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A thermoelastic model for analyzing laminated composite plates under both mechanical

and thermal loadings is constructed by the variational asymptotic method. The original

three-dimensional nonlinear thermoelasticity problem is formulated based on a set of intrinsic

variables defined on the reference plane and for arbitrary deformation of the normal line.

Then the variational asymptotic method is used to rigorously split the three-dimensional

problem into two problems: a nonlinear, two-dimensional, plate analysis over the reference

plane to obtain the global deformation and a linear analysis through the thickness to provide

the two-dimensional generalized constitutive law and the recovering relations to approximate

the original three-dimensional results. The nonuniqueness of asymptotic theory correct up

to a certain order is used to cast the obtained asymptotically correct second-order free

energy into a Reissner-Mindlin type model to account for transverse shear deformation. The

present theory is implemented into the computer program, Variational Asymptotic Plate

and Shell Analysis (VAPAS). Results from VAPAS for several cases have been compared

with the exact thermoelasticity solutions, classical lamination theory and first-order shear-

deformation theory to demonstrate the accuracy and power of the proposed theory.
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Introduction

Composite materials have found increasing applications in engineering practices due to

their superior engineering properties and improving manufacturing technology. However, the

heterogeneity and anisotropy of such materials make the traditional analysis method used

for designing homogeneous and isotropic structures obsolete. Moreover, structures made
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with composite materials are more sensitive and vulnerable to temperature change than

their isotropic counterpart. The reason is that the thermal expansion coefficients of different

constituents of the material are usually dramatically different from each other resulting in

high stresses due to sudden temperature change. The analysis including thermal effects is

much more involved than that for isothermal conditions.

Many engineering structures made with composite materials have one dimension much

smaller than the other two and can be modeled as plates. Only a few exact solutions exist for

very idealized cases (see Savoia and Reddy (1995) and the references cited there). Researchers

are trying to develop simplified models to provide an approximate representation for more

general cases. Within the last few decades, a tremendous research effort has been invested

in this area, and various approximate models have been proposed (Wu and Tauchert (1980);

Noor and Burton (1992); Reddy (1997); Noor and Malik (2000); Rohwer et al. (2001)).

Generally speaking, these models are derived from three-dimensional (3-D) thermoelasticity

theory, making use of the fact that the plate is thin in some sense. Although it is plausible

to consider the smallness of the thickness of plate structures, construction of an accurate

two-dimensional (2-D) model for a 3-D body still introduces a lot of challenges. Almost all

the proposed models in the literature can give a good prediction of the global behavior of

the plate. However, they have serious difficulties in providing accurate distributions of the

3-D displacements, strains, and stresses through the thickness. Part of the reason is that

most models adopt ad hoc assumptions (such as having displacement or stress components

vary through the thickness according to a certain function) which violate the exact solutions.

For example, most high order theories (except for some layerwise theories such as Cho and

Averill (2000)) assume a C∞ continuity for the 3-D displacement field through the thickness

which in reality they are piecewise continuous. In the case of thermal loading, the prediction

of these ad hoc models become even worse, if not wrong, and the results should be examined

more cautiously.

It must be understood that all plate theories, no matter how involved they may appear,

are inherently approximate. The approximation lies in the 2-D constitutive law relating

2-D strains and stress resultants, which is a direct consequence of eliminating the thickness

coordinate from the independent variables of the governing equations of the boundary-value

problem for a plate. This sort of approximation is inevitable if one wants to take advantage

of the smallness of the thickness to simplify the analysis. It is interesting to note that the 3-D

constitutive relations are essentially approximate and determined by experiments. However,

this cannot be used as an excuse to introduce unnecessary assumptions. For example, for

small-strain analysis of plates, it is reasonable to assume that the thickness, h, is small

compared to the wavelength of deformation of the reference surface, l. However, it is not at
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all reasonable to assume a priori some ad hoc displacement field, although that is the way

most plate theories are constructed.

In this paper, we first cast the original 3-D thermoelasticity problem in an intrinsic

form so that the theory is applicable for arbitrarily large displacement and global rotation,

subject only to the strain’s being small; see Hodges et al. (1993). Then, the Variational

Asymptotic Method (VAM), introduced by Berdichevsky (1979), is used to split the original

nonlinear 3-D elasticity problem into a linear, one-dimensional (1-D), through-the-thickness

analysis and a nonlinear, 2-D, plate analysis. The through-the-thickness analysis produces

the 2-D constitutive law and non-mechanical stress resultants to be used in the 2-D plate

analysis, along with recovering relations that yield the 3-D displacement, strain and stress

fields through the thickness using results obtained from the solution of the 2-D problem. The

present work extends a simple yet accurate model developed recently for composite plates

and shells, namely Variational Asymptotic Plate and Shell Analysis (VAPAS) by Yu et al.

(2002a,b, 2003) so that thermoelastic effects can be treated in the same framework.

Since the procedure is quite similar, the authors have chosen to repeat some formulae

and text from their previous publications in order to make the present paper more self-

contained. The present theory has been implemented into the computer program VAPAS.

The hygro effects due to moisture can be treated in a similar manner as thermal effects.

Thus, for simplicity of presentation, the hygro effect is not included in the formulation. It

has, however, also been implemented in VAPAS. Now, one can use VAPAS along some 2-D

plate solver (say, some finite element program such as DYMORE, Bauchau (1998)) to carry

out an accurate and efficient hygrothermoelastic analysis for composite plates.

3-D Formulation

A point in the plate can be described by its Cartesian coordinates xi (see Fig. 1), where

xα are two orthogonal lines in the reference plane and x3 is the normal coordinate. (Here and

throughout the paper, Greek indices assume values 1 and 2 while Latin indices assume 1,

2, and 3. Repeated indices are summed over their range except where explicitly indicated.)

Letting bi denote the unit vector along xi for the undeformed plate, one can then describe

the position of any material point in the undeformed configuration by its position vector r̂

from a fixed point O, such that

r̂(x1, x2, x3) = r(x1, x2) + x3b3 (1)

where r is the position vector from O to the point located by xα on the reference surface.

