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Abstract

A rigorous and systematic dimensional reduction of a shell-like structure is undertaken. It starts with geometrically

nonlinear, three-dimensional (3-D), anisotropic elasticity theory and takes advantage of small parameters associated

with the geometry. This reduction is carried out using the variational asymptotic method and splits the 3-D problem

into a linear, one-dimensional (1-D), through-the-thickness analysis and a nonlinear, two-dimensional (2-D), shell

analysis. The 2-D equations are put into the form of a nonlinear Reissner–Mindlin shell theory, details of which are

dealt with in a separate paper. The focus of this paper is on the through-the-thickness analysis, which is solved by a 1-D

finite element method and which provides two useful pieces of information: a generalized 2-D constitutive law for the

shell equations, and a set of recovery relations that can be used to express the 3-D field variables through the thickness

in terms of 2-D shell variables calculated in the shell analysis. The resulting analysis can be incorporated into standard

Reissner–Mindlin shell finite element codes. Numerical results are compared with the exact solution, and the excellent

agreement validates the fidelity of this modeling approach.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although composite materials have found increasing applications in engineering due to their superior
engineering properties and enhanced manufacturing technology, their application is not so extensive as one
might expect. One reason is that the old tools used for designing structures made of isotropic materials are
inadequate for use with composites, and the analysis of composite structures is much more complicated
than that for isotropic structures. Although many new models have appeared in the literature, design
engineers have been reluctant to accept them with confidence. This is partly because many new models
are constructed for specific problems without generalization in mind and partly because some models are
too complicated and computationally inefficient to be used for design purposes. Simple yet efficient and
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generalized methods of analysis are still needed to shorten the design period and reduce the cost of com-
posite structures.
Many engineering structures made with composite materials have one-dimension (1-D) much smaller

than the other two and can be modeled as shells. Shell models are generally derived from three-dimensional
(3-D) elasticity theory, making use of the fact that the shell is thin in some sense. The simplest composite
shell theory is the classical lamination theory, which is based on the Kirchhoff hypothesis. It is well known,
however, that composite shells do not have to be very thick in order for this theory to yield extremely poor
results compared to the actual 3-D solution.
Although it is plausible to take into account the smallness of the thickness of such structures, construction

of an accurate two-dimensional (2-D) model for a 3-D body still introduces a lot of challenges. There have
been many attempts to rationally improve upon the classical model, almost all of which have serious
shortcomings. One will appreciate this by reading recent review papers [8,9]. Most of the models that have
appeared in the literature [3,10,13,19] are based on ad hoc kinematic assumptions that cannot be reasonably
justified for composite structures, such as an a priori distribution of displacement through the thickness.
From a mathematical point of view, the approximation in this dimensional reduction process stems from

elimination of the thickness coordinate from the independent variables of the governing partial differential
equations of equilibrium. This sort of approximation is inevitable if one wants to take advantage of the
smallness of the thickness to simplify the analysis. However, other approximations that are not absolutely
necessary should be avoided. For example, for small-strain analysis of shells, it is reasonable to assume that
the thickness, h, is small compared to the wavelength of deformation of the reference surface, l. However, it
is not at all reasonable to assume a priori some ad hoc displacement field, although that is the way most
existing shell theories have been constructed.
In this paper we will proceed in a very different manner. We first cast the original 3-D elasticity problem

in a form that introduces 2-D intrinsic variables for the shell. This can be done in such a way as to be
applicable for arbitrarily large displacement and global rotation, subject only to the strain being small [4,6].
Then, a systematic approach can be employed to reduce the dimensionality in terms of the smallness of h=R,
where R is the minimum radius of curvature for the shell structure, and h=l. The present work uses the
variational asymptotic method (VAM) [2] to split the original nonlinear 3-D elasticity problem into a
linear, 1-D, normal-line analysis and a nonlinear, 2-D, shell analysis.
The normal-line analysis produces a constitutive model to be used in the 2-D shell analysis, along with

