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Atlanta, GA 30332-0150 shear. It is shown that the rotation of the frame about the normal line is not zero and that
it can be expressed in terms of other global deformation variables. Based on a general-
ized constitutive model obtained from an asymptotic dimensional reduction from the three-
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Introduction dimensional generalized strain-displacement relations are nonlin-

. . . . ear while the two-dimensional generalized stress-strain relations
For an elastic three-dimensional continuum, there are two typRs, ot to be linear

of nonlinearity: geometrical and physical. A theory is geometri- o shel| is a three-dimensional body with a relatively small
cally nonlinear if the kinematicalstrain-displacementrelations  thickness and a smooth reference surface. The feature of the small
are nonlinear but the constitutivetress-strainrelations are lin-  thickness attracts researchers to simplify their analyses by reduc-
ear. This kind of theory allows large displacements and rotatioirgy the original three-dimensional problem to a two-dimensional
with the restriction that strain must be small. A physicaly problem by taking advantage of the thinness. By comparison with
materially) nonlinear theory is necessary for biological, rubbeithe original three-dimensional problem, an exact shell theory does
like or inflatable structures where the strain cannot be consider@@t exist. Dimensional reduction is an inherently approximate pro-
small, and a nonlinear constitutive law is needed to relate t§8SS- Shell theory is a very old subject, since the vibration of a
stress and strain. Although this classification seems obvious difg]l Was attempted by Euler even before elasticity theory was well

clear for a structure modeled as a three-dimensional continuume.Ig’(tab“Shed[(ﬂ' Even so, shell theory St'l.l recees a lot of atten-
iﬂ%n from modern researchers because it is used so extensively in

becomes somewhat ambiguous to model dlmenglonally fEdUCB many engineering applications. Moreover, many shells are now
structures—structures that have one or two dimensions Mythge with advanced materials that have only recently become
smaller than the othé) such as beams, plates, and shellsyaijaple.

[1]—using reduced one-dimensional or two-dimensional models.Generally speaking, shell theories can be classified according to
A nonlinear constitutive law for the reduced structural model cadirect, derived andmixedapproaches. The direct approach, which
in some circumstances be obtained from the reduction of a gewiginated with the Cosserat brothefg], models a shell directly
metrically nonlinear three-dimensional theory. For example, in tf&s a two-dimensional “orientated” continuum. NagH@] pro-
so-called Wagner or trapeze effef2-5], the effective torsional Vided an extensive review of this kind of approach. Although the
rigidity is increased due to axial force. This physically nonlineafirect approach is elegant and able to account for transverse and
one-dimensional model stems from a purely geometrically nonlifo'mal strains and rotations associated with couple stresses, it
ear theory at the three-dimensional level. On the other hand, where connects with the fact that a shell is a three-dimensional

resent paper focuses on a geometrically nonlinear analvsis at ody and thus completely isolates itself from three-dimensional
P pap Y y y oftinuum mechanics. This could be the main reason that this

three-cﬁmensmnal Ievel_whlch_ becomes a geometrlgally nonl'negﬁproach has not been much appreciated in the engineering com-
analysis at the two-dimensional as well. That is, the tWqyynity. One of the complaints of these approaches that they are
difficult for numerical implementation has been answered by
Ipresently Assistant Professor, Department of Mechanical and Aerospace Efgimo and his co-workers by providing an efficient formulation
neering, Utah State University, Logan, UT 84322-4130. “free from mathematical complexities and suitable for large scale
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Fig. 1 Schematic of shell deformation

ear shell theory introducing 12 generalized strains by consideriagalogous two-dimensional constitutive law is postulated due to
the dynamics of stress resultants and couples on the referetizefact that even three-dimensional constitutive laws are inexact.
surface as the basis. He gracefully avoided the awkwardness ofhere is a sense in which the present approach can also be
finding a proper constitutive model by pointing out two possibleonsidered as mixed. The two-dimensional constitutive model is
means to establish them. It is recommendefdLB] that one could obtained by the variational asymptotic meth®AM ), [16], such
either design experiments to determine the constitutive constatitat the two-dimensional energy is as close to an asymptotic ap-
without explicit reference to the three-dimensional nature of th@oximation of the original three-dimensional energy as possible,
structure or derive an appropriate two-dimensional model frofi7]. The process of constructing the constitutive model defines
the given knowledge of the constitutive relations for the redhe reference surface and the kinematics of this surface are geo-
three-dimensional model of the structure. metrically exact formulated in an intrinsic format. The two-
Derived approaches reduce the original three-dimensional eldémensional equilibrium equations are obtained from the two-
ticity problem into a two-dimensional problem to be solved ovedimensional energy with the knowledge of the variations of the
the reference surface. Such reductions are usually carried ougeneralized strains. The only approximate part of our two-
one of two ways. The most common approach is to assumedianensional shell theory is the constitutive law which is not pos-
priori the distribution of three-dimensional quantities through thilated but is mathematically obtained by VAM.
thickness and then to construct a two-dimensional strain energy
per unit area by integrating the three-dimensional energy per unit ) )
volume through the thickness. Remarkably, classiaksio known Shell Kinematics