When the reference surface of the undeformed plate coincides with its middle surface, it
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naturally follows that

〈r̂(x1, x2, x3)〉 = r(x1, x2) (2)

where the angle-brackets denote the definite integral through the thickness of the plate and

will be used throughout the paper.

When the plate deforms, the particle that had position vector r̂ in the undeformed state

now has position vector R̂ in the deformed plate. The latter can be uniquely determined by

the deformation of the 3-D body. Similarly, another triad Bi is introduced for the deformed

configuration. The relation between Bi and bi can be specified by an arbitrarily large

rotation specified in terms of the matrix of direction cosines C(x1, x2) so that

Bi = Cijbj Cij = Bi · bj (3)

subject to the requirement that Bi is coincident with bi when the structure is undeformed.

Now the position vector R̂ can be represented as

R̂(x1, x2, x3) = R(x1, x2) + x3B3(x1, x2) + wi(x1, x2, x3)Bi(x1, x2) (4)

where wi is the warping of the normal-line element. In the present work, the form of the

warping wi is not assumed, as in most plate theories. Rather, these quantities are treated as

unknown 3-D functions and will be solved for later. Eq. (4) is six times redundant because

of the way warping introduced. Six constraints are needed to make the formulation unique.

The redundancy can be removed by choosing appropriate definitions of R and Bi. One can

define R similarly as Eq. (2) to be the average position through the thickness, from which

it follows that the warping functions must satisfy the three constraints

〈wi(x1, x2, x3)〉 = 0 (5)

Another two constraints can be specified by taking B3 as the normal to the reference surface

of the deformed plate. It should be noted that this choice has nothing to do with the

famous Kirchhoff hypothesis. Indeed, it is only for convenience in the derivation. In the

Kirchhoff assumption, no local deformation of the transverse normal is allowed. On the

other hand, according to the present scheme we allow all possible deformation, classifying

all deformation other than that of classical lamination theory (CLT) as warping, which is

assumed to be small. This assumption is valid if the strain is small and if the order of the

local rotation (i.e. the rotation of the normal line due to warping) is of the order of the strain

or smaller; see Danielson (1991).

Based on the concept of decomposition of rotation tensor, Danielson and Hodges (1987)
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and Danielson (1991), the Jauman-Biot-Cauchy strain components for small local rotation

are given by

Γij =
1

2
(Fij + Fji) − δij (6)

where Fij is the mixed-basis component of the deformation gradient tensor such that

Fij = Bi ·Gkg
k · bj (7)

Here Gk = ∂R̂

∂xk

is the covariant basis vector of the deformed configuration and gk the

contravariant base vector of the undeformed configuration and gk = gk = bk. One can

obtain Gk with the help of the definition of so-called generalized 2-D strains similarly as

Hodges et al. (1993), given by

R,α = Bα + εαβBβ

Bi,α = (−KαβBβ × B3 +Kα3B3) × Bi (8)

where εαβ and Kαβ are the 2-D generalized strains and ( ),α = ∂( )
∂xα

. Here one is free to set

ε12 = ε21, i.e.

B1 · R,2 = B2 · R,1 (9)

which can serve as another constraint to specify the deformed configuration.

With the assumption that the strain is small compared to unity, which has the effect of

removing all the terms that are products of the warping and the generalized strains, one can

express the 3-D strain field as

Γ = Γhw + Γεε+ Γl1w,1 + Γl2w,2 (10)

where

Γ = bΓ11 2Γ12 Γ22 2Γ13 2Γ23 Γ33c
T (11)

w = bw1 w2 w3c
T (12)

ε = bε11 2ε12 ε22 K11 K12 +K21 K22c
T (13)
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and all the operators are defined as:

Γh =
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(14)

In the present work, we only consider one-way thermomechanical coupling and tempera-

ture change due to the deformation of the plate is negligible. Then we can use the Helmholtz

free-energy functional (Reddy (1997)) without quadratic terms involving temperature only

to carry out the analysis. The free energy per unit area (which is the same as the free energy

of the normal-line element) can be written as

U =

〈

1

2
ΓT D Γ − ΓTDα T

〉

(15)

where T is the difference of temperature inside the structure with respect to the reference

temperature when the plate is stress free, and D is the 3-D 6 × 6 material matrix, which

consists of elements of the elasticity tensor expressed in the global coordinate system xi. α

is a 6×1 column matrix representing the 3-D thermal expansion coefficients. These matrices

are in general fully populated. However, if it is desired to model laminated composite plates

in which each lamina exhibits a monoclinic symmetry about its own mid-plane and is rotated

about the local normal to be a layer in the composite laminated plate, then as shown in Yu

et al. (2002a), some parts of these matrices will always vanish no matter what the layup

angle is.

To deal with applied mechanical loads as well with thermal loads, we will at first leave

open the existence of a potential energy and develop instead the virtual work of the applied

mechanical loads. The virtual displacement is taken as the Lagrangean variation of the
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displacement field, such that

δR̂ = δqBiBi + x3δψBiBi ×B3 + δwiBi + δψBiBi × wjBj (16)

where the virtual displacement of the reference surface is given by

δqBi = δu ·Bi (17)

and the virtual rotation of the reference surface is defined such that

δBi = δψBjBj × Bi (18)

Since the strain is small, one may safely ignore products of the warping and the loading in

the virtual rotation term. Then, the work done through a virtual displacement due to the

applied loads τiBi at the top surface and βiBi at the bottom surface and body force φiBi

through the thickness is

δW = (τi + βi + 〈φi〉)δqBi + δψBα

[

h

2
(τα − βα) + 〈x3φα〉

]

+ δ
(

τiw
+
i + βiw

−

i + 〈φiwi〉
)

(19)

where τi, βi, and φi are taken to be independent of the deformation, ( )+ = ( )|x3=
h