recovery relations that yield the 3-D fields for displacement, strain and stress using results obtained from
the solution of the 2-D problem. The resulting shell theory is of the Reissner–Mindlin type but is geo-
metrically exact. It is noted that shear deformable shell theories are said to be of the Reissner–Mindlin type
if the only generalized strains in the analysis of the shell reference surface are three in-plane membrane
strains, three out-of-plane curvature strains and two transverse shear strains. This paper does not focus on
the resulting 2-D theory, however, but on the through-the-thickness analysis. For this reason, there is no
need to review here the extensive collection of published papers on shell theories. A detailed exposition of
the 2-D theory implied by the dimensional reduction herein can be found in [17].
The work is an extension of the previous work on plates by the authors [18], which is an extension of the

pioneering work of [14,15]. The derivation has been greatly modified to accommodate the complexity of
shell geometry, finally yielding a geometrical correction of order h=R to the energy. Moreover, the present
approach differs the work of Sutyrin [14,15] at least in the following three aspects. First, the theory in-
troduced in these earlier works is restricted to be linear, while the present formulation is in an intrinsic form
which is good for geometrically exact nonlinear analysis. Second, a general form of warping field is assumed
a priori in the earlier works, and the higher-order warping is used as a parameter to solve for the assumed
functions. However, in the present work the warping field is solved by usual procedure of calculus of
variations. Third, the earlier works only treat composite plates, and the mathematical complexity of the
approach used in those works defies extension to treat composite shells in a similar fashion.
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The present theory has been implemented into the computer program––variational asymptotic plate and
shell analysis (VAPAS), a 1-D finite element code. VAPAS can be incorporated into standard 2-D shell
solvers to provide an efficient and accurate analysis of composite shells, including the recovery of all 3-D
field variables.

2. 3-D formulation

A shell is a 3-D body with a relatively small thickness h and a smooth reference surface usually chosen to
be the mid-surface (see Fig. 1). The geometry of the reference surface can be mathematically represented by a
set of arbitrary curvilinear coordinates, xa. (Here and throughout the paper, Greek indices assume values 1
and 2 while Latin indices assume 1, 2, and 3. Dummy indices are summed over their range except where
explicitly indicated.) However, without loss of generality, one could choose the lines of curvatures to be the
curvilinear coordinates to simplify the formulation. In fact, shell theories are almost exclusively based on this
choice. One has to specify another coordinate outside the reference surface to describe a 3-D medium un-
iquely. It is a natural and convenient choice to take the third coordinate x3 as the normal coordinate. Letting
b3ðx1; x2Þ denote the unit vector normal to the reference surface, one can then describe the position of any
material point in the undeformed configuration by its position vector r̂r from a fixed point O, such that

r̂rðx1; x2; x3Þ ¼ rðx1; x2Þ þ x3b3ðx1; x2Þ; ð1Þ
where r is the position vector from O to the point located by xa on the reference surface. When the reference
surface of the undeformed shell coincides with its middle surface, it naturally follows that

hr̂rðx1; x2; x3Þi ¼ rðx1; x2Þ; ð2Þ
where the angle brackets denote the definite integral through the thickness of the shell and will be used
throughout the rest of the development.
The 2-D base vectors associated with xa are defined as

aaðx1; x2Þ ¼ r;a; ð3Þ
where ð Þ;a ¼ oð Þ=oa. From henceforth, for simplicity, we will avoid explicitly including the arguments of
functions unless it is not obvious for the reader to determine what they are. From Eq. (3) on can define the
so-called Lam�ee parameters as

Fig. 1. Schematic of shell deformation.
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Aaðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aa � aa

p
: ð4Þ

Note here the summation convention is not applied here because a is not a dummy index; this rule will
apply in similar situations throughout the rest of development. Then the unit vectors along coordinates xa

can be obtained as

baðx1; x2Þ ¼
aa

Aa
: ð5Þ

It is obvious that the unit vectors bi form an orthogonal triad, such that

b3 ¼ b1 	 b2 ¼
a1 	 a2

ja1 	 a2j
: ð6Þ

By the definition of Eq. (3), one can get the 3-D base vectors gi ¼ r̂r;i for the chosen coordinate system:

g1 ¼ a1 þ x3b3;1;

g2 ¼ a2 þ x3b3;2;

g3 ¼ b3:

ð7Þ

From the differential geometry of surface and following Refs. [6,11] one can express the derivatives of unit
vectors bi;a as follows:

bi;a ¼ Aað�ka2b1 þ ka1b2 þ ka3b3Þ 	 bi; ð8Þ
which can also be written explicitly in matrix form as

b1;1
b2;1
b3;1

8<
:

9=
; ¼ A1

0 k13 �k11
�k13 0 �k12
k11 k12 0

2
4

3
5 b1

b2
b3

8<
:

9=
;;

b1;2
b2;2
b3;2

8<
:

9=
; ¼ A2

0 k23 �k21
�k23 0 �k22
k21 k22 0

2
4

3
5 b1

b2
b3

8<
:

9=
;;

ð9Þ

where kab refers to the usual out-of-plane curvatures and k12 ¼ k21 ¼ 0 if the coordinates are chosen to be
the lines of curvatures. The geodesic curvatures ka3 do not in general vanish for the chosen coordinate
system, and they can be expressed in terms of Lam�ee parameters as

k13 ¼ � A1;2
A1A2

; k23 ¼
A2;1
A1A2

: ð10Þ

Using Eq. (9), one can rewrite the expression for the 3-D base vectors from Eq. (7) as

g1 ¼ A1ð1þ x3k11Þb1;
g2 ¼ A2ð1þ x3k22Þb2;
g3 ¼ b3

ð11Þ

and the contravariant base vectors gi can be obtained trivially as

g1 ¼ b1

A1ð1þ x3k11Þ
;

g2 ¼ b2

A2ð1þ x3k22Þ
;

g3 ¼ b3:

ð12Þ
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When the shell deforms, the particle that had position vector r̂r in the undeformed state now has position
vector bRR in the deformed shell. The latter can be uniquely determined by the deformation of the 3-D body.
Similarly, another triad Bi is introduced for the deformed configuration. Note that the Bi unit vectors
are just tools to enable one to express vectors and tensors in their component form during the derivation.
They are not necessarily tangent to the coordinates of the deformed shell. The relation between Bi and bi
can be specified by an arbitrarily large rotation specified in terms of the matrix of direction cosines Cðx1; x2Þ
so that

Bi ¼ Cijbj; Cij ¼ Bi � bj; ð13Þ
subject to the requirement that Bi is coincident with bi when the structure is undeformed. Now the position
vector bRR can be represented as

bRRðx1; x2; x3Þ ¼ Rðx1; x2Þ þ x3B3ðx1; x2Þ þ wiðx1; x2; x3ÞBiðx1; x2Þ; ð14Þ
where wi is the warping of the normal-line element. These quantities are not assumed, as in most shell
theories. Rather, they are treated as unknown 3-D functions and will be solved for later. Eq. (14) is six times
redundant because of the way warping introduced. Six constraints are needed to make the formulation
unique. The redundancy can be removed by choosing appropriate definitions of R and Bi. One can define R
similarly as Eq. (2) to be the average position through the thickness, from which it follows that the warping
functions must satisfy the three constraints

hwiðx1; x2; x3Þi ¼ 0: ð15Þ
Another two constraints can be specified by taking B3 as the normal to the reference surface of the de-
formed shell. It should be noted that this choice has nothing to do with the Kirchhoff hypothesis. Indeed, it
is only for convenience in the derivation. In the Kirchhoff assumption, no local deformation of the
transverse normal is allowed. On the other hand, according to the present scheme we allow all possible
deformation, classifying all deformation other than that of classical shell theory as warping, which is as-
sumed to be small and to be solved by VAM. This assumption is valid if the strain is small and the local
rotation (i.e. the rotation of the normal line due to warping) is of the order of the strain [5].
Based on the concept of decomposition of rotation tensor [4,5], the Jauman–Biot–Cauchy strain com-

ponents for small local rotation are given by

Cij ¼ 1
2
ðFij þ FjiÞ � dij; ð16Þ

where Fij is the mixed-basis component of the deformation gradient tensor such that