as Kirchhoff-Love type theopy first-order shear deformation The equations of two-dimensional shell theory are written over
(also known as Reissner-Mindlin type thepriigher-order, and the domain of the reference surface, on which every point can be
layer-wise shell theories all fall into this category, including theepresented by a position vectoin the undeformed configuration
theories proposed by Red{iy4], for example. Another approach andR in the deformed configuratiofsee Fig. 1 with respect to a
is to apply an asymptotic method to expand all quantities into ed pointO in the space. A set of two curvilinear coordinates,
asymptotic series of the thickness coordinate, so that a sequefice are required to located a point on the reference surface. The
of two-dimensional problems can be solved according to the difpordinates are so-calletbnvectedcoordinates such that every
ferent orders. _ point of the configuration has the same coordinates during the
The mixed approach is used|ib5] based on the argument thatgeformation (Here and throughout the paper Latin indices assume
all the three-dimensional elasticity equations except the constitll-2 3: and Greek indices assume values 1 and 2. Dummy indices
tive relations are independent of the material properties, such & summed over their range except where explicitly indicated.
the kinematical relations, equilibrium of momentum and forcesyjithout loss of generalityx,, are chosen to be the lines of curva-
The constitutive law must be determined experimentally, angdres of the surface to simplify the formulation. For the purpose of

hence it is avoidable that it is approximate. Libai and Simmonggpresenting finite rotations, an orthonormal triads introduced
[15] obtain exact shell equations for the balance of momentury the initial configuration, such that

heat flow and an entropy inequality from the three-dimensional
continuum mechanics via integration through the thickness. An b.=a,/A, bs=b;Xb, (1)
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wherea,, is the set of base vectors associated witrandA , are Bi 1o=B; »1. (11)

the Lameparameters, defined as . o o
These two vector equations lead to six independent compatibility

a,=r, A,=Va,a,. (2) equations equivalent to a form of those found18]. These equa-

. . ._tions are rewritten here for convenience in the present notation.
From the differential geometry of the surface and foIIowmtiirst’ from theB, components of Eq10), we obtain

[13] and[18], one can express the derivativestpfas

A2 A2
bi,0= AdkaXD; ®) (1+ ek~ (1+ 611)"21:( Z 123)’1— ( ;\ 213)’2
wherek,, is the curvature vector measuredinwith the compo- 12 e
nents + €13(Kop—Kyp). 12)
Ko=|—Kuo Ko1 Keal" (4) Next, from theB, components of Eg(10) we obtain two equa-

in which k, refers to out-of-plane curvatures. We note that tions for =1 and 2, respectively, as

=k,;=0 because the coordinates are the lines of curvatures. The (Azern) 1 [A(1+e9)]
geodesic curvaturels,; can be expressed in terms of the Lame (11 €2)Ki3— €15K 5= AA AA 2713k
parameters as 12 1
+27,K
e Ar, e Azy - Y2311 (13)
137 T A . KT A -
AA AA [A(lten)]1 (Ar€r),
s s - (1+ €19 Koz~ €15K 3= AA AA, 2viKa
When the shell deforms, the particle that had position vector 172 172
in the undeformed state now has position ved®liin the de- 295K 15.

formed shell. The triadh; rotates to beB;. The rotation relating o
these two triads can be arbitrarily large and represented in thially, from the three components of E4.1) we have nine iden-
form of a matrix of direction cosine§(x,) so that tities. However, there are only three independent equations, given

b
Bi:Cijbj Cij:Bi'bj . (6) y
(AK1p) 2 (Agkay) 1

A definition of the two-dimensional generalized strain measures +K13K o= k1K23=0
is needed for the purpose of formulating this problem in an intrin- A1A ArA;
sic form. Following[13] and[18], they can be defined as (A1) 2 (AKyo)
R o=Au(B,+ €,sBs+27,3B3) @) AA, AR, | Keku KaKis=0 (14)
and (AKy (AKz
Bi o= Aa( = Ka2B1+ KBy +K,3B3) X B; (8) AlA; AlA, 1022 K12k H

where e,z are the two-dimensional in-plane strains, atgl are  There are now 11 quantities which are related by six compatibility
the curvatures of the deformed surface, which are the summatiequations. This means that these strain measures can be deter-
of curvatures of undeformed geomety and curvatures intro- mined in terms obnly fiveindependent quantitiesret six

duced by the deformatior;; , andy,s are the transverse strains In the process of dimensional reduction[df7] to find an ac-
becauseB; is not constrained to be normal to the reference sugurate constitutive model for composite shells, the authors en-
face after deformation. Please note that the two-dimensional g@ountered the question whether one should inclageand «,, as
eralized strain measures are defined by H@s.and (8) in an two different generalized strain measures. This was determined by
intrinsic fashion, the symmetry of the inplane strain measurése following argument. Let us denote a new twist measuve 2
such thate;,= €,; does not hold automatically. Nevertheless, one- k;,+ k,;,. From Eq.(12) the difference betweer,; and «,

is free to sete;,= €54, i.€., can be obtained as
Bi'R> _ ByR ©) K127 K21
Az Ay 2

which is a constraint used {17] to make the three-dimensional A2 —(A,2
formulation unique. (A 723)’A1 A( ! 713)’2+512(K22— Kip) + w( €11~ €29)

