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Deformation Theory for
Composite Shells
A geometrically nonlinear shear deformation theory has been developed for elastic
to accommodate a constitutive model suitable for composite shells when modeled
two-dimensional continuum. A complete set of kinematical and intrinsic equilibrium e
tions are derived for shells undergoing large displacements and rotations but with s
two-dimensional, generalized strains. The large rotation is represented by the ge
finite rotation of a frame embedded in the undeformed configuration, of which one a
along the normal line. The unit vector along the normal line of the undeformed refer
surface is not in general normal to the deformed reference surface because of trans
shear. It is shown that the rotation of the frame about the normal line is not zero and
it can be expressed in terms of other global deformation variables. Based on a gen
ized constitutive model obtained from an asymptotic dimensional reduction from the t
dimensional energy, and in the form of a Reissner-Mindlin type theory, a set of intr
equilibrium equations and boundary conditions follow. It is shown that only five equ
rium equations can be derived in this manner because the component of virtual rot
about the normal is not independent. It is shown, however, that these equilibrium e
tions contain terms that cannot be obtained without the use of all three components
finite rotation vector.@DOI: 10.1115/1.1640364#
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Introduction

For an elastic three-dimensional continuum, there are two ty
of nonlinearity: geometrical and physical. A theory is geome
cally nonlinear if the kinematical~strain-displacement! relations
are nonlinear but the constitutive~stress-strain! relations are lin-
ear. This kind of theory allows large displacements and rotati
with the restriction that strain must be small. A physically~or
materially! nonlinear theory is necessary for biological, rubb
like or inflatable structures where the strain cannot be consid
small, and a nonlinear constitutive law is needed to relate
stress and strain. Although this classification seems obvious
clear for a structure modeled as a three-dimensional continuu
becomes somewhat ambiguous to model dimensionally reduc
structures—structures that have one or two dimensions m
smaller than the other~s! such as beams, plates, and she
@1#—using reduced one-dimensional or two-dimensional mod
A nonlinear constitutive law for the reduced structural model c
in some circumstances be obtained from the reduction of a g
metrically nonlinear three-dimensional theory. For example, in
so-called Wagner or trapeze effect,@2–5#, the effective torsional
rigidity is increased due to axial force. This physically nonline
one-dimensional model stems from a purely geometrically non
ear theory at the three-dimensional level. On the other hand,
present paper focuses on a geometrically nonlinear analysis a
three-dimensional level which becomes a geometrically nonlin
analysis at the two-dimensional as well. That is, the tw

1Presently Assistant Professor, Department of Mechanical and Aerospace
neering, Utah State University, Logan, UT 84322-4130.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2002; final revision, June 10, 2003. Associate Editor: D. A. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
pes
ri-

ns

r-
red
the
and
, it

ible
uch
ls,
ls.

an
eo-

the

ar
lin-
the

t the
ear
o-

dimensional generalized strain-displacement relations are no
ear while the two-dimensional generalized stress-strain relat
turn out to be linear.

A shell is a three-dimensional body with a relatively sm
thickness and a smooth reference surface. The feature of the s
thickness attracts researchers to simplify their analyses by re
ing the original three-dimensional problem to a two-dimensio
problem by taking advantage of the thinness. By comparison w
the original three-dimensional problem, an exact shell theory d
not exist. Dimensional reduction is an inherently approximate p
cess. Shell theory is a very old subject, since the vibration o
bell was attempted by Euler even before elasticity theory was w
established,@6#. Even so, shell theory still receives a lot of atte
tion from modern researchers because it is used so extensive
so many engineering applications. Moreover, many shells are
made with advanced materials that have only recently beco
available.

Generally speaking, shell theories can be classified accordin
direct, derived, andmixedapproaches. The direct approach, whi
originated with the Cosserat brothers,@7#, models a shell directly
as a two-dimensional ‘‘orientated’’ continuum. Naghdi@8# pro-
vided an extensive review of this kind of approach. Although t
direct approach is elegant and able to account for transverse
normal strains and rotations associated with couple stresse
nowhere connects with the fact that a shell is a three-dimensi
body and thus completely isolates itself from three-dimensio
continuum mechanics. This could be the main reason that
approach has not been much appreciated in the engineering
munity. One of the complaints of these approaches that they
difficult for numerical implementation has been answered
Simo and his co-workers by providing an efficient formulatio
‘‘free from mathematical complexities and suitable for large sc
computation,’’ @9,10#. And more recently a similar theory wa
developed by Ibrahimbegovic@11# to include drilling rotations so
that not-so-smooth shell structures can be analyzed convenie
However, the main complaint remains that these approaches la
meaningful way to find the constitutive models ‘‘which can on
be experienced and formulated properly in our three-dimensio
real world,’’ @12#. Reissner@13# developed a very general nonlin
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Fig. 1 Schematic of shell deformation
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ear shell theory introducing 12 generalized strains by conside
the dynamics of stress resultants and couples on the refer
surface as the basis. He gracefully avoided the awkwardnes
finding a proper constitutive model by pointing out two possib
means to establish them. It is recommended in@13# that one could
either design experiments to determine the constitutive const
without explicit reference to the three-dimensional nature of
structure or derive an appropriate two-dimensional model fr
the given knowledge of the constitutive relations for the r
three-dimensional model of the structure.

