 3. Repeated indices are summed over their

range except where explicitly indicated.)

The position vector of the shell reference surface is

rðx1; x2Þ Z r0ðy1ÞCyaðx2Þbaðy1Þ (1)

The covariant base vectors of the reference surface are defined by

aa Z r;a (2)
Fig. 1. Schematic of a thin-walled beam.
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where ( ),aZv( )/vxa. Using Eq. (1), the covariant base vectors can be written explicitly as

a1 Z b1 Cy2k1b3 Ky3k1b2 a2 Z _yaba

a3 Z
a1 !a2

ja1 !a2j
Z

Kk1Rtb1 K _y3b2 C _y2b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Ck2

1R2
t

p (3)

with RtZya _ya, ð, ÞZvð Þ=vx2, and k1 as the initial twist. The first fundamental form of the

surface is obtained from aabZaa$ab, such that

a11 Z 1 Ck2
1R2 a12 Z a21 Z k1Rn a22 Z 1 (4)

with R2Zyaya and RnZy2 _y3Ky3 _y2. The determinant of the first fundamental form is

a Z 1 Ck2
1R2

t (5)

The second fundamental form of the surface can be calculated by the definition

bab Z r;ab$a3 Z aa;b$a3 (6)

such that

b11 Z
k2

1Rnffiffiffi
a

p b12 Z b21 Z
k1ffiffiffi

a
p b22 Z

_y2 €y3 K _y3 €y2ffiffiffi
a

p (7)

Any point in the undeformed 3D structure can be described as

r̂ðx1; x2; x3Þ Z rðx1; x2ÞCx3a3 (8)

The 3D covariant base vectors are defined using giZ r̂;i and can be obtained as

ga Z aa Kx3bl
aal g3 Z a3 (9)

The 3D metric tensor can then be calculated as

gab Z aab K2x3bab Cx2
3bl

ablb gi3 Z di3 (10)

where d is the Kronecker symbol. From Eq. (10) one can calculate the determinant of the

metric tensor

g Z ½1 K2x3H Cx2
3K�2a (11)

with HZ ð1=2Þba
a as the mean curvature and KZdetðbb

aÞ as the Gaussian curvature of the

surface.
3. Dimensional reduction from 3D to 2D

The dimensional reduction from the original 3D thin-walled structure to a 1D beam

model can be carried out in two steps due to the existence of two different small parameters

h/c and c/l. Firstly, making use of h/c, one can approximate the original 3D energy with a

2D energy defined in the shell reference surface. Secondly, making use of c/l, one can

approximate the above-found 2D energy with 1D energy defined along the beam axis.
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After deformation, the position of any material point in the 3D structure can be

described by the vector

R̂ðx1; x2; x3Þ Z Rðx1; x2ÞCx3A3ðx1; x2ÞCwiðx1; x2; x3ÞA
iðx1; x2Þ (12)

where the Ai are the contravariant base vectors of Ai, which are, in turn, the base vectors of

the deformed reference surface given by

Aa Z R;a A3 Z
A1 !A2

jA1 !A2j
(13)

Here, we constrain A3 to be normal to the deformed reference surface by including all

possible deformations of the transverse normal into the 3D warping functions wi(x1, x2, x3).

One can define R as

R Z
1

h
hR̂i (14)

which implies three constraints on the warping functions, so that

hwiðx1; x2; x3Þi Z 0 (15)

where the angle-brackets denote the definite integral through the thickness of the shell.

From Eq. (12), one can obtain the 3D covariant base vectors and the corresponding

metric tensor according to the following formulas

Gi Z R̂;a Gij Z Gi$Gj (16)

The 3D strain tensor is defined as

Gij Z 1

2
ðGij KgijÞ (17)

Making use of Eqs. (17), (16), (12), and (10), one can derive the linearized 3D strain

field as

Gab Z3ab Cx3kab Kx3bl
ða3lbÞ Kx2

3bl
ðaklbÞCwða;bÞKbabw3 Kx3bl

ðawlbÞCx3bl
ablbw3

2Ga3 Zw3;a Cwlbl
a Cwa;3 Kx3bb

awb;3 G33 Zw3;3 ð18Þ

where the semicolon preceding an index denotes the covariant derivative with respect

to the coordinate, and the parentheses in the subscripts denote the symmetrization

operation [12], meaning aðabÞZ
�

1
2

�
ðaabCabaÞ. The 2D generalized strain measures eab

and kab are defined as [13,14]