Fij ¼ Bi �Gkg
k � bj: ð17Þ

Here Gk ¼ obRR=oxk is the covariant basis vector of the deformed configuration. One can obtain Gk with the
help of the definition of so-called generalized 2-D strains [6,11], given by

R;a ¼ AaðBa þ eabBbÞ ð18Þ
and

Bi;a ¼ Aað�Ka2B1 þ Ka1B2 þ Ka3B3Þ 	 Bi; ð19Þ
where eab are the 2-D in-plane strains and of which the order is denoted by e, and Kij are the curvatures of
the deformed surface which are the summation of curvatures of undeformed geometry kij and curvatures
introduced by the deformation jij of which the order is denoted by e=h. Both eab and jab are termed as 2-D
generalized strains. Here one is free to set e12 ¼ e21, i.e.

B1 � R;2

A2
¼ B2 � R;1

A1
; ð20Þ
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which can serve as another constraint to specify the global rotation of the triad Bi. With the assumption
that the strain is small compared to unity, which has the effect of removing all the terms that are products of
the warping and the generalized strains, and with the help of Eqs. 12 and (16)–(19), one can obtain the 3-D
strain fields as

C11 ¼
e11 þ x3j11 þ w1;1=A1 þ w3k11 � w2k13

1þ x3k11
;

2C12 ¼
e21 þ x3j21 þ w1;2=A2 � w2k23

1þ x3k22
þ e12 þ x3j12 þ w2;1=A1 þ w1k13

1þ x3k11
;

C22 ¼
e22 þ x3j22 þ w2;2=A2 þ w3k22 þ w1k23

1þ x3k22
;

2C13 ¼ w1;3 þ
w3;1=A1 � w1k11
1þ x3k11

;

2C23 ¼ w2;3 þ
w3;2=A2 � w2k22
1þ x3k22

;

C33 ¼ w3;3:

ð21Þ

Until now, the analysis is as general as a small-strain, geometrically nonlinear theory can be. However, to
seek a constitutive model relating the generalized strains and stress resultants, it is inevitable that one has to
make some approximations, as mentioned before. It is reasonable to keep the approximations in the
constitutive relations since even the original 3-D constitutive model is unavoidably approximate.
For most engineering structures, e is a small parameter in the order of 10�5–10�3 and it makes no sense to

keep terms in the order of e in comparison with unity. This fact has already been taken advantage of to
derive Eq. (21). For thin shells, h=R � 10�2, the components of the order of h=R can be discarded. For shells
with moderate thickness (h=R � 10�1), the correction of h=R (geometrical refinement) is necessary. As
mentioned in Ref. [2], numerical examples show that 2-D shell models some times give satisfactory results
down to h=l � 0:5. This fact convinces us to construct a 2-D theory taking account of h=l and ðh=lÞ2
corrections (shear refinement). However we do not include any correction from h2=ðRlÞ. This means that
the present theory is asymptotically correct for R > l2=h. And also as we are interested in the central so-
lution with geometrical and shear refinements for regular shells, we assume that the initial curvatures kij and
Lam�ee parameters Aa are slowly varying or constant. This assumption will result in neglecting all the de-
rivatives of these quantities with respect to in-plane coordinates in the formulation. It is also been proved
by the compatibility equations of 2-D strains that j21 � j12 is of the order 1=R or eh=l2 which only makes a
contribution of ðh=RÞ2 or eh3=l2=R and outside the range of our approximation [16]. It is worthwhile to
emphasize that these assumptions are necessary only for the sake of seeking a Reissner–Mindlin like
constitutive model. The approximations in determining the 2-D constitutive law are the only approxima-
tions in the 2-D theory.
Having made above approximations, one can express the 3-D strain field with keeping the terms of order