Derived approaches reduce the original three-dimensional e
ticity problem into a two-dimensional problem to be solved ov
the reference surface. Such reductions are usually carried o
one of two ways. The most common approach is to assum
priori the distribution of three-dimensional quantities through
thickness and then to construct a two-dimensional strain en
per unit area by integrating the three-dimensional energy per
volume through the thickness. Remarkably, classical~also known
as Kirchhoff-Love type theory!, first-order shear deformation
~also known as Reissner-Mindlin type theory!, higher-order, and
layer-wise shell theories all fall into this category, including t
theories proposed by Reddy@14#, for example. Another approac
is to apply an asymptotic method to expand all quantities into
asymptotic series of the thickness coordinate, so that a sequ
of two-dimensional problems can be solved according to the
ferent orders.

The mixed approach is used in@15# based on the argument tha
all the three-dimensional elasticity equations except the cons
tive relations are independent of the material properties, suc
the kinematical relations, equilibrium of momentum and forc
The constitutive law must be determined experimentally, a
hence it is avoidable that it is approximate. Libai and Simmon
@15# obtain exact shell equations for the balance of moment
heat flow and an entropy inequality from the three-dimensio
continuum mechanics via integration through the thickness.
71, JANUARY 2004
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analogous two-dimensional constitutive law is postulated due
the fact that even three-dimensional constitutive laws are inex

There is a sense in which the present approach can als
considered as mixed. The two-dimensional constitutive mode
obtained by the variational asymptotic method~VAM !, @16#, such
that the two-dimensional energy is as close to an asymptotic
proximation of the original three-dimensional energy as possi
@17#. The process of constructing the constitutive model defi
the reference surface and the kinematics of this surface are
metrically exact formulated in an intrinsic format. The two
dimensional equilibrium equations are obtained from the tw
dimensional energy with the knowledge of the variations of
generalized strains. The only approximate part of our tw
dimensional shell theory is the constitutive law which is not po
tulated but is mathematically obtained by VAM.

Shell Kinematics
The equations of two-dimensional shell theory are written o

the domain of the reference surface, on which every point can
represented by a position vectorr in the undeformed configuration
andR in the deformed configuration~see Fig. 1! with respect to a
fixed point O in the space. A set of two curvilinear coordinate
xa , are required to located a point on the reference surface.
coordinates are so-calledconvectedcoordinates such that ever
point of the configuration has the same coordinates during
deformation.~Here and throughout the paper Latin indices assu
1, 2, 3; and Greek indices assume values 1 and 2. Dummy ind
are summed over their range except where explicitly indicate!
Without loss of generality,xa are chosen to be the lines of curva
tures of the surface to simplify the formulation. For the purpose
representing finite rotations, an orthonormal triadbi is introduced
for the initial configuration, such that

ba5aa /Aa b35b1Ãb2 (1)
Transactions of the ASME
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whereaa is the set of base vectors associated withxa andAa are
the Laméparameters, defined as

aa5r ,a Aa5Aaa"aa. (2)

From the differential geometry of the surface and followi
@13# and @18#, one can express the derivatives ofbi as

bi ,a5AakaÃbi (3)

whereka is the curvature vector measured inbi with the compo-
nents

ka5 b2ka2 ka1 ka3cT (4)

in which kab refers to out-of-plane curvatures. We note thatk12
5k2150 because the coordinates are the lines of curvatures.
geodesic curvatureska3 can be expressed in terms of the Lam´
parameters as

k1352
A1,2

A1A2
k235

A2,1

A1A2
. (5)

When the shell deforms, the particle that had position vector
in the undeformed state now has position vectorR in the de-
formed shell. The triadbi rotates to beBi . The rotation relating
these two triads can be arbitrarily large and represented in
form of a matrix of direction cosinesC(xa) so that

Bi5Ci j bj Ci j 5Bi "bj . (6)

A definition of the two-dimensional generalized strain measu
is needed for the purpose of formulating this problem in an intr
sic form. Following@13# and @18#, they can be defined as

R,a5Aa~Ba1eabBb12ga3B3! (7)

and

Bi ,a5Aa~2Ka2B11Ka1B21Ka3B3!3Bi (8)

whereeab are the two-dimensional in-plane strains, andKi j are
the curvatures of the deformed surface, which are the summa
of curvatures of undeformed geometryki j and curvatures intro-
duced by the deformationk i j , andga3 are the transverse strain
becauseB3 is not constrained to be normal to the reference s
face after deformation. Please note that the two-dimensional
eralized strain measures are defined by Eqs.~7! and ~8! in an
intrinsic fashion, the symmetry of the inplane strain measu
such thate125e21 does not hold automatically. Nevertheless, o
is free to sete125e21, i.e.,

B1"R,2

A2
5

B2"R,1

A1
(9)

which is a constraint used in@17# to make the three-dimensiona
formulation unique.