At this point sufficient preliminary information has been ob- _ 172
tained to develop a geometrically nonlinear shell theory. (2+ €11t €2)

(15)

Compatibility Equations This difference is clearhD(eh/¢?) or O(&/R) disregarding the

It is well known that a rigid body in three-dimensional spac@onlinear terms(e is the order of generalized strains,is the
has only six degrees-of-freedom. Thus, the kinematics of an etbickness of the shell,is the wavelength of in-plane deformation
ment of the deformed shell reference surface can be expressednd R is the characteristic radius of shelDne can show that it
terms ofat mostsix independent quantities: three measures abntributes terms that ar®(sh? ¢?h/R) or O(gh?/R?) to the
displacement, say-b;, and three measures of the rotationByf three-dimensional strains. Clearly, such terms will not be counted
(since the global rotation tens@, which bringsb; into B;, can in a physically linear theory with only correction up to the order
be expressed in terms of three independent quantititmvever, of h/R and (/).
we have the 11 two-dimensional strain measwgs 2€4,, €y, Equations(13) can be solved for the in-plane curvatureg;
2Ya3: Kag, @Ndk .3 as defined in Eqg7) and(8). Thus, they are andx,3, and Eq.(15) can be used to expregs, and «,; in terms
not independent; there are some compatibility equations amonigw. Now, using these expressions, one can rewritehree Eqgs.
these eleven quantities. [9] and[13] appropriate compatibility (14) entirely in terms of thesightstrain measures,;, 2€1,, €55,
equations are derived by first enforcing the equalities 2vy13, 27953, K11, 20, andk,,. This confirms thabnly five inde-

R..—R (10) per)dent measures of displacemen; and rotation are necessary to
A2 21 define these strain measuras we will demonstrate conclusively

and below by deriving such measures.
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Global Displacement and Rotation Variables

There is no unique choice for the global deformation variables.
For this reason, the importan¢eot to mention the beautyof an
intrinsic formulation is widely appreciated. On the other hand, for
the purpose of understanding the displacement field more fully,
for practical computational algorithms, and for easy derivation of

_ p3bt+26;
P2="5 0,

¢

(21)

virtual strain-displacement relations, it is expedient to introduce¥#1ereps can be understood as a change of variables to simplify

suitable set of displacement measures.

later parts of the derivation. Later on we will discuss the meaning

The displacement measures we choose are derived by expr&§sts for a special case. Finally, it is noted that the three rotational

ing R in terms ofr plus a displacement vector so that
R(X1,X2) =T(X1,Xp) + Uiby (16

Differentiating both sides of Eq(16) with respect tox,, and
making use of Eq(7), one can obtain the identity

Ba+ eaﬁBB+27a3B3=ba+ui;abi+uika><bi (17)

where (),=1/A,d()/da. The above formula allows the determi-

nation of the strain measureg,z and 2y,,s in terms ofC, u; and
the derivatives of u;. Introducing column matricesu
=luiupugl’, €=]100]", e=[010]", y=|ey €122y,
and y,=| €51 €2,27,3|", We can obtain the following identity in

matrix form:
ea+ ‘)/a:C(eaJru;a—"_E;u) (18)

where C is the matrix of direction cosines from E¢), k,, is
defined in Eq(4), and("); = — &k )«-

parametersf; are not independent but instead satisfy the con-
straint
62+ 05+ (1+ 65)%=1. (22)

When Eq.(21) is substituted into Eq(19), the resulting ele-
ments ofC can be expressed as functionséfand ¢4

(2+ 03— 03)cOSh3— 616, Sin g
2+ 6,

117~

(24 63— 65)Sin 3 — 616, COS 4
12~ 2+ 6,

C13: - 01 COS¢3_ 02 Sin (f)3

. - (2"" 03_ Gi)SIn ¢)3_ 0102 COS¢3
2= 2+ 05

Rodrigues parameter{20], can be used as rotation measures to

allow a compact expression &@. These are derived based on
Euler’s theorem, which shows that any rotation can be represented

as a rotation of magnitud® about a line parallel to a unit vector
e. Defining the Rodrigues parametgis=2e-b; tan@/2) and ar-
ranging these in a column matrix=|p; p, ps)", the matrixC can
simply be written as

T T
(17 % I—p+ %
C= i ﬁ 19)
4
Let us also denote the direction cosinesBafby
Csi =63+ 0, (20)

Hodges[21] has shown that, given the third row &f the Rod-
rigues parameters can be uniquely expressed in ternfs as

:P391_292
P10,

(24 65— 67)(1+ Ug;1— KigUp+KagUz) — 01 05(Up, 1+ Kygus)

(24 63— 65)COSh3+ 010, SiN g
2= 2404

(23)

C23: 01 Sin (,ba* 02 COS¢3
Ca1=0;
Cs=10,
C33: 1+ 03 .