3ab Z 1

2
ðAab KaabÞ kab Zbab KBab Cbl

ða3lbÞ (19)

where Aab and Bab are the first and second fundamental forms of the deformed surface,

respectively, and defined as

Aab ZAa$Ab Bab ZAa;b$A3 (20)

Note that the 3D strains, as in Eq. (18), are obtained based on the assumption that

the 2D generalized strains are small and the warping functions are of the order of the
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generalized strains. This means all the products between warping functions and

generalized strains are neglected. Other than this, all the 3D deformation is accounted

in this strain field. In view of the smallness of h/c and initial twist k1, the main terms of

the 3D strain field which will contribute to the zeroth-order energy are

G0
ab Zeab Cx3kab 2G0

a3 Zwa;3 G0
33 Zw3;3 (21)

Now, the 3D strain energy of the thin-walled structure can be expressed as

J Z
1

2

ð
v

GTDGg1 !g2$g3 dx1 dx2 dx3 Z
1

2

ð
s

hGTDGð1K2x3H Cx2
3KÞids (22)

where v is the volume occupied by the 3D body in the undeformed configuration, s is

the surface stretched by the undeformed reference surface and

G Z b Ge 2Gs Gt c
T

Ge Z b G11 2G12 G22 c
T

2Gs Z b 2G13 2G23 c
T

Gt ZG23

(23)

The strain energy per unit area (which is the same as the strain energy for the

deformation of the normal-line element) is

U Z
1

2
hGTDGð1K2x3H Cx2

3KÞi (24)

where D is the 3D 6!6 material matrix transformed from the material system into the

general curvilinear system xi and is generally fully populated for composite materials.

D is a function of initial twist k1 which may be expanded asymptotically as

D ZD0 CD1 Coðk1mÞ (25)

where D0 is of the order of the elastic constants m, D1 is of the order k1m, and o(k1m)

represents terms of order higher than k1m. For isotropic materials, D as a fourth-order

tensor can be found in a typical elasticity book, which is an isotropic tensor formed

by two material parameters and the 3D metric tensor of the undeformed configuration.

What one needs to do next is to put this fourth-order tensor to a 6!6 matrix

according to the engineering notation used in Eq. (23). For an anisotropic material,

we need to perform the transformation between the material system and an

orthonormal system. Usually, the orthonormal system is defined in terms of the

lamina plane orientation angle and the ply angle, yielding the conventional

transformation for composite materials. Then we need to transform the material

properties in the aforementioned orthonormal system into the curvilinear system. It is

convenient to derive such relations using general tensorial notation. If Dijkl represents

the components of material tensor in the curvilinear system and D̂
mnpq

represents

those in the orthonormal system, we have

Dijklgigjgkgl ZD̂
mnpq

smsnspsq (26)

with si as the unit vectors associated with the orthonormal system. From the above

equation, one can easily obtain the material properties in the curvilinear system such
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that:

Dijkl ZD̂
mnpq

ðsm$giÞðsn$gjÞðsp$gkÞðsq$glÞ (27)

According to the VAM, it is sufficient to find the zeroth-order warping for the

purpose of obtaining an energy asymptotically correct through the first-order of k1,

which is the focus of the present work. The zeroth-order energy per unit area can be

written as

2U0 Z

*
G0

e

2G0
s

G0
t

8>><
>>:

9>>=
>>;

T
De Des Det

DT
es Ds Dst

DT
et DT

st Dt

2
664

3
775

G0
e

2G0
s

G0
t

8>><
>>:

9>>=
>>;

+
(28)

where De, Des, Det, Ds, Dst, Dt are the corresponding partition matrices of D0. The

leading terms of warping functions in Eq. (28) are

2U�
0 Z h2G0T

e Des2G0
s C2G0T

e DetG
0
t C2G0T

s Ds2G0
s C4G0T

s DstG
0
t CG0T

t DtG
0
t i (29)

Minimizing Eq. (29) by following the general procedure from the calculus of

variations, one can solve for 2G0
s and G0

t as

2G0
s ZKD�KT

s D�T
es G0

e G0
t ZKDKT

t D�T
et G0

e (30)

with

D�
s ZDs KDstD

K1
t DT

st D�
es ZDes KDetD

K1
t DT

st

D�
et ZDet KD�

esD
�K1
s Dst

(31)

From Eqs. (15), (21) and (30), one can solve for the zeroth-order warping field.