At this point sufficient preliminary information has been o
tained to develop a geometrically nonlinear shell theory.

Compatibility Equations
It is well known that a rigid body in three-dimensional spa

has only six degrees-of-freedom. Thus, the kinematics of an
ment of the deformed shell reference surface can be express
terms of at mostsix independent quantities: three measures
displacement, sayu"bi , and three measures of the rotation ofBi
~since the global rotation tensorC, which bringsbi into Bi , can
be expressed in terms of three independent quantities!. However,
we have the 11 two-dimensional strain measurese11, 2e12, e22,
2ga3 , kab , andka3 as defined in Eqs.~7! and~8!. Thus, they are
not independent; there are some compatibility equations am
these eleven quantities. In@19# and@13# appropriate compatibility
equations are derived by first enforcing the equalities

R,125R,21 (10)
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Journal of Applied Mechanics
g

The
e

r

the

res
in-

tion

s
ur-
en-

res
ne

l

-

e
ele-
d in
of

ong

Bi ,125Bi ,21. (11)

These two vector equations lead to six independent compatib
equations equivalent to a form of those found in@13#. These equa-
tions are rewritten here for convenience in the present notat
First, from theB3 components of Eq.~10!, we obtain

~11e22!k122~11e11!k215
~A22g23! ,1

A1A2
2

~A12g13! ,2

A1A2

1e12~K222K11!. (12)

Next, from theBa components of Eq.~10! we obtain two equa-
tions for a51 and 2, respectively, as

~11e22!K132e12K235
~A2e12! ,1

A1A2
2

@A1~11e11!# ,2

A1A2
22g13k21

12g23K11 (13)

~11e11!K232e12K135
@A2~11e22!# ,1

A1A2
2

~A1e12! ,2

A1A2
22g13K22

12g23k12.

Finally, from the three components of Eq.~11! we have nine iden-
tities. However, there are only three independent equations, g
by

~A1K11! ,2

A1A2
2

~A2k21! ,1

A1A2
1K13K222k12K2350

~A1k12! ,2

A1A2
2

~A2K22! ,1

A1A2
1K23K112k21K1350 (14)

~A2K23! ,1

A1A2
2

~A1K13! ,2

A1A2
1K11K222k12k2150.

There are now 11 quantities which are related by six compatib
equations. This means that these strain measures can be
mined in terms ofonly fiveindependent quantities—not six.

In the process of dimensional reduction of@17# to find an ac-
curate constitutive model for composite shells, the authors
countered the question whether one should includek21 andk12 as
two different generalized strain measures. This was determine
the following argument. Let us denote a new twist measurev
5k121k21. From Eq.~12! the difference betweenk21 and k12
can be obtained as

k122k21

2

5

~A22g23! ,12~A12g13! ,2

A1A2
1e12~K222K11!1v~e112e22!

~21e111e22!
.

(15)

This difference is clearlyO(«h/,2) or O(«/R) disregarding the
nonlinear terms~« is the order of generalized strains,h is the
thickness of the shell,l is the wavelength of in-plane deformatio
and R is the characteristic radius of shell!. One can show that it
contributes terms that areO(«h2/,2h/R) or O(«h2/R2) to the
three-dimensional strains. Clearly, such terms will not be coun
in a physically linear theory with only correction up to the ord
of h/R and (h/ l )2.

Equations~13! can be solved for the in-plane curvaturesk13
andk23, and Eq.~15! can be used to expressk12 andk21 in terms
of v. Now, using these expressions, one can rewrite thethreeEqs.
~14! entirely in terms of theeightstrain measurese11, 2e12, e22,
2g13, 2g23, k11, 2v, andk22. This confirms thatonly five inde-
pendent measures of displacement and rotation are necessa
define these strain measuresas we will demonstrate conclusivel
below by deriving such measures.
JANUARY 2004, Vol. 71 Õ 3
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Global Displacement and Rotation Variables
There is no unique choice for the global deformation variab

For this reason, the importance~not to mention the beauty! of an
intrinsic formulation is widely appreciated. On the other hand,
the purpose of understanding the displacement field more f
for practical computational algorithms, and for easy derivation
virtual strain-displacement relations, it is expedient to introduc
suitable set of displacement measures.

The displacement measures we choose are derived by exp
ing R in terms ofr plus a displacement vector so that

R~x1 ,x2!5r ~x1 ,x2!1uibi (16)

Differentiating both sides of Eq.~16! with respect toxa , and
making use of Eq.~7!, one can obtain the identity

Ba1eabBb12ga3B35ba1ui ;abi1uikaÃbi (17)

where ( );a51/Aa]( )/]a. The above formula allows the determ
nation of the strain measureseab and 2ga3 in terms ofC, ui and
the derivatives of ui . Introducing column matricesu
5 bu1 u2 u3cT, e15 b1 0 0cT, e25 b0 1 0cT, g15 be11 e12 2g13cT,
and g25 be21 e22 2g23cT, we can obtain the following identity in
matrix form:

ea1ga5C~ea1u;a1kãu! (18)

where C is the matrix of direction cosines from Eq.~6!, ka is
defined in Eq.~4!, and ( )̃i j 52ei jk( )k .