This representation reduces to those[®2] when considering
small, finite rotations. There is an apparent singularity in the
present scheme whef;=—2 (i.e., when the shell deforms in
such a way thaBs; is pointed in the opposite direction bf). This
should pose no practical problem, however, sidge 6,=0 for
that condition, and none of the kinematical relations become infi-
nite in the limit asf;— — 2.

When these expressions for the direction cosines are substituted
into Eq. (18), explicit expressions for the strain measures can be
found as

€11~

+ 01(Kq1U; — Ug;1) [COS3

2+ 05
24 03— 02)(Uyp.1+KyaUy) — 610o( 14 Uq.— KyaUp+ KqqUs)
N ( 3= 65)(Ug;1+KqgUy) — 0105( 1:1~ Kyaua T KygUs T 0, (Kygliy— Ug.p) |sin by 1
2+ 03 !
(2+ 65— 9%)(1+U2;2+k23U1+k22U3)_9192(U1;2_k23U2)
€20= 51 o — 05(Uz,5—Koollp) [COSP3
3
2+ 03— 02) (Kpglp— Uq.) + 01 05(1+ Up. o+ Kogly + Kosllz)
N ( 3= 07)(KogUp—Uy;5) + 01.05( 2;27H KagUp + Kooz 0,y Koy |Sin a1
2+ 03 !
(24 63— 63) (Up 1+ Kyaly) — 0105(1+ Uy 3 —Kyslp+Kggug)
€10= 210 + 05(KyqU; — Ug;1) | COSh3
3
(2+ 63— 63)(1+ Ug.1— KygUp+KygUg) — 01 05(Up. 1+ KygUs) .
- 210, + 01(KqaU; —Ug;q) [SiN @3
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(24 03— 67) (Ug.5— Koglip) + 01 05( 1+ Uy o+ Koglly + Kpsliz)
2+ 0,

€21= COS¢3

+ 01(U3;5—KaaUp)

(2+ 03— 03)(1+ Ug.o+ Kaglig + Kogliz) — 01 05(U1 5~ Kogll)

210, = 02(Uz;2— Kaallp) [SiN b3
2713= 01(1+Uy;3— Kyglp+KygUz) + 05(Up; 1+ Kyaly) + (14 63) (U, —KqgUs)
27237 01(Ug;2— Kaalip) + 05(1+ Ug; o+ Koy +Kaoliz) + (14 63) (Uz.2— Kaop). (24)
These expressions explicitly depend on girand cosps. It is evident that one can chooglg so thate,,= €54, yielding
and,— N1+ 05(Uz.1+ Kygy) = 03(Ug o~ Kaglip) + 01 05[ Uy, 1~ Up o+ (Kyg— Koo) Ug — Kaglly — Kyl ] (25)

where
N1=(2+ 03)[Ug;2— Up;1— 61 (U3, Kaollp) + 02(Uz;1 —Kpalp)
— Kaaly — Kol (26)
N2 =(2+ 03)[ O1(Uz;1—KqaUg) + 02(Usz;— Kagllp) —Ug;3— Up;p— 2

— 03— KUy — (Kot Ky Uz +KqgUs]

It is now clear that once the functions, u,, us, 6, and 6, are
known, the entire deformation is determined. Because of this, ope
should expect that a variational formulation would yield only five'«2™

equilibrium equationsrot six
For small displacement and small strain, one can obtaias

(AgUz) 1— (AqUq) »

$3= 2A.A,

27)

which is half the angle of rotation aboBt, the same as obtaine

in [23].
Although one can now find exact expressions &y, 2¢€;,,

€55, 2713 and 2y,3 which are independent ab;, such expres-
sions are rather lengthy and are not given here. Alternatively,

- 2 2
Ny+ 07(Ug;1+ KyaUz—Kaglp) + 05(Ug 0+ Koz +Kagly ) + 01 05(Ug 0+ Us: s — KogUp +Kygly)

01.400— 0165, -
1;aY2 12,+

Ka3= 3,0 210, 3
where
Kor=| Koz — Kaz0s kalﬁz) (6, SiN h3— B, COSh3) + K, SN h3
2105 2+0,
+K,1 COSh3
Kozt  Ka102 .
37216, 246, (61 cosgp3+ 0, sinh3) +K,p COSh3
—Kq1 SN (32)
Kag= —Ka201+ Kar 02+ Koa0s.

As before,¢5 can be eliminated from these expressions, so that all

dsix curvatures can be expressed in terms of five independent quan-

tities. Note thatx 3 are not independent two-dimensional gener-
alized strains. They will, however, appear in the equilibrium equa-
tions because of their appearance in the virtual strain-

oH;lgplacement relations derived later.

could leavegs in the equations and regard E@5) as a con- Two-Dimensional Constitutive Law
straint. This would allow the construction of a shell finite element

which would be compatible with beam elements which have three

rotational degrees-of-freedom at the nodes.
Expressions for the curvatures can be found in term§ a6

K,=-C.,CT+CK.C" (28)
where
Ka:L_kQZ kal kaSJT+l_Ka2 Kal KQSJT (29)

To complete the analysis for an elastic shell, a two-dimensional
constitutive law is required to relate two-dimensional generalized
stresses and strains. As mentioned before the constitutive law can
not be exact, however, one should try to avoid introducing any
unnecessary approximation in addition to the already-approximate
three-dimensional constitutive relations.