h=R, h=l and ðh=lÞ2 in matrix form as

C ¼ Chwþ C��þ CRhwþ CR��þ Cl1w;1 þ Cl2w;2; ð22Þ

where

C ¼ bC11 2C12 C22 2C13 2C23 C33 cT;
w ¼ bw1 w2 w3 cT;
� ¼ b e11 2e12 e22 j11 j12 þ j21 j22 cT

ð23Þ
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and ð Þ;a ¼ ðo=oaÞð1=AaÞ. Since Aa are constants all the rules of differentiation are applicable to the newly-
introduced notation. All the operators are defined as

Ch ¼

0 0 0

0 0 0

0 0 0
o

ox3
0 0

0
o

ox3
0

0 0
o

ox3

2
66666666666664

3
77777777777775
; Cl1 ¼

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

2
66666664

3
77777775
; Cl2 ¼

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

2
66666664

3
77777775
; ð24Þ

C� ¼

1 0 0 x3 0 0
0 1 0 0 x3 0
0 0 1 0 0 x3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775; CRh ¼

0 0 k11
0 0 0
0 0 k22

�k11 0 0
0 �k22 0
0 0 0

2
6666664

3
7777775; ð25Þ

CR� ¼ �x3

k11 0 0 x3k11 0 0

0
k11 þ k22

2
0 0 x3

k11 þ k22
2

0

0 0 k22 0 0 x3k22
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
66666664

3
77777775
: ð26Þ

Now, the total strain energy of the shell structure can be expressed as

J ¼ 1

2

Z
v

CTDCg1 	 g2 � g3 dx1 dx2 dx3 ¼
1

2

Z
s
hCTDCqids; ð27Þ

where v is the volume occupied by the 3-D body in the undeformed configuration, s is the surface stretched
by the undeformed reference surface and

q ¼ g1 	 g2 � g3
ja1 	 a2j

¼ 1þ x3ðk11 þ k22Þ þO
h2

R2

� �
: ð28Þ

The strain energy per unit area (which is the same as the strain energy for the deformation of the normal-
line element) is

U ¼ 1
2
hCTDCqi; ð29Þ

where D is the 3-D 6	 6 material matrix, which comes from the fourth order elasticity tensor expressed in
the basis bi. This matrix is in general fully populated. However, if it is desired to model laminated composite
shells in which each lamina exhibits a monoclinic symmetry about its own mid-surface (for which the
material matrix is determined by 13 constants instead of 21) and is rotated about the local normal to be a
layer in the composite laminated shell, some part of this material matrix will always vanish no matter what
the layup angle is [18].
To deal with applied loads, we will at first leave open the existence of a potential energy and develop

instead the virtual work of the applied loads. The virtual displacement is taken as the Lagrangian variation
of the displacement field, such that
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dbRR ¼ dqBiBi þ x3dwBiBi 	 B3 þ dwiBi þ dwBiBi 	 wjBj; ð30Þ

where the virtual displacement of the reference surface is given by

dqBi ¼ du � Bi ð31Þ

and the virtual rotation of the reference surface is defined such that

dBi ¼ ð�dwBbBb 	 B3 þ dwB3B3Þ 	 Bi: ð32Þ

Since the strain is small, one may safely ignore products of the warping and the loading in the virtual
rotation term. Then, the work done through a virtual displacement due to the applied loads siBi at the top
surface and biBi at the bottom surface and body force /iBi through the thickness is

dW ¼ ðsi þ bi þ h/iiÞdqBi þ dwBa

h
2
ðsa

�
� baÞ þ hx3/ai

�
þ dðsiwþ

i þ biw
�
i þ h/iwiiÞ; ð33Þ

where si, bi, and /i are taken to be independent of the deformation, ð Þ
þ ¼ ðÞjx3¼h=2, and ð Þ