2

, and

( )− = ( )|x3=−
h

2

. By introducing column matrices δq, δψ, τ , β, and φ, which are formed by

stacking the three elements associated with indexed symbols of the same names, and using

Eqs. (1), (3), and (4), one may write the virtual work in matrix form, so that

δW = δq
T
f + δψ

T
m+ δ

(

τTw+ + βTw− +
〈

φTw
〉)

(20)

where
f = τ + β + 〈φ〉

m =











h
2
(τ1 − β1) + 〈x3φ1〉

h
2
(τ2 − β2) + 〈x3φ2〉

0











(21)

The complete statement of the problem can now be presented in terms of the principle

of virtual work, such that

δU − δW = 0 (22)

In spite of the possibility of accounting for nonconservative forces in the above, the problem

that governs the warping is conservative. Thus, one can pose the problem that governs the
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warping as the minimization of a total potential functional

Π = U +W (23)

so that

δΠ = 0 (24)

in which only the warping displacement is varied, subject to the constraints Eq. (5). This im-

plies that the potential of the applied mechanical loads for the functional governing warping

is given by

W = −τTw+ − βTw− −
〈

φTw
〉

(25)

Below, for simplicity of terminology, we will refer to Π as the total potential energy, or the

total energy.

By principle of minimum total potential energy, one can solve for the unknown warping

functions by minimizing the functional in Eq. (23) subject to the constraints of Eq. (5).

Up to this point, this is simply an alternative formulation of the original 3-D elasticity

problem. If we attempt to solve this problem directly, we will meet the same difficulty as

solving any full 3-D elasticity problem. Fortunately, as shown in Yu et al. (2002a,b, 2003),

the VAM can be used to calculate the 3-D warping functions asymptotically. The through-

the-thickness analysis is one dimensional and can be solved analytically. However, finite

element discretization is preferred to solve the minimization problem for the sake of dealing

with multiple layers and arbitrary monoclinic material. A 5-noded isoparametric element is

used because we need the second-order warping functions, which are piecewise, fourth-degree

polynomials. Discretizing the transverse normal line into 1-D finite elements, one can express

the warping field as

w(xi) = S(x3)V (x1, x2) (26)

where S is the shape function and V is the nodal value of warping field along the transverse

normal. Substituting Eq. (26) into Eq. (23), one can express the total energy in discretized

form as

2Π =V TEV + 2V T (Dhεε+Dhl1V,1 +Dhl2V,2)

+ εTDεεε+ V T
,1Dl1l1V,1 + V T

,2Dl2l2V,2

+ 2(V T
,1Dl1εε+ V T

,2Dl2εε+ V T
,1Dl1l2V,2)

− 2V Tαh − 2εTαε − 2V T
,1 αl1 − 2V T

,2 αl2 + 2V TL

(27)
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where L contains the load related terms such that

L = −S+T τ − S−Tβ −
〈

STφ
〉

(28)

The new matrix variables carry the properties of both the geometry and material:

E =
〈

[ΓhS]TD[ΓhS]
〉

Dhε =
〈

[ΓhS]TDΓε

〉

Dhl1 =
〈

[ΓhS]TD[Γl1S]
〉

Dhl2 =
〈

[ΓhS]TD[Γl2S]
〉

Dεε =
〈

ΓT
ε DΓε

〉

Dl1l1 =
〈

[Γl1S]TD[Γl1S]
〉

Dl1l2 =
〈

[Γl1S]TD[Γl2S]
〉

Dl2l2 =
〈

[Γl2S]TD[Γl2S]
〉

Dl1ε =
〈

[Γl1S]TDΓε

〉

Dl2ε =
〈

[Γl2S]TDΓε

〉

αh =
〈

[ΓhS]TDα T
〉

αε =
〈

ΓT
ε Dα T

〉

αl1 =
〈

[Γl1S]TDα T
〉

αl2 =
〈

[Γl2S]TDα T
〉

(29)

Although the theory itself allows for an analytical representation for arbitrary temperature

distribution through the thickness, here a fourth-degree polynomial is used to approximate

the temperature distribution for each normal-line element. The discretized form of Eq. (5)

is

V THψ = 0 (30)

where H =
〈

ST S
〉

and ψ is the normalized kernel matrix of E such that ψTHψ = I. Now

our problem is transformed to minimize Eq. (27) numerically, subject to the constraints in

Eq. (30).

Dimensional Reduction

To rigorously reduce the original 3-D problem to a 2-D plate problem, one must attempt

to reproduce the energy stored in the 3-D structure in a 2-D formulation. This dimensional

reduction can only be done approximately, and one way to do it is by taking advantage

of the smallness of h/l. The small parameter ε, representing the order of the generalized

2-D strains ε has already been taken advantage of when we derive Eq. (10). To reduce the

number of small parameters in the asymptotic analysis, it is reasonable to assume that the

order of strains due to thermal loading is of the order ε. Thus, the quantities of interest

assume the following orders:

εαβ ∼ hκαβ ∼ ε αT ∼ ε f3 ∼ µ(h/l)2ε fα ∼ µ(h/l)ε mα ∼ µh(h/l)ε (31)
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where µ is the order of the material constants (all of which are assumed to be of the same

order). It is noted that m3 = 0.

Having assessed the orders of all the interested quantities, the VAM can be used to

mathematically perform a dimensional reduction of the 3-D problem to a series of 2-D models,

similarly as what have been done in Yu et al. (2002a,b, 2003).