Among many approaches that have been proposed to deal with
dimensional reduction, the approach[iv] stands out for its ac-
curacy and simplicity. In that work, a simple Reissner-Mindlin

Following [24], the curvature vector can also be found using Rdype energy model is constructed that is as close as possible to

drigues parameters

(30)

Using the form ofC from Egs.(23), the curvatures become

03.,( 601 COSh3+ 0, Sin ¢b3)
2+ 65

Ko1= 01, COSPh3+ 0., SiN 3 —
+kal_kal
03;a( 0, Sin ¢p3— 6, COSP3)

=—0;.,Sing3+ 0,.,C0SP3+
K2 1 b3 2:a b3 2+ 05

+ ka2 - ka2 (31)

Journal of Applied Mechanics

being asymptotically correct. Moreover, the original three-
dimensional results can be recovered accurately. The resulting
model can be expressed as

2[1=€"Ae+ y"Gy+2€'F (33)

wheree=| e 2€1, €2 k11 k1ot Ko1 Kool @Nd y=[2y13275". It

is noticed that there is only one in-plane shear ste&ginin Eq.
(33). This is possible only after one uses the constraints in®g.
Moreover, the strain energy is independent«Qf; so that the
rotation about the normal only appears algebraically, making it
possible for it to be eliminated.

This simple constitutive model is rigorously reduced from the
original three-dimensional model for multilayer shells, each layer
of which is made with an anisotropic material with monoclinic
symmetry. The variational asymptotic methdd] is used to guar-
antee the resulting two-dimensional shell model to yield the best
approximation to the energy stored in the original three-
dimensional structure by discarding all the insignificant contribu-

JANUARY 2004, Vol. 71 / 5



tion to the energy higher than the order &f/l)? andh/R. The =
stiffness matrices and G obtained through this process carry all oC=—dyC. (38)

the material and geometry information through the thickriisee | et us begin with the generalized strain-displacement relationship,

Egs.(63) and(73) in Ref.[17] for detailed expressiofsThe term Eq. (18). A particular in-plane strain element can be written as
containing the column matrik is produced by body forces in the

shell structure and tractions on the top and bottom surfaces, and it p=ep[Cle, +u,,+Ku)—e,]. (39)
is very important for the recovery of the original three-—, . : . ;
dimensional results. Interested readers can refer to [R&f.for Taking a straightforward variation, one obtains
details of constructing the model in E¢33) for multilayered e, p=ej 5C(e,+u.,+Ku)+C(du,,+K ou)].  (40)
composite shells. . . . . .
Having obtained the two-dimensional constitutive law frond N€ right-hand side contains,, and éu,, , which must be elimi-
three-dimensional elasticity, one can derive all the other relatioR@ted in order to obtain variations of the strain that are indepen-
over the reference surface of the shell, a two-dimensional cdtent of displacements. These are needed to derive intrinsic equi-

tinuum. librium equations.
Premultiplying both sides of E418) by CT, making use of Eq.
Virtual Strain-Displacement Relations (36), and finally using a property of the tilde operator that, for

In order to derive intrinsic equilibrium equations from the two@rPitrary column matrice¥ andZ, YZ=—ZY, one can make the
dimensional energy, it is necessary to express the variations{#$t term in brackets on the righthand side independent; pf
generalized strain measures in terms of virtual displacements gMe" @l this, one obtains
virtual rotations.

The variation of the energy expressed in E2p) can be written 5C(e,+ U, +RU)=5CCT(e,+ 7,) = — 8Y(€4+ 7,)
as ~ |~
=(€,t7a) 0. (41)
dll Jll dll all all ) . .
Oll= —— Sey+ —— Seypt —— Seppt —— Sy13+ —— Syag An expression for the second term in brackets on the right-hand
deg derp denn Y13 Y23 side of Eq.(40) can now be obtained by differentiating E@7)
o1 aM aM with respect tax,, and premultiplying byC. This yields
+ — Skt — Sw+ —— Skyy. 34 — — — —
Ik T G0 OCT Giy, N2 (34) C(8u.,+K,8u)=C(CT8q).,+ CKou= q.,+R5q.
It is now obvious that one must expre8s,,, . .. ,0ky,, in terms (42)

of virtual displacements and rotations in order to obtain the fingubstituting Eqs(41) and (42) into Eq. (40), one obtains an in-
Euler-Lagrange equations of the energy functional in their intrinrinsic expression for the variation of the in-plane strain compo-
sic form. Following Ref.[24], we introduce measures of virtualnents as

displacement and rotation that are “compatible” with the intrinsic — -

strain measures. For the virtual displacement, we note the form of Seop=epl 80+ K80+ (8, +7,) 6] (43)