Rodrigues parameters,@20#, can be used as rotation measures
allow a compact expression ofC. These are derived based o
Euler’s theorem, which shows that any rotation can be represe
as a rotation of magnitudeQ about a line parallel to a unit vecto
e. Defining the Rodrigues parametersr i52e"bi tan(Q/2) and ar-
ranging these in a column matrixr5 br1 r2 r3cT, the matrixC can
simply be written as

C5

S 12
rTr

4 D I 2 r̃1
rrT

2

11
rTr

4

(19)

Let us also denote the direction cosines ofB3 by

C3i5d3i1u i (20)

Hodges@21# has shown that, given the third row ofC, the Rod-
rigues parameters can be uniquely expressed in terms ofu i as

r15
r3u122u2

21u3
4 Õ Vol. 71, JANUARY 2004
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r25
r3u212u1

21u3
(21)

r352 tanS f3

2 D
wherer3 can be understood as a change of variables to simp
later parts of the derivation. Later on we will discuss the mean
of f3 for a special case. Finally, it is noted that the three rotatio
parametersu i are not independent but instead satisfy the co
straint

u1
21u2

21~11u3!251. (22)

When Eq.~21! is substituted into Eq.~19!, the resulting ele-
ments ofC can be expressed as functions ofu i andf3

C115
~21u32u1

2!cosf32u1u2 sinf3

21u3

C125
~21u32u2

2!sinf32u1u2 cosf3

21u3

C1352u1 cosf32u2 sinf3

C215
2~21u32u1

2!sinf32u1u2 cosf3

21u3

C225
~21u32u2

2!cosf31u1u2 sinf3

21u3
(23)

C235u1 sinf32u2 cosf3

C315u1

C325u2

C33511u3 .

This representation reduces to those of@22# when considering
small, finite rotations. There is an apparent singularity in
present scheme whenu3522 ~i.e., when the shell deforms in
such a way thatB3 is pointed in the opposite direction ofb3). This
should pose no practical problem, however, sinceu15u250 for
that condition, and none of the kinematical relations become i
nite in the limit asu3→22.

When these expressions for the direction cosines are substi
into Eq. ~18!, explicit expressions for the strain measures can
found as
e115F ~21u32u1
2!~11u1;12k13u21k11u3!2u1u2~u2;11k13u1!

21u3
1u1~k11u12u3;1!Gcosf3

1F ~21u32u2
2!~u2;11k13u1!2u1u2~11u1;12k13u21k11u3!

21u3
1u2~k11u12u3;1!Gsinf321

e225F ~21u32u2
2!~11u2;21k23u11k22u3!2u1u2~u1;22k23u2!

21u3
2u2~u3;22k22u2!Gcosf3

1F ~21u32u1
2!~k23u22u1;2!1u1u2~11u2;21k23u11k22u3!

21u3
1u1~u3;22k22u2!Gsinf321

e125F ~21u32u2
2!~u2;11k13u1!2u1u2~11u1;12k13u21k11u3!

21u3
1u2~k11u12u3;1!Gcosf3

2F ~21u32u1
2!~11u1;12k13u21k11u3!2u1u2~u2;11k13u1!

21u3
1u1~k11u12u3;1!Gsinf3
Transactions of the ASME



e215F ~21u32u1
2!~u1;22k23u2!1u1u2~11u2;21k23u11k22u3!

21u3
1u1~u3;22k22u2!Gcosf3

1F ~21u32u2
2!~11u2;21k23u11k22u3!2u1u2~u1;22k23u2!

21u3
2u2~u3;22k22u2!Gsinf3

2g135u1~11u1;12k13u21k11u3!1u2~u2;11k13u1!1~11u3!~u3;12k11u1!

2g235u1~u1;22k23u2!1u2~11u2;21k23u11k22u3!1~11u3!~u3;22k22u2!. (24)

These expressions explicitly depend on sinf3 and cosf3. It is evident that one can choosef3 so thate125e21, yielding

tanf35
n11u2

2~u2;11k13u1!2u1
2~u1;22k23u2!1u1u2@u1;12u2;21~k112k22!u32k23u12k13u2#

n21u1
2~u1;11k11u32k13u2!1u2

2~u2;21k22u31k23u1!1u1u2~u1;21u2;12k23u21k13u1!
(25)
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n15~21u3!@u1;22u2;12u1~u3;22k22u2!1u2~u3;12k11u1!

2k13u12k23u2#
(26)

n25~21u3!@u1~u3;12k11u1!1u2~u3;22k22u2!2u1;12u2;222

2u32k23u12~k221k11!u31k13u2#

It is now clear that once the functionsu1 , u2 , u3 , u1 andu2 are
known, the entire deformation is determined. Because of this,
should expect that a variational formulation would yield only fi
equilibrium equations–not six.