Substituting the solved warping functions into Eq. (18), one can obtain the 3D strains

asymptotically correct through the first order of k1, which can be symbolically written

as

G ZG0 CG1 (32)

The strain energy per unit area asymptotically correct through the zeroth-order of

k1 can be calculated from Eq. (24) as

2U0 Z
e

k

� �T A B

BT D

" #
e

k

� �
(33)

where

e Z e11 2e12 e22b c
T k Z k11 2k12 k22b c

T (34)

A Z hDjji B Z hx3Djji D Z hx2
3Djji (35)
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and
Djj ZDe KDesD
�KT
s D�T

es KDetD
KT
t D�T

et (36)
The strain energy per unit area including the first-order correction from initial twist

can be expressed as
2U1 Z hG0TD1G0 K2x3HG0TD0G0 C2G1TD0G0iZ
e

k

� �T A1 B1

BT
1 D1

" #
e

k

� �
(37)
Up to this point, we have successfully reduced the original 3D strain energy to a

2D shell strain energy, which has an accuracy asymptotically correct through the first

order of the initial twist k1.
4. Dimensional reduction from 2D to 1D

The previously obtained model in Eqs. (33) and (37) is an asymptotically correct

classical shell model with geometric correction through the first order due to initial

curvature of the reference surface. However, engineering practice often requires a more

simplified model to carry out the relevant analysis and design of thin-walled beams. We

need to proceed further to reduce the shell model to a 1D beam model.

The deformed reference surface can be expressed in terms of beam quantities such that
Rðx1; x2Þ Z R0ðy1ÞCyaðx2ÞBaðy1ÞCviðy1; y2; y3ÞBiðy1Þ (38)
where Bi are the unit vectors associated with yi for the deformed configuration, and vi is the

warping field subject to the constraints
hhviii Z 0 hhy3v2 Ky2v3ii Z 0 (39)
with the double angle-brackets denoting the definite integral along the contour of beam

sections.

From Eq. (38), one can calculate the base vectors of the deformed shell surface Ai based

on their definitions, Eq. (13). Then one can obtain the fundamental forms of this surface

from Eq. (20) and finally derive the shell strain measures in terms of beam quantities and

warping functions from Eqs. (19). By neglecting all nonlinear terms with respect to

the beam strain measures and warping functions vi, one can find the 2D shell strain
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measures asymptotically correct through the first order of initial twist as

e11 Z g11 Ck2y3 Kk3y2 Ck1k1R2

2e12 Z _v1 Ck1Rn Ck1ðy2 _v3 Ky3 _v2 Cv2 _y3 Kv3 _y2Þ

e22 Z _ya _va

k11 Z ka _ya C
1

2
k1ð _v1 K3k1RnÞ

2k12 ZK2k1 C
b22

2
ð _v1 Ck1RnÞCk1½2Rtðk2 _y3 Kk3 _y2ÞK _ya _va

C _Rtðg11 Ck2y3 Kk3y2ÞC
b22

2
ðy2 _v3 Ky3 _v2 Cv2 _y3 Kv3 _y2Þ�

k22 Z ð _y3 _v2 K _y2 _v3Þ;2 Ck1 k1R2
tb22 CRt €v1 C

_Rt

2
ð _v1 Ck1RnÞ

� �
ð40Þ

where g11 is the extensional strain and k1 the torsional strain and ka bending strains in the

ya direction.

To obtain the strain energy defined along the beam axis through the first-order of initial

twist, one needs to solve for the vi of the zeroth-order approximation. Using the 2D strain

field in Eqs. (40) without the terms related with k1 and substituting it into the zeroth-order

shell energy, Eq. (33), one can solve for the warping functions subject to the constraints in

Eqs. (39). For the convenience of calculation, one can express the zeroth-order 2D shell

strains in matrix form as

e

k

� �
Z P3 CTj (41)

with

P Z

1 0 y3 Ky2

0 0 0 0

0 0 0 0

0 0 _y2 _y3

0 K2 0 0

0 0 0 0

2
66666666664

3
77777777775

T Z

0 0 0

1 0 0

0 1 0

0 0 0

b22

2
0 0

0 0 1

2
666666666664

3
777777777775

3 Z g11 k1 k2 k3b c
T j Z 2e0

12 e0
22 k0

22

� �T

(42)

The only unknowns exist in j and the constraints in Eqs. (39) are only needed to recover

vi and have no effect on the arbitrariness of j. Denoting the stiffness obtained in Eq. (33) as

K, one can express the zeroth-order energy per unit length of the beam axis using Eq. (41) as

2P0 Z hhðP3 CTjÞTKðP3 CTjÞii (43)

For open sections, there are no additional constraints on j. The minimization problem

can be carried out in a straightforward manner, yielding
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j ZKðTTKTÞK1TTKP3 (44)

Then the zeroth-order energy can be expressed in terms of the beam strains as

2P0 Z 3ThhPT½K KKTðTTKTÞK1TTK�Pii3 (45)

The zeroth-order warping functions can be solved from Eqs. (39) along with Eq. (39).