The VAM requires one to find the leading terms of the functional according to the different

orders. Since only the warping is varied, the leading terms needed are all of those terms

associated with warping. For the zeroth-order approximation, these leading terms of Eq. (27)

are

2Π∗

0 = V TEV + 2V TDhεε− 2V Tαh (32)

The Euler-Lagrange equation for functional Eq. (32) subject to constraints Eq. (30) can be

obtained by usual procedure of calculus of variation with the aid of a Lagrange multiplier as

follows:

EV +Dhεε− αh = HψΛ (33)

Considering the properties of the kernel matrix ψ, one calculates the Lagrange multiplier Λ

as

Λ = ψT (Dhεε− αh) (34)

Substituting Eq. (34) back into Eq. (33), we obtain

EV = (HψψT − I)(Dhεε− αh) (35)

There is a unique solution of zeroth-order warping functions and can be written as:

V = V̂0ε+ VT = V0 (36)

Substituting Eq. (36) back into Eq. (27), one can obtain the total energy asymptotically

correct up to the order of µε2 as

2Π0 = εT (V̂ T
0 Dhε +Dεε)ε+ εT (DT

hεVT − V̂0
T
αh − 2αε) (37)

Note the quadratic terms associated with temperature −V T
T αh is dropped due to the same

reason for Eq. (15). This 2-D free energy, Eq. (37), is the same as what is used in CLT for

thermoelastic analysis:

2Π0 = εTAε− 2εTNT (38)
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with

A = (V̂ T
0 Dhε +Dεε) NT = αε +

1

2
(V̂0

T
αh −DT

hεVT ) (39)

Although the energy of this approximation coincides with CLT, we have not used any ad hoc

kinematic assumptions such as the Kirchhoff assumption to obtain this result. Moreover,

the transverse normal strain from our zeroth-order approximation is not zero.

It is understood that our zeroth-order approximation will give the same stress results

as what is obtained from CLT, i.e., all the transverse stress components which are very

important for analyzing the failure of composite plates cannot be predicted. One must carry

out the next approximation so that those quantities can be approximately predicted. To

obtain the first-order approximation, we simply perturb the zeroth-order result, resulting in

warping functions of the form

V = V0 + V1 (40)

Substituting Eq. (40) back into Eq. (10) and then into Eq. (27), one can obtain the leading

terms for the first-order approximation as

2Π∗

1 = V T
1 EV1 + 2V T

1 D1ε,1 + 2V T
2 D2ε,2 + 2V TLT + 2V T

1 L (41)

with

D1 = (Dhl1 −DT
hl1

)V̂0 −Dl1ε

D2 = (Dhl2 −DT
hl2

)V̂0 −Dl2ε

LT = (Dhl1 −DT
hl1

)VT,1 + (Dhl2 −DT
hl2

)VT,2 + αl1,1 + αl2,2 (42)

Integration by parts with respect to the in-plane coordinates is used here and hereafter

whenever it is convenient for the derivation, because the present goal is to obtain an interior

solution for the plate without consideration of boundary layer effects.

Similarly as in the zeroth-order approximation, one can solve the first-order warping field

as

V1 = V11ε,1 + V12ε,2 + V1T + V1L (43)

and obtain a total energy that is asymptotically correct up to the order of µ(h/l)2ε, given

by

2Π1 = εTAε+ εT,1Bε,1 + 2εT,1Cε,2 + εT,2Dε,2 + 2εTF − 2εTFT (44)
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where

B = V̂ T
0 Dl1l1 V̂0 + V T

11D1 C = V̂ T
0 Dl1l2 V̂0 +

1

2
(V T

11D2 +DT
1 V11)

D = V̂ T
0 Dl2l2V̂0 + V T

12D2 F =V̂ T
0 L−

1

2
(DT

1 V1L,1 + V T
11L,1 +DT

2 V1L,2 + V T
12L,2) (45)

with the non-mechanical load due to temperature

FT =NT + V̂ T
0 Dl1l1VT,11 + V̂ T

0 Dl2l2VT,22 + V̂ T
0 (Dl1l2 +DT

l1l2
)VT,12

+
1

2
(V T

11LT,1 + V T
12LT2 +DT

1 V1T,1 +DT
2 V1T,2)

(46)

Here the monoclinic symmetry has already been taken advantage of to obtain the asymptot-

ically correct energy in Eq. (44). The applied mechanical loads and temperature distribution

should not vary rapidly over the plate surface; otherwise the structure, although plate-like,

can not be analyzed with enough accuracy using a reduced plate model.

Transforming Into Reissner-Mindlin Model

Although Eq. (44) is asymptotically correct through the second order and straightfor-

ward use of this free energy expression is possible, it involves more complicated boundary

conditions than necessary since it contains derivatives of the generalized strain measures.

To obtain an energy functional that is of practical use, one can transform the present ap-

proximation into a Reissner-Mindlin type model. We would like to state that fitting the

asymptotic energy into such model is just a choice, and the possibility of fitting the same

energy into other more sophisticated plate models is under investigation.

In a Reissner-Mindlin model, there are two additional degrees of freedom, which are the

transverse shear strains. These are incorporated into the rotation of transverse normal. If

we introduce another triad B∗

i for the deformed Reissner-Mindlin plate, the definition of 2-D

strains becomes

R,α = B∗

α + ε∗αβB
∗

β + 2γα3B
∗

3

B∗

i,α = (−K∗

αβB
∗

β ×B∗

3 +K∗

α3B
∗

3) × B∗

i (47)

where the transverse shear strains are γ = b2γ13 2γ23c
T . From the definitions in Eqs. (8)

and (47), one can obtain the Rodrigues parameters corresponding to the rotation relating

Bi and B∗

i . Using the procedures listed in Hodges (1987), one can express the classical

strain measures ε in terms of the strain measures of the Reissner-Mindlin plate model (see
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Yu (2002) for the details of the derivation):

ε = R−Dαγ,α (48)

where

D1 =

[

0 0 0 1 0 0

0 0 0 0 1 0

]T

D2 =

[

0 0 0 0 1 0

0 0 0 0 0 1

]T

R = bε∗11 2ε∗12 ε∗22 K∗

11 K∗

12+K
∗

21 K∗

22c
T (49)

Now one can express the energy, Eq. (44), correct to second order, in terms of strains of the