For small displacement and small strain, one can obtainf3 as

f35
~A2u2! ,12~A1u1! ,2

2A1A2
(27)

which is half the angle of rotation aboutB3 , the same as obtaine
in @23#.

Although one can now find exact expressions fore11, 2e12,
e22, 2g13 and 2g23 which are independent off3 , such expres-
sions are rather lengthy and are not given here. Alternatively,
could leavef3 in the equations and regard Eq.~25! as a con-
straint. This would allow the construction of a shell finite eleme
which would be compatible with beam elements which have th
rotational degrees-of-freedom at the nodes.

Expressions for the curvatures can be found in terms ofC as

K ã52C;aCT1CkãCT (28)

where

Ka5 b2ka2 ka1 ka3cT1 b2ka2 ka1 ka3cT (29)

Following @24#, the curvature vector can also be found using R
drigues parameters

Ka5

I 2
r̃

2

11
rTr

4

r ;a1Cka . (30)

Using the form ofC from Eqs.~23!, the curvatures become

ka15u1;a cosf31u2;a sinf32
u3;a~u1 cosf31u2 sinf3!

21u3

1 k̂a12ka1

ka252u1;a sinf31u2;a cosf31
u3;a~u1 sinf32u2 cosf3!

21u3

1 k̂a22ka2 (31)
Journal of Applied Mechanics
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ka35f3;a1
u1;au22u1u2;a

21u3
1 k̂a3

where

k̂a15S ka32
ka2u1

21u3
1

ka1u2

21u3
D ~u1 sinf32u2 cosf3!1ka2 sinf3

1ka1 cosf3

k̂a25S ka32
ka2u1

21u3
1

ka1u2

21u3
D ~u1 cosf31u2 sinf3!1ka2 cosf3

2ka1 sinf3 (32)

k̂a352ka2u11ka1u21ka3u3 .

As before,f3 can be eliminated from these expressions, so tha
six curvatures can be expressed in terms of five independent q
tities. Note thatka3 are not independent two-dimensional gene
alized strains. They will, however, appear in the equilibrium eq
tions because of their appearance in the virtual stra
displacement relations derived later.

Two-Dimensional Constitutive Law
To complete the analysis for an elastic shell, a two-dimensio

constitutive law is required to relate two-dimensional generaliz
stresses and strains. As mentioned before the constitutive law
not be exact, however, one should try to avoid introducing a
unnecessary approximation in addition to the already-approxim
three-dimensional constitutive relations.

Among many approaches that have been proposed to deal
dimensional reduction, the approach in@17# stands out for its ac-
curacy and simplicity. In that work, a simple Reissner-Mind
type energy model is constructed that is as close as possib
being asymptotically correct. Moreover, the original thre
dimensional results can be recovered accurately. The resu
model can be expressed as

2P5eTAe1gTGg12eTF (33)

wheree5 be11 2e12 e22 k11 k121k21 k22cT andg5 b2g13 2g23cT. It
is noticed that there is only one in-plane shear straine12 in Eq.
~33!. This is possible only after one uses the constraints in Eq.~9!.
Moreover, the strain energy is independent ofka3 so that the
rotation about the normal only appears algebraically, making
possible for it to be eliminated.

This simple constitutive model is rigorously reduced from t
original three-dimensional model for multilayer shells, each la
of which is made with an anisotropic material with monoclin
symmetry. The variational asymptotic method@16# is used to guar-
antee the resulting two-dimensional shell model to yield the b
approximation to the energy stored in the original thre
dimensional structure by discarding all the insignificant contrib
JANUARY 2004, Vol. 71 Õ 5
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tion to the energy higher than the order of (h/ l )2 and h/R. The
stiffness matricesA andG obtained through this process carry a
the material and geometry information through the thickness~see
Eqs.~63! and~73! in Ref. @17# for detailed expressions!. The term
containing the column matrixF is produced by body forces in th
shell structure and tractions on the top and bottom surfaces, a
is very important for the recovery of the original thre
dimensional results. Interested readers can refer to Ref.@17# for
details of constructing the model in Eq.~33! for multilayered
composite shells.

Having obtained the two-dimensional constitutive law fro
three-dimensional elasticity, one can derive all the other relati
over the reference surface of the shell, a two-dimensional c
tinuum.

Virtual Strain-Displacement Relations
In order to derive intrinsic equilibrium equations from the tw

dimensional energy, it is necessary to express the variation
generalized strain measures in terms of virtual displacements
virtual rotations.