Substituting the obtained warping functions into Eq. (40) and then into Eq. (37), one should

be able to obtain the strain energy per unit length expressed in terms of beam strain measures

of the order k1.

For closed sections, four additional constraints should be applied to ensure the

uniqueness of the displacement field [9]. They are

hhvi;2ii Z 0 hhk0
22ii Z 0 (46)

These constraints can be transformed into the matrix form

hhfj KL3ii Z 0 (47)

with

f Z

1 0 0

0 _y2 Ky3

0 _y3 y2

0 0 1

2
66664

3
77775 L Z

0 Rn 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
66664

3
77775 (48)

Introducing Lagrange multipliers, the functional to be minimized has the form

2L Z hhðP3 CTjÞTKðP3 CTjÞC2lTfjii (49)

where one can solve for j as

j ZKðTTKTÞK1ðTTKP3 Cf
T
lÞ (50)

Substituting the above equation into the constraints in Eq. (47), one can solve for l as

l ZKhhfðTTKTÞK1fTiiK1hhfðTTKTÞK1TTKP CLii3 (51)

Substituting Eq. (51) back into Eq. (50), one obtains j and then recovers the zeroth-

order warping vi with the help of Eq. (39). Finally, one obtains the strain energy per unit

length asymptotically correct through the first-order of initial twist k1 from Eqs. (33) and

(37).

It is worthy to emphasize that the present theory asymptotically reduces the original 3D

energy into a 1D energy similar to those of the traditional classical beam theory. Hence,

the 1D beam analysis remains essentially the same including the governing differential

equations and boundary conditions as long as the beam analysis uses 1D strain measures

equivalent to those of the present theory.
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5. Numerical examples

To demonstrate the usage and accuracy of the present theory, we study some simple

examples such as an isotropic strip, a composite strip, an isotropic box-beam, and a

composite box-beam.

The first example is a strip with width c, thickness h and initial twist k1. This strip is

made with isotropic material with Young’s modulus as E and Poisson’s ratio n. The

warping functions in Eq. (12) can be solved according to Eq. (30) yielding

wa Z 0 w3 Z
n

n K1
x3ðe11 Ce22ÞC

ðx3Þ
2

2
K

h2

24

� �
ðk11 Ck22Þ

� �
(52)

The warping functions in Eq. (38) can be solved according to Eq. (40), yielding

v1 Z 0 v2 Z
1

2
y2

2 K
c2

12

� �
k3n Ky2g11n v3 Z

1

2
y2

2 K
c2

12

� �
k2n (53)

Substituting the above warping functions into the 2D shell strain measures in Eq. (40),

one can obtain the strain measures for the strip with the first-order correction of initial

twist expressed in terms of beam strains as

e11 Z g11 Kk3y2 Ck1k1y2
2 2e12 Z

1

2
k1 y2

2 C
c2

12

� �
k2n

e22 Z y2k3n Kg11n k11 Z k2

2k12 ZK2k1 Ck1g11ðn C1ÞKk1ð3 CnÞy2k3 k22 ZKk2n

(54)

Substituting Eq. (54) into Eqs. (33) and (37), one can calculate beam stiffness with first-

order correction of k1 as

S11 Z Ech S12 Z
Ec3h

12
1 K3

h

c

� �2� �
k1 S22 Z

Ech3

6ðn C1Þ

S33 Z
Ech3

12
S44 Z

Ec3h

12

(55)

where S11 is the extensional stiffness, S22 torsional stiffness, S33 bending stiffness in the x2

direction, S44 bending stiffness in the x3 direction, and S12 is the extension–twist coupling

from initial twist. This value is the same as that for an initially twisted isotropic solid beam

[15]

S12 Z ½S33 CS44 K2ðn C1ÞS22�k1 Z
Ec3h

12
1 K3

h

c

� �2� �
k1 (56)