Reissner-Mindlin model as

2Π1 =RTAR− 2RTADαγ,α + RT
,1BR,1 + 2RT

,1CR,2 + RT
,2DR,2

+ 2RTF − 2RTFT + 2γT
,αDαNT

(50)

The generalized Reissner-Mindlin model used in the 2-D thermoelastic analyses is of the

form

2ΠR = RTAR + γTGγ + 2RTFR + 2γTFγ + 2RTFTR + 2γTFTγ (51)

To find an equivalent Reissner model Eq. (51) for Eq. (50), one has to eliminate all partial

derivatives of the classical 2-D strain measures. The equilibrium equations are used to

achieve this purpose. From the two equilibrium equations balancing bending moments with

applied moments mα which is calculated from Eq. (21), one can obtain the following formula

Gγ + Fγ + FTγ = DT
α (AR,α + FR,α + FTR,α) +

{

m1

m2

}

(52)

Using Eq. (52), one can rewrite Eq. (50) as

2Π1 = RTAR + γTGγ + 2RTF − 2RTFT − 2γTDαNT,α + U∗ (53)

where

U∗ = RT
,1BR,1 + 2RT

,1CR,2 + RT
,2DR,2 (54)
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and

B = B + AD1G
−1DT

1 A

C = C + AD1G
−1DT

2 A

D = D + AD2G
−1DT

2A (55)

If we can drive U∗ to zero for any R, then we have found an asymptotically correct Reissner-

Mindlin plate model. For generally anisotropic plates, this term will not be zero; but we

can minimize the error to obtain a Reissner-Mindlin model that is as close to asymptotical

correctness as possible. The accuracy of the Reissner-Mindlin model depends on how close

to zero one can drive this term of the energy.

One could proceed with the optimization at this point, but the problem will require a

least squares solution for 3 unknowns (the shear stiffness matrix G) from a linear system of 78

equations (12×12 and symmetric). This optimization problem is too rigid. The solution will

be better if we can bring more unknowns into the problem. As stated in Sutyrin and Hodges

(1996), there is no unique plate theory of a given order. One can relax the constraints in

Eq. (5) to be 〈wi〉 = const and still obtain an asymptotically correct strain energy. Since the

zeroth-order approximation gives us an asymptotic model corresponding to classical plate

theory, we only relax the constraints for the first-order approximation. This relaxation will

modify the warping field to be

V 1 = V11ε,1 + V12ε,2 + V1L + V1T + L1ε,1 + L2ε,2 (56)

where L1, L2 consist of 24 constants. The remaining energy U∗ will also be modified to be

U∗ = RT
,1B̂R,1 + 2RT

,1ĈR,2 + RT
,2D̂R,2 (57)

and

B̂ = B + 2LT
1D1 Ĉ = C + (LT

1D2 +D1
TL2) D̂ = D + 2LT

2D2 (58)

Since now we have 27 unknowns, the optimization is much more flexible. It can give us a

more optimal solution for the shear stiffness matrix G to fit the second-order, asymptoti-

cally correct energy into a Reissner-Mindlin model. In other words, here we have found the

Reissner-Mindlin model that describes as closely as possible the 2-D energy that is asymptot-

ically correct through the second order in h/l. However, the asymptotical correctness of the

warping field to that same order can only be ascertained after obtaining another higher-order

approximation, which will be discussed in the next section.

14 of 39



And after minimizing U∗, the “best” total energy to be used for the 2-D plate Reissner-

Mindlin model can be expressed as:

2ΠR = RTAR + γTGγ + 2RTF − 2RTFT − 2γTDαNT,α (59)

Recovering Relations

From the above, we have obtained a Reissner-Mindlin plate model which is as close as pos-

sible to being asymptotically correct in the sense of matching the total energy. The stiffness

matrices A, G, load-related terms, and non-mechanical stress resultants can be used as input

for a plate theory derived from the total energy obtained here. The geometrically nonlinear

theory presented in Hodges et al. (1993) is an appropriate choice, but some straightforward

modification of the loading terms is required.

However, while it is necessary to accurately calculate the 2-D displacement field of

composite plates, this is not sufficient in many applications. Ultimately, the fidelity of

a reduced-order model such as this depends on how well it can predict the 3-D results in

the original 3-D problem. Hence, recovering relations should be provided to complete the

reduced-order model. By recovering relations, we mean expressions for 3-D displacement,

strain, and stress fields in terms of 2-D quantities and x3. For validation, results obtained

for the 3-D field variables from the reduced-order model must be compared with those of the

original 3-D model.

For an energy that is asymptotically correct through the second order, we can recover the

3-D displacement, strain and stress fields only through the first order in the strict sense of

asymptotical correctness. Using Eqs. (1), (3), and (4), one can recover the 3-D displacement

field through the first order as

U3d = u2d + x3







C31

C32

C33 − 1






+ SV0 + SV 1 (60)

where U3d is the column matrix of 3-D displacements and u2d is the plate displacements.

Cij are the components of global rotation tensor from Eq. (3). And from Eq. (10), one can

recover the 3-D strain field through the first order as

Γ = ΓhS(V0 + V 1) + Γεε+ Γl1SV0,1 + Γl2SV0,2 (61)
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Then, one can use the inverse of 3-D Duhamel-Neumann law

σ = DΓ −Dα T (62)

to obtain 3-D stresses σij .

Since we have obtained an optimum shear stiffness matrix G, some of the recovered 3-D

results through the first order are better than classical theory and conventional first-order

deformation theory. However, for the transverse normal component of strain and stress (i.e.

Γ33 and σ33), the agreement is not satisfactory at all. Let us recall, that the Reissner-Mindlin

theory that has been constructed only ensures a good fit with the asymptotically correct 3-

D displacement field of the first order (while energy is approximated to the second order).

Thus, in order to obtain recovering relations that are valid to the same order as the energy,

the VAM iteration needs to be applied one more time.