The variation of the energy expressed in Eq.~33! can be written
as

dP5
]P

]e11
de111

]P

]e12
de121

]P

]e22
de221

]P

]g13
dg131

]P

]g23
dg23

1
]P

]k11
dk111

]P

]v
dv1

]P

]k22
dk22. (34)

It is now obvious that one must expressde11, . . . ,dk22, in terms
of virtual displacements and rotations in order to obtain the fi
Euler-Lagrange equations of the energy functional in their intr
sic form. Following Ref.@24#, we introduce measures of virtua
displacement and rotation that are ‘‘compatible’’ with the intrins
strain measures. For the virtual displacement, we note the form
Eq. ~18! and choose

dq5Cdu. (35)

Similarly, for the virtual rotation, we note the form of Eq.~28! and
write

dc
.

52dCCT (36)

wheredc is a column matrix arranged similarly as the curvatu
column matrix in Eq.~4! dc5 b2dc2 dc1 dc3cT. The bars indi-
cate that these quantities are not necessarily the variations of f
tions. Using these relations it is clear that

du5CTdq (37)

and
6 Õ Vol. 71, JANUARY 2004
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dC52dc
.

C. (38)

Let us begin with the generalized strain-displacement relations
Eq. ~18!. A particular in-plane strain element can be written as

eab5eb
T@C~ea1u;a1kãu!2ea#. (39)

Taking a straightforward variation, one obtains

deab5eb
T@dC~ea1u;a1kãu!1C~du;a1kãdu!#. (40)

The right-hand side containsu;a anddu;a , which must be elimi-
nated in order to obtain variations of the strain that are indep
dent of displacements. These are needed to derive intrinsic e
librium equations.

Premultiplying both sides of Eq.~18! by CT, making use of Eq.
~36!, and finally using a property of the tilde operator that, f
arbitrary column matricesY andZ, ỸZ52Z̃Y, one can make the
first term in brackets on the righthand side independent ofu;a .
After all this, one obtains

dC~ea1u;a1kãu!5dCCT~ea1ga!52dc
.

~ea1ga!

5~eã1gã!dc. (41)

An expression for the second term in brackets on the right-h
side of Eq.~40! can now be obtained by differentiating Eq.~37!
with respect toxa and premultiplying byC. This yields

C~du;a1kãdu!5C~CTdq! ;a1Ckãdu5dq;a1K ãdq.
(42)

Substituting Eqs.~41! and ~42! into Eq. ~40!, one obtains an in-
trinsic expression for the variation of the in-plane strain comp
nents as

deab5eb
T@dq;a1K ãdq1~eã1gã!dc# (43)

where eb
Teã vanishes whena5b. This matrix equation can be

written explicitly as four scalar equations:

de115dq1;12K13dq21K11dq322g13dc11e12dc3

de125dq2;11K13dq11k12dq322g13dc22~11e11!dc3

(44)

de215dq1;22K23dq21k21dq322g23dc11~11e22!dc3

de225dq2;21K23dq11K22dq322g23dc22e12dc3 .

The variationsde12 and de21 should be equal due to Eq.~9!;
hence, one can solve for the virtual rotation component abouB3
as
dc35
dq2;12dq1;21K13dq11K23dq21~k122k21!dq322g13dc212g23dc1

21e111e22
. (45)
the
s as
It is now possible to write the variations of all strain measures
terms of three virtual displacement and two virtual rotation co
ponents as

de115dq1;12K13dq21K11dq322g13dc11e12dc3

de225dq2;21K23dq11K22dq322g23dc22e12dc3
(46)
in
m-

2de125dq2;11dq1;21K13dq12K23dq212vdq3

22g13dc222g23dc11~e222e11!dc3

with dc3 taken from Eq.~45!.
Let us now consider the transverse shear strains

2ga35e3
T@C~ea1u;a1kãu!2ea#. (47)

Following a procedure similar to the above, one can obtain
virtual strain-displacement equation for transverse shear strain
Transactions of the ASME
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2dga35e3
T@dq;a1K ãdq1~eã1gã!dc#. (48)

Explicit expressions for the variations of the shear strain com
nents are now easily written as

2dga35dq3;a1dca1eabdcb2Kabdqb . (49)

Finally, variations of the curvatures are found. First, taking
straightforward variation of Eq.~28!, one obtains

dkã52
dC,aCT

Aa
2

C,adCT

Aa
1dCkãCT1CkãdCT. (50)

In order to eliminatedC,a , we differentiate Eq.~36! with respect
to xa

dc
.

,a52dC,aCT2dCC,a
T . (51)

In order to eliminatedC, we can use Eq.~38!. Then, Eq.~50!
becomes

dkã5dc
.

;a1K ãdc
.

2dc
.

K ã. (52)

Using another tilde identity (ỸZ̃5ỸZ̃2Z̃Ỹ) one can find the vir-
tual strain-displacement relation as

dka5dc ;a1K ã dc. (53)

In explicit form

dk115
dc1,1

A1
2K13dc21k12dc3

dk225
dc2,2

A2
1K23dc12k21dc3 (54)

2dv5
dc1,2

A2
1

dc2,1

A1
1K13dc12K23dc21~K222K11!dc3

wheredc3 can again be eliminated by using Eq.~45!.