Eq. (18) and choose where e}eNa vanishes wherw=p. This matrix equation can be

5q=Caéu. (35) written explicitly as four scalar equations:
VSvirriw;;Iarly, for the virtual rotation, we note the form of E@8) and S€11= 8q1.1— K 1300, + K 11003~ 21300 + €100
~ Se1= 001+ K 13001+ k1003~ 271301, — (1+ €19) 8¢
Sy=—oscCT (36) €157 0Up;1+ K360 + k12003~ 21364, — (1 + €19) l/f3(44)
Whereﬁ is a column matrix arranged similarly as the curvature — — — — —
column matrix in Eq(4) d¢=|— 8¢, o4, 05)". The bars indi- O€21= 001, KoadUp T k21603~ 223011+ (1+ €20) 53
cate that these quantities are not necessarily the variations of func- = — — — —
tions. Using these relations it is clear that 0€20= 602,21 K301+ K 2003~ 2723045 — €126Ys3.
Su=CTsq 37) The variationsde;, and de,; should be equal due to Eq@9);
N q hence, one can solve for the virtual rotation component aBgut
and as

= _ 802:1— 0012+ K13001 + K360+ (k10— K21) 803 = 2713080+ 2y2301

s 2+ et €exn (45)
I
It is now possible to write the variations of all strain measures in = 5 5. Zzg_qz_ +5q L,+K 3§_q - K235_qZ+ 2w5_q3
terms of three virtual displacement and two virtual rotation com- ! * _l' 1_ ! o
ponents as = 2713012~ 272361+ (€20~ €11) 643
with 8¢5 taken from Eq.(45).
€= 0.1~ K300+ K11003— 2715001 + €12003 Let us now consider the transverse shear strains
2ya3=e3[Cle,+ U+ Kou) —€,]. (47)
5522=5_qz;2+ K235_ql+ K225_qs—2y23,§pz— elzﬁ_z/xg Following a procedure similar to the above, one can obtain the

(46) virtual strain-displacement equation for transverse shear strains as
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257 ,3=€3[ 80, + K00+ (81 +72) 6] (48)

Explicit expressions for the variations of the shear strain compo- > x2
nents are now easily written as
207437 63,0t Oyt €403~ K500 (49) T

Finally, variations of the curvatures are found. First, taking the
straightforward variation of Eq28), one obtains

sc,,CT Cc,oCT

Sk.= - +8CK.CT+CK.6CT.  (50)

A, Ag

In order to eliminateSC ,, we differentiate Eq(36) with respect »

to X,
8¢ ,=—8C CT—5CCT. (51)

In order to eliminateSC, we can use Eq(38). Then, Eq.(50) ¢

b

ecomes ] F v

K= 0t K 00— UK. (52)

Using another tilde identity§(2=?272?) one can find the vir- X

tual strain-displacement relation as !

Sk :Ep +’K\/Ep (53) Fig. 2 Schematic of an arbitrary boundary
In explicit form
S - .
5K11:AL1’1— K138+ k12643 the boundary curve tangent to the reference surfads, . and
! M, . along the tangent of the boundary curweN,; along the
E/fz ) _ . normal of the reference surface. Then the principle of virtual work
OKoo= A =+ K301 — k21013 (54) (strictly speaking, the principle of virtual displacementan be
2 stated as:
250= 2012, V21 S et (K K1) 90 ot 30 N 3o +R.3a
©="p, TTA, K1Y Kaadthot (KoamKun) 6 f f (811801 f— 39,M,) As Agtlx; X, — f (N,,5q,+N,,8q,
s r
where 83 can again be eliminated by using Eg5). A A
+ NV36q3+ M VV5¢V+ M VT(Sl!/T)dF =0 (56)
Intrinsic Equilibrium Equations wheref; andm, are taken directly fronj17].

It is now possible to obtain intrinsic equilibrium equations and
nsistent edge conditions by use of the principle of virtual work
d the virtual strain-displacement relations derived in the previ-
ous section. The equilibrium equations are

In this section, we will make use of the virtual strain-
displacement relations in the variation of the internal strain energ
in order to derive the intrinsic equilibrium equations. Here w
define the generalized forces as

oIl oIl 1 911 (AN 1 [Ai(Npt N, KNy A)
den U Gep N2 35e, Nu A, A, iz
all " dll 1011 M (55) —Ka2gNgot+ Q1K 13+ Qoxpy+f1=0
— M T =Wl 57— =N
IK1 IK22 2 dw (A1N22) 2 [Az(le_M],1+K (Nt )
1 Il 1 Il AA, ALA, B2
i —— - —=Q,.
291 2072 +K1aN13+ Qak1o+ QoKppt+ f,=0
To use the principle of virtual work to derive the equilibrium
equations, one needs to know the applied loads. In addition to the (A2Q1) 1 (Ale),zi K Na— KooN
applied loads used in the modeling proces®; at the top sur- AA, AA, 1L ezt
face,8;B; at the bottom surface and body for¢eB; [17], one can
also specify appropriate combinations of displacements, rotations —20Nppt (k12— k) N+ 13=0 (57)