Using the same procedure listed in previous section, the second-order warping can be

obtained and expressed symbolically as

V2 = V21ε,11 + V22ε,12 + V23ε,22 + V2L + V2T (63)

Eq. (63) is obtained by taking the original first-order warping V1 to be the result of the

first-order approximation. It is clear that V2 is one order higher than V1 which confirms

that V1 is the first-order approximation. One might be tempted to use V1 in the recovering

relations. However, the VAM has split the original 3-D problem into two sets of problems.

As far as recovering relations concerned, it is observed that the normal-line analysis can

at best give us an approximate shape of the distribution of 3-D results. The 2-D plate

analysis will govern the global behavior of the structure. Since V 1 is the warping that yields

a Reissner-Mindlin plate model that is as close as possible to being asymptotically correct,

we should still use V 1 in the recovering relations instead of V1. By doing this, we choose to

be more consistent with Reissner-Mindlin plate model while compromising somewhat on the

asymptotical correctness of the shape of the distribution. It has been verified by numerical

examples that this is a good choice.

Hence, we write the 3-D recovering relations for displacement through the second order

as

U3d = u2d + x3











C31

C32

C33 − 1











+ S(V0 + V 1 + V2) (64)
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and the strain field through the second order is

Γ = ΓhS(V0 + V 1 + V2) + Γεε+ Γl1S(V0,1 + V 1,1) + Γl2S(V0,2 + V 1,2) (65)

Again the stresses through the second order can be obtained from use of the 3-D constitutive

law, Eq. (62).

Numerical Examples

The computer program VAPAS has been extended to implement the present theory.

Several numerical examples are given here to validate the proposed theory and code against

the 3-D thermoelasticity solutions.

First to assess the asymptotical correctness of the proposed theory, we study a cylindrical

bending type problem for an isotropic plate with E as the Young’s modulus, ν Poisson’s

ratio and α thermal expansion coefficient. The plate is simply supported with width L along

x1 axis (the “lateral” direction) and infinitely long along the x2 axis (the “longitudinal”

direction) under the following temperature changes:

T = T0(x3) sin
(πx1

L

)

(66)

Let us assume the thickness of the plate is h, and the normalized thickness coordinate

ζ = x3/h, then the small parameter used in our theory is:

δ =
h

l
=
πh

L
(67)

When there is a uniform temperature Tc change through the thickness, the nontrivial dis-

placements and stresses are listed in Table 1. The exact solutions are obtained based on

Savoia and Reddy (1995) and expanded into a series in terms of δ with o(∗) denoting terms

asymptotically smaller than the order of ∗. The present theory can predict the correct re-

sults up to the second order of δ with respect to the leading terms for each 3-D quantities,

which clearly demonstrate that our theory is asymptotically correct up to the second order

for this particular problem. We admit that the prediction of transverse components for this

problem is out of the power of our theory. However, this should not mislead the reader to

assume that the present theory is asymptotically correct up to the second order for general

cases. The authors are aware that the proposed theory can be at best asymptotically correct

up to the second order for particular cases. For general cases, however, the theory can only

be interpreted as a Reissner-Mindlin type theory which is closest to being asymptotically

correct. To illustrate the above statement, we provide the results for the same isotropic plate
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under a linearly distributed temperature through the thickness, assuming T0 = ζT1. Here

only nontrivial displacement results are listed in Table 2 which is sufficient for the aforemen-

tioned purpose. One can observe from Table 2 that there is a slight difference for the second

order prediction between the present theory and exact solution. It is interesting to note that

if one sets ν equal to zero the difference disappears. Evidently some information belonging

to second order and indeed included in the asymptotically correct energy cannot be captured

in a Reissner-Mindlin type model. When we transform the asymptotically correct model into

a Reissner-Mindlin model, this information is lost.

The present theory is formulated with sufficient generality to carry out a thermoelas-

tic analysis for arbitrary composite laminated plates made with monoclinic material with

a computational cost equivalent to that of first-order shear-deformation theory (FOSDT).

Hence, before overemphasizing the loss of information in the repackaging of the model one

should determine if this loss is exhibited in numerical results. To investigate this, we will

present some numerical results for composite plates to demonstrate the advantages of our

theory relative to CLT and FOSDT. The plate we are going to study has material properties

given by

EL = 172.4 GPa (25 × 106 psi) ET = 6.895 GPa (106 psi)

GLT = 3.447 GPa (0.5 × 106 psi) GTT = 1.379 GPa (0.2 × 106 psi)

νLT = 0.25 νTT = 0.25

αL = 0.139 × 10−6/ 0C αT = 9 × 10−6/ 0C (68)

For the purpose of comparing with the exact solution, we still consider cylindrical bending

type problem. In lieu of our definition of small parameter Eq. (67), even if our theory is

asymptotically correct up to the second order, we require δ3 << 1. If we assume the thickness

is 25.4 mm and L = 254 mm, δ will be approximately 0.314 which can be considered small

in our theory. Two different cases are investigated:

• case 1: nearly cross ply, [−0.5◦/89.5◦] under T0 = Tc + ζTc

• case 2: nearly cross ply, [90.5◦/0.5◦/90.5◦/0.5◦] under T0 = Tc +ζTc +ζ
2Tc +ζ

3Tc +ζ
4Tc

τ3 = β3 = p0

2
sin

(

πx1

L

)

, τα = βα = 0, and p0 = ETαTTc/9.

Because thermal stresses due to temperature change are the most interesting quantities,

we only present stress results here with mentioning that the accuracy of displacements and

strains is similar to that of stresses. For case 1, results from VAPAS (dots in the plots),

are compared with those from CLT (dash-dotted line), FOSDT (dashed line) and the exact

solution (solid line) in Figs. 2 – 7. Note that, because the 2-D variables are either sine
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functions or cosine functions, σαβ and σ33 are plotted at x1 = L/2 and σα3 at x1 = L. The

results presented here are normalized as follows:

σij =
9σij

ETαTTc

(69)

As one can observe from the plots, for σαβ VAPAS results are much closer to the exact

solutions than CLT and FOSDT. VAPAS also does a fairly good job for predicting the

transverse stress components which for the isotropic plate under uniform temperature change

we concluded was out of the power of VAPAS because these terms are asymptotically smaller

than the second order. One can infer that due to the special layup scheme (cross-ply) the

dominant terms of transverse stress components could now be asymptotically equal or larger

than the second order. Considering the smallness of σ33 in comparison to the in-plane

components, we expect the slight shift of VAPAS results for this quantity to be tolerable for

most engineering applications.