Intrinsic Equilibrium Equations
In this section, we will make use of the virtual strain

displacement relations in the variation of the internal strain ene
in order to derive the intrinsic equilibrium equations. Here w
define the generalized forces as

]P

]e11
5N11

]P

]e22
5N22

1

2

]P

]e12
5N12

]P

]k11
5M11

]P

]k22
5M22

1

2

]P

]v
5M12 (55)

1

2

]P

]g13
5Q1

1

2

]P

]g23
5Q2 .

To use the principle of virtual work to derive the equilibriu
equations, one needs to know the applied loads. In addition to
applied loads used in the modeling process,t iBi at the top sur-
face,b iBi at the bottom surface and body forcef iBi @17#, one can
also specify appropriate combinations of displacements, rotat
~geometrical boundary conditions!, running forces and moment
~natural boundary conditions! along the boundary around the re
erence surface. It is trivial to apply the geometrical boundary c
ditions. Although it is possible in most cases that natural bound
conditions can be derived from Newton’s law, the procedure
tedious and not easily applied here because the physical mea
for some of the generalized forces are not clear. Thus, nat
boundary conditions are best derived from the principle of virt
work.

Suppose on boundaryG ~see Fig. 2!, we specify a force result-
ant N̂nn and moment resultantM̂ nn along the outward normal o
Journal of Applied Mechanics
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the boundary curve tangent to the reference surfacen, N̂nt and
M̂ nt along the tangent of the boundary curvet, N̂n3 along the
normal of the reference surface. Then the principle of virtual wo
~strictly speaking, the principle of virtual displacements! can be
stated as:

E E
s
~dP2dqi f i2dcama!A1A2dx1dx22E

G
~N̂nndqn1N̂ntdqt

1N̂n3dq31M̂ nndcn1M̂ ntdct!dG50 (56)

where f i andma are taken directly from@17#.
It is now possible to obtain intrinsic equilibrium equations a

consistent edge conditions by use of the principle of virtual wo
and the virtual strain-displacement relations derived in the pre
ous section. The equilibrium equations are

~A2N11! ,1

A1A2
1

@A1~N121N!# ,2

A1A2
2K13~N122N!

2K23N221Q1K111Q2k211 f 150

~A1N22! ,2

A1A2
1

@A2~N122N!# ,1

A1A2
1K23~N121N!

1K13N111Q1k121Q2K221 f 250

~A2Q1! ,1

A1A2
1

~A1Q2! ,2

A1A2
2K11N112K22N22

22vN121~k122k21!N1 f 350 (57)

~A2M11! ,1

A1A2
1

~A1M12! ,2

A1A2
2Q1~11e11!2Q2e1212g13N11

12g23~N121N!2M12K132M22K231m150

~A2M12! ,1

A1A2
1

~A1M22! ,2

A1A2
2Q2~11e22!2Q1e1212g13~N122N!

12g23N221M11K131M12K231m250

where

Fig. 2 Schematic of an arbitrary boundary
JANUARY 2004, Vol. 71 Õ 7
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~N222N11!e121N12~e112e22!1M22k212M11k121M12~K112K22!
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The associated natural boundary conditions onG are

N̂nn5n1
2N1112n1n2N121n2

2N22

N̂nt5n1n2~N222N11!1~n1
22n2

2!N122N

N̂nn5n1
2N1112n1n2N121n2

2N22 (59)

N̂n35n1Q11n2Q2

M̂ nn5n1
2M1112n1n2M121n2

2M22

M̂ nt5n1n2~M222M11!1~n1
22n2

2!M12

wheren15cosf, n25sinf, andf is the angle between the ou
ward normal of the boundary and thex1 direction as shown in Fig.
2. The terms containingN stem from consistent inclusion of th
finite rotation from undeformed triad to deformed triad althou
thenonzerorotation aboutB3 is expressed in terms of other kine
matical quantities. Similar terms are found in the shell equati
derived by Berdichevsky@16# where only five equilibrium equa
tions are derived.

In a mixed formulation,N can be shown to be the Lagrang
multiplier that enforces Eq.~45!. To further understand the natur
of N one can undertake the following exercise: SettingPi50 and
e125e21 for the equilibrium equations given in@13#, (N21
2N12)/2 can be solved from Reissner’s sixth equilibrium equ
tion. This shows that Reissner’s (N212N12)/2 is the same as ou
N, and Reissner’s (N212N12)/2 is the same as ourN12. Finally,
substitution of this sixth equation into the other five yields the fi
equilibrium equations given here in Eqs.~57!. It is noted that
Reissner’s equilibrium equations are derived based on the bas
Newton’s law of motion without consideration of either constit
tive law or strain-displacement relations. However, the pres
derivation is purely displacement-based. The reproduction
those equilibrium equations by the present derivation illustra
that, as long as the formulation is geometrically exact, one
derive exact equilibrium equations.