(geometrical boundary conditionsrunning forces and moments

(natural boundary conditionslong the boundary around the ref- (AoM1) 1 (AiM1)) 2 Q1(1+ €17) — Q€10+ 271N
erence surface. It is trivial to apply the geometrical boundary con- A1A; AlA; ! ! 2€127 27130
ditions. Although it is possible in most cases that natural boundary

conditions can be derived from Newton’s law, the procedure is +2723(N1gt N) = MoK y5~ MoK gt my =0
tedious and not easily applied here because the physical meanin%i Mo, (AMoy)

for some of the generalized forces are not clear. Thus, natural 2" !2'.! L2222 0,1+ €55) — Qqerat 2715 Nyp— A
boundary conditions are best derived from the principle of virtual A1A2 AlA;

work. .
Suppose on boundaiy (see Fig. 2, we specify a force result- + 272Nzt MK gt MyKogt my=0

antN,, and moment resultari¥l,, along the outward normal of where
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. (Ngo=Njp) o Nyo( €137 €30) + Moy — Mygkgpt M (K~ Kypp)

N 2 + 611+ €929 ’ (58)
I
The associated natural boundary conditiond oare For practical computational schemes, equilibrium equations and
- boundary conditions need to use the constitutive law to relate with
N,, = V§N11+ 2v1voN o+ vgsz the generalized two-dimensional strains. Finally a set of kinemati-
. cal equations is needed. Depending on how this part is done, the
N, .= v1v5(Noy—Nqqp) +( V%_ Vg)le—N analysis can be completed in either of two fundamentally different

ways: a purely intrinsic form, relying on compatibility equations,

N,,= qullJr 2v1voN o+ V§N22 and a mixed form relying on explicit strain-displacement rela-

R (59) tions.
N,z3=11Q1+v,Q, In the intrinsic form we have five equilibrium equations, Egs.
. (57); six compatibility equations, Eq$12)—(14); and the eight
M,,=12M 11+ 20, 0,M o+ ¥3M 5, constitutive equations—a total of 19 equations. The 19 unknowns
R are the eight stress resultantd;;, Ni5, Noo, Qq, Q,, Myy,
M,,=v1vo(Moy— M11)+(v§— yg)Mlz M1,, andM,,; and the 11 strain measuresg,, 2€1,, €5, 213,

2')/23, K11, 2(1)12, andKzz, a|0ng WithKl3, K23, andKlz_ Ko1 -
wherev;=cos¢, v,=sin¢, and¢ is the angle between the out-The |ast three strain measures appear in the equilibrium equations
ward normal of the boundary and thedirection as shown in Fig. put not in the constitutive law.

2. The terms Containing[ stem from consistent inclusion of the In a mixed formulation one would use the same five equi”b-
finite rotation from undeformed triad to deformed triad althoughum equations and eight constitutive equations_ One would also
the nonzerorotation abouB; is expressed in terms of other kine-need a set of strain-displacement relations among the 11 general-
matical quantities. Similar terms are found in the shell equatiofifed strain measures;;, 2€;, €, 2¥13, 2¥23, K11, 20, and
cjerived by Bgrdichevsk{flﬁ] where only five equilibrium equa- «,,, along withks, k»3, andxy,— k5, and the five global dis-
tions are derived. placement and rotational variables, u,, us, 6;, and6,. One

In a mixed formulation,\V can be shown to be the Lagrangepossible set of such equations is as follows: use five of B8,
multlpller that enforces Eq45) To further understand the natureusing eitherflz Or €51; USE the six Eqs(Sl) There are also the
of \one can undertake the following exercise: Setftig:0 and  two other rotational variableg; and ¢5, which are governed by
€1,= €, for the equilibrium equations given i13], (N21 Egs.(22) and(25), respectively. This way there are 26 equations
—N3)/2 can be solved from Reissner’s sixth equilibrium equaand 26 unknowns. This mixed formulation is capable of handling
tion. This shows that Reissner'dif;—N;,)/2 is the same as our houndary conditions on two-dimensional stress resultants and
N, and Reissner'sN,;—N3y)/2 is the same as oWM;,. Finally, displacement/rotation variables. At least in principle, one could
substitution of this sixth equation into the other five yleldS the ﬁV%Cover a disp|acement formulation by e|iminating all the un-
equilibrium equations given here in Eg&7). It is noted that knowns except the displacement and rotation variables.
Reissner’s equilibrium equations are derived based on the basis 0|§quations(57) and(58) contain terms that could be disregarded
Newton’s law of motion without consideration of either constitupecause of the original assumption of small strain. We will not
tive law or strain-displacement relations. However, the presemfdertake this simplification here, because it is out of the scope of
derivation is purely displacement-based. The reproduction @fe present study to actually implement the two-dimensional non-
those equilibrium equations by the present derivation illustratgfear theory. Therefore, our equilibrium equations and kinemati-
that, as long as the formulation is geometrically exact, one c@g| equations are geometrically exact; all approximations stem
derive exact equilibrium equations. from the dimensional reduction process used to obtain the two-