Eq. (56) is derived using the VAM without taking advantage of the smallness of wall

thickness and is asymptotically correct though the first-order of the initial twist. The value



Table 1

Stiffness for pretwisted composite strip

S VABS Present Difference (%)

S11 0.85985931!107 0.85985931!107 0

S12 0.27792311!106 0.28043542!106 0.9

S22 0.27868182!105 0.29968253!105 7.5

S13 0.24939907!102 0.61395754!103

S23 0.70870494!104 0.76211033!104 7.5

S33 0.30464257!105 0.30600072!105 0.5

S44 0.28661977!107 0.28661977!107 0
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provided in Ref. [16] was

S12 Z
Ec3h

12
1 K

h

c

� �2� �
k1 (57)

Although both results converge to the same value as h/c goes to zero, the result of

Ref. [16] introduces an error of the order (h/c)2 in comparison to that of Ref. [15], which is

inevitable when one attempts to take advantage of the smallness of wall thickness in an ad

hoc manner that is not asymptotically correct. On the other hand, the present theory, which

is still a thin-walled beam theory, can reproduce the asymptotically correct results

obtained without invoking the thin-walled assumption.

The second example is a single-layer strip made from an anisotropic material with

properties given by

E11 Z 25!106 psi E22 Z E33 Z 10!106 psi G12 Z G13 Z 5!106 psi

G23 Z 2!106 psi n12 Z n13 Z n23 Z 0:25 ð58Þ

The ply orientation is K158. Even if there is no initial twist, this strip exhibits bending–

twist coupling. We are going to compare our result with VABS which has been

comprehensively validated against experimental results, 3D elasticity solutions, and 3D

finite element solutions [11,17–20]. For the purpose of comparing the results with VABS,

we assume cZ2 in., hZ0.2 in., and k1Z0.1/in. The results were tabulated in Table 1. One

can observe that the present theory, which takes advantage of the thin-walled structure,

agrees reasonably well with VABS, which is also based on the variational asymptotic

method but is capable of treating cross-sections of arbitrary geometry. The present theory

gives the exact solution for the stiffness in the stiff directions such as extension and

bending around the normal of the strip. However, for stiffness in the soft directions,

particularly the torsional stiffness and bending–twist coupling, the present theory

introduces some errors because of the fact we have taken advantage of the smallness of

h/c during the reduction from 3D to 2D.

When the strip is initially twisted, extension–twisting coupling will appear in the

stiffness model. The present theory yields an excellent prediction for the extension–

twisting coupling. The present theory also predicts a very weak extension–bending

coupling which is three orders of magnitude less than the extension–twisting coupling.

Although VABS also predicts such a small term, it is not meaningful to judge the accuracy
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Fig. 2. Convergence study of thin-walled beam theory.
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based on this difference. It is not clear to the authors at this stage what would be the source

of this term, although the values are reported for completeness.

It may seem that the errors for S22 and S23 are too large to be acceptable. It is comforting

to find out that even for an untwisted isotropic strip with the same aspect ratio (c/hZ10),

the exact torsional stiffness (0.312Gch3) is about 6.7% different from the result Gch3/3 that

is based on thin-walled assumptions. Therefore, the amount of error for composite beams

as shown in Table 1 is not unreasonable. Theories such as the present one, which take

advantage of the smallness of thickness, should converge to the exact solution when the

aspect ratio h/c goes to zero. For this purpose, initially twisted composite strips with

different aspect ratios are studied; the convergence trends of S12, S22 are plotted in Fig. 2,

where the dashed line-dot plot for S12 and solid line-dot for S22. The values of the present

theory are normalized by VABS results. It is found that S23 always has the same ratio as

S22, which can be explained by the fact that both values are proportional to ch3. S12
Fig. 3. Schematic of cross-section of a thin-walled box-beam.
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converges to the VABS result faster than S22 because part of it is contributed by the

bending stiffness in the stiff direction according to Eq. (56). The torsional stiffness is very

sensitive to the assumptions one uses to develop the theory. Even when the aspect ratio is

30, the difference of the torsional stiffness S22 has a value around 2.3%. Nevertheless, as

one can observe from the plot, the values from the present theory indeed converge to the

more accurate values produced by VABS.