Finally, to demonstrate that VAPAS can handle the temperature change through the

thickness exactly up to a fourth-degree polynomial and both mechanical loads and thermal

load can be treated simultaneously, we present the results for case 2 in Figs. 8 – 13. Except

for a small shift for transverse normal stress, all the other results from VAPAS are almost on

top of the exact solutions. Careful readers may even find there is a small discontinuity for σ33

which should not be the case in reality. The reason is due to that the stress results obtained by

VAPAS are calculated directly using 3-D constitutive law from the approximate strain field.

The approximation in the strain field may cause the discontinuity for the transverse stress

components. It is worthy to emphasize that integration of the 3-D equilibrium equations

through the thickness is not used here to obtain results for the transverse stresses presented

herein, in contrast to what is usually done in CLT and FOSDT.

Mathematically, the accuracy of the present theory should be comparable to that of

a reduced layer-wise plate theory with assumed in-plane displacements as layer-wise cubic

polynomials of the thickness direction and transverse displacement as a layer-wise fourth-

degree polynomial. However, the present theory is still an equivalent single-layer theory, and

the computational requirement is much less than that for layer-wise theories.

Conclusion

A Reissner-Mindlin type plate model capable of performing a thermoelastic stress analysis

of laminated composite plates has been constructed by the variational-asymptotic method.

A general 2-D constitutive law being as close to asymptotical correctness as possible has been

obtained by solving the 1-D through-the-thickness analysis. The original 3-D results have
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been reproduced as accurate as possible from a Reissner-Mindlin type plate analysis. The

resulting theory is as simple and efficient as a first-order shear deformation theory (FOSDT)

while it also has an accuracy comparable to higher-order layerwise theories.

The present study distinguishes from previous work reported in the literature at least in

the following four aspects:

1. The present formulation is in an intrinsic form which is suitable for geometrically

nonlinear plate theory as well as linear theory.

2. The dimensional reduction from 3-D to 2-D is carried out systematically by using

variational asymptotic method, which is completely different from models that rely on

the introduction of ad hoc kinematic assumptions to reduce the dimensionality.

3. To create a smooth interface with well-established 2-D solvers, the degrees of freedom of

the present model are chosen to be essentially the same as those of traditional Reissner-

Mindlin type plate theory. However, the present model is not a FOSDT. The present

theory differs from FOSDT by representing all the deformations that are purposely

eliminated in the development of FOSDT. This is accomplished through allowing all

possible deformation in the 3-D warping functions, which are solved in turn by the

variational-asymptotic method.

4. The present study has treated both mechanical and thermal loading. The temperature

distribution through the thickness can be arbitrary and is approximated in VAPAS

by a layerwise fourth-degree polynomial. This is more realistic and accurate than

most published models, in which the temperature is assumed to be distributed linearly

through the thickness of the whole plate (single-layer theories) or a layer (for layerwise

theories).

The hygro effect due to moisture to composite plates can also be handled in exactly the

same procedure except one has to replace the thermal expansion coefficients with hygroscopic

expansion coefficients and temperature with moisture. The computer program VAPAS can

now be used along with a 2-D solver to perform an efficient yet accurate and detailed analysis

for hygrothermoelastic behavior for laminated composite plates under severe environments.

Acknowledgements

This research is supported by the Air Force Office of Scientific Research, USAF, under

grant F49620-01-1-0038 (Maj. William M. Hilbun, technical monitor). The views and conclu-

sions contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsement, either expressed or implied, of AFOSR or

the U.S. Government.

20 of 39



References

Bauchau, O. (1998). Computational schemes for flexible, nonlinear multi-body systems.

Multibody System Dynamics 2, 169–225.

Berdichevsky, V. L. (1979). Variational-asymptotic method of constructing a theory of shells.

PMM 43, 664 – 687.

Cho, Y. B. and Averill, R. C. (2000). First-order zig-zag sublaminate plate theory and finite

element model for laminated composite and sandwich panels. Composite Structures 50, 1

– 15.

Danielson, D. A. (1991). Finite rotation with small strain in beams and plates. In Proceedings

of the 2nd Pan American Congress of Applied Mechanics. Valparaiso, Chile. Valparaiso

Chile.

Danielson, D. A. and Hodges, D. H. (1987). Nonlinear beam kinematics by decomposition

of the rotation tensor. Journal of Applied Mechanics 54, 258 – 262.

Hodges, D. H. (1987). Finite rotation and nonlinear beam kinematics. Vertica 11, 297 – 307.

Hodges, D. H., Atılgan, A. R. and Danielson, D. A. (1993). A geometrically nonlinear theory

of elastic plates. Journal of Applied Mechanics 60, 109 – 116.

Noor, A. K. and Burton, S. W. (1992). Computational models for high-temperature multi-

layered composite plates and shells. Applied Mechanics Reviews 45, 419–446.

Noor, A. K. and Malik, M. (2000). An assessment of five modeling approaches for thermo-

mechanical stress analysis of laminated composite panels. Computational Mechanics 25,

43–58.

Reddy, J. N. (1997). Mechanics of Laminated Composite Plates: Theory and Analysis. CRC

Press, Boca Raton, Florida.

Rohwer, K., Rolfes, R. and Sparr, H. (2001). Higher-order theories for thermal stresses in

layered plates. International Journal of Solids and Structures 38, 3673–3687.

Savoia, M. and Reddy, J. N. (1995). Three-dimensional thermal analysis of laminated com-

posite plates. International Journal of Solids and Structures 32, 593–608.