A few investigators have noted an apparent conflict between thenensional constitutive law.
symmetry of the stress resultants and the satisfaction of momentrpe present work is a direct extension[@8] to treat shells. If
equilibrium about the normal. In reality there is no conflict, bugne setsk;=0 andA,=1, all the formulas developed here will

one must be careful. We have shown herein that the Biacn reduce to those ifil8], which indirectly verifies that derivation.
always be chosen so that,=e,,. If this relation is enforced

strongly, there is only one in-plane shear stress resultgnt, that
can be derived from the energy. In that case the physical quant@pnclusions

associated with the antisymmetric part of Reissner's in-pIaneA nonlinear shear-deformable shell theory has been developed
stress resultants, While itis not availa}ble from Fhe constitutive Ia\% be completely compatible with the modeling proces$1if].

is nevertheless available as a reactive quantity from the momef, compatibility equations, kinematical relations and equilib-
equilibrium equation about th_e .normal. However, It must bfum equations are derived for arbitrarily large displacements and
stressed that the moment equilibrium equation about the normal i3-1ions under the restriction that the strain must be small. The
r?Ssulting formulas are compared with others in the literature. The

virtual displacements and rotations must be independent. following conclusions can be drawn from the present work:
In a somewhat similar vein, not being able to obtain the anti-

symmetric part of the moment stress resultants from derivatives ofl. The variational asymptotic method can be used to decouple
the two-dimensional strain energy is a result of the approximatiee original three-dimensional elasticity problem of a shell into a
dimensional reduction process in which it was determined, basede-dimensional, through-the-thickness analyfdig], and a two-

on asymptotic considerations agéometricallynonlinear three- dimensional, shell analysis. The through-the-thickness analysis
dimensional elasticity, that the antisymmetric tekq3— x,; does provides both an accurate two-dimensional constitutive law for
not appear as an independent generalized strain measure inttieenonlinear shell theory and accurate through-the-thickness re-
two-dimensional constitutive law with correction only to the ordecovery relations for three-dimensional displacement, strain, and
of h/R. However, if a more refined theory with respectiR is  stress. This way, an intimate relation between the shell theory and
required, thenc;,— k7 would appear as a generalized strain in théhree-dimensional elasticity is established.

two-dimensional constitutive law and a new generalized moment2. A full finite rotation must be applied to fully specify the
would be defined based on the constitutive law. displacement field. However, since the strain energy on which the
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formulation is based is independentsfs;, the rotation about the [9] Simo, J. C., and Fox, D. D., 1989, “On a Stress Resultant Geometrically Exact

; ; ; Shell Model. Part I: Formulation and Optimal Parametrization,” Comput.
normal is not independent and can be expressed in terms of other Methods Appl. Mech. Eng72, pp. 267304,

_quantities- Thus, it_ can be chosen so that th_e tWO‘dimenSion"{LO] Simo, J. C., and Fox, D. D., 1989, “On a Stress Resultant Geometrically Exact
in-plane shear strain measures are equal. This way all the strain Shell Model. Part II: The Linear Theory; Computational Aspects,” Comput.

measures can be expressed in terms of five independent quantities; l’\getzpdz Appl. MXch-lgng-?f»étpp- 53;?—92-It . ically Noni Shell
H H ranimpegovic, A., , ress Resultan eometrically Nonlinear e
three displacement and two rotation measures, and only one str Theory With Drilling Rotations—Part I. A Consistent Formulation,” Comput.

resultant for in-plane shear can be derived from the two-  ethods Appl. Mech. Eng118 pp. 265-284.
dimensional energy. [12] Kratzig, W. B., 1993, “Best’ Transverse Shearing and Stretching Shell Theory

3. OnIy five equilibrium equations are obtainable in a for Nonlinear Finite Element Simulations,” Comput. Methods Appl. Mech.
. ) o . - Eng.,1031-2), pp. 135-160.
d|5p|acement based variational formulation. Moment equmbrlu 13] Reissner, E., 1974, “Linear and Nonlinear Theory of Shel&hin Shell Struc-

abou.t T—he normal is satisfied implicitly. If one does not include th tures Y. C. Fung and E. E. Sechler, eds., Prentice-Hall, Englewood Cliffs, NJ,
full finite rotation, but rather sets the rotation about the normal  pp. 29-44.

equa| to zero, the correct equ“ibrium equations cannot be olh14] Reddy, J. N., 1997Mechanics of Laminated Composite Plates: Theory and
: . : « il Analysis CRC Press, Boca Raton, FL.
tained. This should shed some “ght on the nature of d“”mg [15] Libai, A., and Simmonds, J. G., 1998he Nonlinear Theory of Elastic Shells
degrees of freedom. 2nd Ed., Cambridge University Press, Cambridge, UK.
[16] Berdichevsky, V. L., 1979, “Variational-Asymptotic Method of Constructing a
Theory of Shells,” Prikl. Mat. Mekh.43(4), pp. 664—687.
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