A few investigators have noted an apparent conflict between
symmetry of the stress resultants and the satisfaction of mom
equilibrium about the normal. In reality there is no conflict, b
one must be careful. We have shown herein that the triadBi can
always be chosen so thate125e21. If this relation is enforced
strongly, there is only one in-plane shear stress resultant,N12, that
can be derived from the energy. In that case the physical qua
associated with the antisymmetric part of Reissner’s in-pl
stress resultants, while it is not available from the constitutive l
is nevertheless available as a reactive quantity from the mom
equilibrium equation about the normal. However, it must
stressed that the moment equilibrium equation about the norm
not available from a conventional energy approach, in which
virtual displacements and rotations must be independent.

In a somewhat similar vein, not being able to obtain the a
symmetric part of the moment stress resultants from derivative
the two-dimensional strain energy is a result of the approxim
dimensional reduction process in which it was determined, ba
on asymptotic considerations andgeometricallynonlinear three-
dimensional elasticity, that the antisymmetric termk122k21 does
not appear as an independent generalized strain measure i
two-dimensional constitutive law with correction only to the ord
of h/R. However, if a more refined theory with respect toh/R is
required, thenk122k21 would appear as a generalized strain in t
two-dimensional constitutive law and a new generalized mom
would be defined based on the constitutive law.
8 Õ Vol. 71, JANUARY 2004
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For practical computational schemes, equilibrium equations
boundary conditions need to use the constitutive law to relate w
the generalized two-dimensional strains. Finally a set of kinem
cal equations is needed. Depending on how this part is done
analysis can be completed in either of two fundamentally differ
ways: a purely intrinsic form, relying on compatibility equation
and a mixed form relying on explicit strain-displacement re
tions.

In the intrinsic form we have five equilibrium equations, Eq
~57!; six compatibility equations, Eqs.~12!–~14!; and the eight
constitutive equations—a total of 19 equations. The 19 unknow
are the eight stress resultants,N11, N12, N22, Q1 , Q2 , M11,
M12, andM22; and the 11 strain measurese11, 2e12, e22, 2g13,
2g23, k11, 2v12, andk22, along withk13, k23, andk122k21.
The last three strain measures appear in the equilibrium equa
but not in the constitutive law.

In a mixed formulation one would use the same five equil
rium equations and eight constitutive equations. One would a
need a set of strain-displacement relations among the 11 gen
ized strain measurese11, 2e12, e22, 2g13, 2g23, k11, 2v, and
k22, along withk13, k23, andk122k21, and the five global dis-
placement and rotational variablesu1 , u2 , u3 , u1 , andu2 . One
possible set of such equations is as follows: use five of Eqs.~24!,
using eithere12 or e21; use the six Eqs.~31!. There are also the
two other rotational variablesu3 andf3 , which are governed by
Eqs.~22! and ~25!, respectively. This way there are 26 equatio
and 26 unknowns. This mixed formulation is capable of handl
boundary conditions on two-dimensional stress resultants
displacement/rotation variables. At least in principle, one co
recover a displacement formulation by eliminating all the u
knowns except the displacement and rotation variables.

Equations~57! and~58! contain terms that could be disregarde
because of the original assumption of small strain. We will n
undertake this simplification here, because it is out of the scop
the present study to actually implement the two-dimensional n
linear theory. Therefore, our equilibrium equations and kinem
cal equations are geometrically exact; all approximations s
from the dimensional reduction process used to obtain the t
dimensional constitutive law.

The present work is a direct extension of@18# to treat shells. If
one setski j 50 andAa51, all the formulas developed here wi
reduce to those in@18#, which indirectly verifies that derivation.

Conclusions
A nonlinear shear-deformable shell theory has been develo

to be completely compatible with the modeling process in@17#.
The compatibility equations, kinematical relations and equil
rium equations are derived for arbitrarily large displacements
rotations under the restriction that the strain must be small.
resulting formulas are compared with others in the literature. T
following conclusions can be drawn from the present work:

1. The variational asymptotic method can be used to decou
the original three-dimensional elasticity problem of a shell into
one-dimensional, through-the-thickness analysis,@17#, and a two-
dimensional, shell analysis. The through-the-thickness anal
provides both an accurate two-dimensional constitutive law
the nonlinear shell theory and accurate through-the-thickness
covery relations for three-dimensional displacement, strain,
stress. This way, an intimate relation between the shell theory
three-dimensional elasticity is established.

2. A full finite rotation must be applied to fully specify th
displacement field. However, since the strain energy on which
Transactions of the ASME
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formulation is based is independent ofka3 , the rotation about the
normal is not independent and can be expressed in terms of o
quantities. Thus, it can be chosen so that the two-dimensio
in-plane shear strain measures are equal. This way all the s
measures can be expressed in terms of five independent quan
three displacement and two rotation measures, and only one s
resultant for in-plane shear can be derived from the tw
dimensional energy.

3. Only five equilibrium equations are obtainable in
displacement-based variational formulation. Moment equilibri
about the normal is satisfied implicitly. If one does not include
full finite rotation, but rather sets the rotation about the norm
equal to zero, the correct equilibrium equations cannot be
tained. This should shed some light on the nature of ‘‘drillin
degrees of freedom.
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