Sutyrin, V. G. and Hodges, D. H. (1996). On asymptotically correct linear laminated plate

theory. International Journal of Solids and Structures 33, 3649 – 3671.

21 of 39



Wu, C. and Tauchert, T. (1980). Thermoelastic analysis of laminated plates. part I: sym-

metric specially orthotropic laminates. Journal of Thermal Stresses 3, 247–259.

Yu, W. (2002). Variational asymptotic modeling of composite dimensionally reducible struc-

tures. Ph.D. thesis, Aerospace Engineering, Georgia Institute of Technology.

Yu, W., Hodges, D. H. and Volovoi, V. V. (2002a). Asymptotic construction of Reissner-like

models for composite plates with accurate strain recovery. International Journal of Solids

and Structures 39, 5185 – 5203.

Yu, W., Hodges, D. H. and Volovoi, V. V. (2002b). Asymptotic generalization of Reissner-

Mindlin theory: accurate three-dimensional recovery for composite shells. Computer

Methods in Applied Mechanics and Engineering 191, 5087 – 5109.

Yu, W., Hodges, D. H. and Volovoi, V. V. (2003). Asymptotically accurate 3-d recovery

from Reissner-like composite plate finite elements. Computers and Structures 81, 439 –

454.

22 of 39



List of Tables

1 3-D displacements and stresses under uniform temperature change through
the thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 3-D displacements under linearly distributed temperature change through the
thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

23 of 39



Table 1: 3-D displacements and stresses under uniform temperature change through
the thickness

Normalized lateral displacement ( u
hTcα

)

Exact − (ν+1)
π
δ−1 − π(12ζ2−1)(ν+1)

24
δ + π3[120ζ2(1−2ζ2)(ν2−ν−2)+ν2+15ν+14]

5760(ν−1)
δ3 + o(δ4)

Present − (ν+1)
π
δ−1 − π(12ζ2−1)(ν+1)

24
δ + o(δ)

Normalized transverse displacement ( w
hTcα

)

Exact (ν + 1)ζ + π2ζ(4ζ2
−1)ν(ν+1)

24(ν−1)
δ2 + π4ζ[8ζ2(6ζ2

−5)(ν+1)2−ν2+14ν+15]
5760(ν−1)δ4 + o(δ4)

Present (ν + 1)ζ + π2ζ(4ζ2
−1)ν(ν+1)

24(ν−1)
δ2 + o(δ2)

Normalized lateral in-plane stress ( σ11

ETcα
)

Exact −π2(12ζ2−1)
24(ν−1)

δ2 − π4(240ζ4−120ζ2+7)
2880(ν−1)

δ4 + o(δ4)

Present −π2(12ζ2−1)
24(ν−1)

δ2 + o(δ2)

Normalized longitudinal in-plane stress ( σ22

ETcα
)

Exact −1 − π2(12ζ2
−1)ν

24(ν−1)
δ2 + π4(−240ζ4+120ζ2+1)ν

5760(ν−1)
δ4 + o(δ4)

Present −1 − π2(12ζ2
−1)ν

24(ν−1)
δ2 + o(δ2)

Normalized lateral transverse shear stress ( σ13

ETcα
)

Exact π3ζ(4ζ2−1)
24(ν−1)

δ3 + o(δ4)

Present Not available
Normalized transverse normal stress ( σ33

ETcα
)

Exact π4(4ζ2−1)2

384(ν−1)
δ4 + o(δ4)

Present Not available
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Table 2: 3-D displacements under linearly distributed temperature change through
the thickness

Normalized lateral displacement ( u
hT1α

)

Exact − ζ(ν+1)
π

δ−1 − πζ(20ζ2−3)(ν+1)
120

δ + o(δ)

Present − ζ(ν+1)
π

δ−1 − πζ(20ζ2−3)(ν+1)
120

δ + πζν(11ν4+2ν3+8ν2+14ν−3)
30(11ν4−12ν3+34ν2−12ν+11)

δ + o(δ)

Normalized transverse displacement ( w
hT1α

)

Exact ν+1
π2 δ

−2 + 1
40

(20ζ2 − 1)(ν + 1) + o(δ0)

Present ν+1
π2 δ

−2 + 1
40

(20ζ2 − 1)(ν + 1) − ν(11ν4+2ν3+8ν2+14ν−3)
30(11ν4−12ν3+34ν2−12ν+11)

+ o(δ0)
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Figure 1: Schematic of plate deformation
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Figure 2: Distribution of the 3-D stress σ11 vs the thickness coordinate (case 1)
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Figure 3: Distribution of the 3-D stress σ12 vs the thickness coordinate (case 1)
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Figure 4: Distribution of the 3-D stress σ22 vs the thickness coordinate (case 1)
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Figure 5: Distribution of the 3-D stress σ13 vs the thickness coordinate (case 1)

31 of 39



-0.4 -0.2 0 0.2 0.4

-0.005

0

0.005

0.01

0.015

L
o

n
g

it
u

d
in

al
T

ra
n

sv
er

se
S

h
ea

r
S

tr
es

s

Normalized Thickness Coordinate

Figure 6: Distribution of the 3-D stress σ23 vs the thickness coordinate (case 1)
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Figure 7: Distribution of the 3-D stress σ33 vs the thickness coordinate (case 1)
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Figure 8: Distribution of the 3-D stress σ11 vs the thickness coordinate (case 2)
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Figure 9: Distribution of the 3-D stress σ12 vs the thickness coordinate (case 2)
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Figure 10: Distribution of the 3-D stress σ22 vs the thickness coordinate (case 2)
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Figure 11: Distribution of the 3-D stress σ13 vs the thickness coordinate (case 2)
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Figure 12: Distribution of the 3-D stress σ23 vs the thickness coordinate (case 2)
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Figure 13: Distribution of the 3-D stress σ33 vs the thickness coordinate (case 2)
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