The third example is a thin-walled isotropic box-beam with length a, width b, and

thickness h (see Fig. 3 for dimensions). The box-beam is made of isotropic material with

Young’s modulus E and Poission’s ratio n. Following a similar procedure as for the

isotropic strip, analytical formulas can be obtained for the stiffnesses as

S11 Z 2ða CbÞEh

S12 Z
Ehk1ða

4 C4ba3 K3a2ð2b2 Ch2ÞCað4b3 K6bh2ÞCb4 K3b2h2Þ

6ða CbÞ

S22 Z
Ehða2ð3b2 Ch2ÞC2abh2 Cb2h2Þ

3ða CbÞð1 CnÞ

S33 Z
Ehðb3 C3ab2 Cah2Þ

6
S44 Z

Ehða3 C3a2b Cbh2Þ

6

(59)

One can verify that the extension–twisting coupling satisfies the exact relation in Eq.

(56). Note that S11, S33, and S44 are the same as the exact solutions. The difference between

the traditional thin-walled theory (assuming h/a and h/b are zero) and the present theory is

of the order of (h/c)2, with c denoting the larger value of a and b.

The last example is a pretwisted thin-walled box-beam with length aZ0.923 in., width

bZ0.5 in., thickness hZ0.03 in., and initial twist k1Z0.1/in. This box-beam is made of an

anisotropic material with the same properties as those for the composite strip, which are

given by Eq. (58). The six layers have the same ply angles of K158. The results are shown

in Table 2. Again excellent agreement is found between VABS and the present theory.

Except for the torsional stiffness, the differences of other values are less than 1%. It is

noticed that without including D1 in Eq. (25) an error of about 20% is introduced for S12 in

comparison to VABS results. Hence, a systematic dimensional reduction should be carried

out by consistently including all the first-order correction due to k1 in both steps of

reduction from 3D to 2D and from 2D to 1D. Direct use of stiffness matrices from classical
Table 2

Stiffness for pretwisted composite box-beam

S VABS Present Difference (%)

S11 0.19600322!107 0.19594756!107 0.028

S12 0.91355458!105 0.91558325!105 0.22

S22 0.52561275!105 0.516076716!105 1.8

S33 0.90793318!105 0.90459553!105 0.37

S44 0.23141874!106 0.23051801!106 0.39
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shell theory without geometric correction, as suggested in Refs. [9,21], will introduce

some differences to the final thin-walled beam models with initial twist. However, for the

isotropic case, it is verified that differences between the present theory and those of Refs.

[9,21] are of the order of (h/c)2, which is allowable in thin-walled beam theories (i.e.

theories that take advantage of the smallness of h/c). Indeed, it is encouraging to find out

that results from the present theory satisfy the analytical formula in Eq. (56), obtained

using the VAM for arbitrary beams. In spite of the discontinuity in the slope of the contour,

the box-beam case clearly demonstrates the usage and accuracy of the present theory for

thin-walled beams with closed sections.
6. Conclusions

A general framework to model initially twisted, thin-walled, composite beams has been

developed to consistently capture the first-order correction to the beam stiffness from

initial twist. The unique geometry of a thin-walled beam (h/c/1 and c/l/1) makes it

possible to analytically reduce the original 3D representation to a shell model and then

further to a beam model. It is shown that to consistently calculate the first-order correction

from initial twist one has to obtain this correction during both dimensional reductions,

which is against the usual practice in the literature that the pretwisted thin-walled beams

are modeled directly from a classical shell theory without geometric corrections.

Simple strip and box-beam examples have been studied to demonstrate the usage and

accuracy of the present theory. Results show that the present theory provides a very

accurate beam model to approximate the original 3D representation. The present theory

can be used with confidence in the design and analysis of pretwisted thin-walled composite

beams. A good compromise between accuracy and efficiency has been achieved for

modeling thin-walled beams so that tradeoffs and analysis can be performed efficiently and

without significant loss of accuracy. It is worthy to point out that the present theory applies

to all types of thin-walled beams including strips and closed or open sections without using

different theory for different types as traditional techniques demand.

The analytical formulas developed here are implemented using Mathematicae, a

symbolic manipulator. The present theory provides an alternative to VABS for structure

engineers who want a quick way to calculate the section properties of composite thin-

walled beams without tedious modeling effort and computation cost of the finite element

method. Any single-celled, thin-walled cross-section can be modeled using the present

theory. Additional work is required to extend the present theory to include multiple cells or

to introduce refinements to the 1D model such as shear deformation or the Vlasov effect,

both of which are already treated by VABS
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