� ¼ ðÞjx3¼�h=2. By
introducing column matrices dq, dw, s, b, and /, which are formed by stacking the three elements associated
with indexed symbols of the same names, and using Eqs. (1), (13), and (14) one may write the virtual work
in a matrix form, so that

dW ¼ dq
T
f þ dw

T
mþ dðsTwþ þ bTw� þ h/TwiÞ; ð34Þ

where

f ¼ s þ b þ h/i;

m ¼

h
2
ðs1 � b1Þ þ hx3/1i

h
2
ðs2 � b2Þ þ hx3/2i

0

8><
>:

9>=
>;:

ð35Þ

Here because loading is of the order h=l or higher, we do not include any geometrical correction h=R into
the virtual work which is acceptable in the accuracy of our approximation. The complete statement of the
problem can now be presented in terms of the principle of virtual work, such that

dU � dW ¼ 0: ð36Þ
We have three kinds of virtual quantities here: the virtual displacement dq, the virtual rotation dw and the
variation of warping field dwi. The first two quantities will be handled by 2-D shell theory. And dwi is the
only unknown quantity to be determined in the process of modeling. It can be observed that in spite of
the possibility of accounting for nonconservative forces in the above, the problem that governs the warping
is conservative. Thus, one can pose the problem that governs the warping as the minimization of a total
potential functional

P ¼ U þ W ð37Þ

so that

dP ¼ 0 ð38Þ

in which only the warping displacement is varied, subject to the constraints Eq. (15). This implies that

W ¼ �sTwþ � bTw� � h/Twi: ð39Þ
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Below, for simplicity of terminology, we will refer to P as the total potential energy, or the total energy.
By the principle of minimum total potential energy, one can solve for the unknown warping functions by

minimizing the functional in Eq. (37) subject to the constraints of Eq. (15). However, this problem is still 3-
D. If we attempt to solve this problem directly, we will meet the same difficulty as solving any full 3-D
elasticity problem. Fortunately, as shown in Ref. [18], the VAM can be used to calculate the 3-D warping
functions asymptotically. To deal with numerous layers and to be compatible with 2-D FEM solvers, a
finite element discretization is used to solve the minimization problem. A five-noded isoparametric element
is recommended because we will need the warping functions up to the second-order approximation which
are piecewise polynomials of the fourth order. Discretizing the transverse normal line into 1-D finite ele-
ments, one can express the warping field as

wðxiÞ ¼ Sðx3ÞV ðx1; x2Þ; ð40Þ

where S is the shape function and V is the nodal value of warping field along the transverse normal. Now
one is ready to use VAM to solve the unknown warping field asymptotically.

3. Dimensional reduction

Now, to rigorously reduce the original 3-D problem to a 2-D shell problem, one must attempt to re-
produce the energy stored in the 3-D structure in a 2-D formulation. This dimensional reduction can only
be done approximately, and one way to do it is by taking advantage of the smallness of h=l and h=R.
Another small parameter is the order of the maximum strain in the shell, which we denote here as e. The
small parameter e has already been taken advantage of when we derived Eq. (22). The approximate energy
we are interested in is

P ¼ le2 Oð1Þ
�

þO h
R

� �
þO h

l

� �
þO h2

l2

� ��
; ð41Þ

where l represents the material elastic constants, all of which are assumed to be of the same order. All terms
of higher order are discarded, and the terms retained are sufficient for the purpose of creating a shallow
shell model of the Reissner–Mindlin type. Substituting Eq. (40) into Eq. (37), one can express the total
energy within the accuracy of our approximation in discretized form as

2P ¼ V TEV þ 2V TðDh��þ DRh��þ DhRhV þ DhR��þ Dhl1V;1 þ Dhl2V;2Þ þ �TðD�� þ 2D�R�Þ�
þ V T

;1Dl1l1V;1 þ V T
;2Dl2l2V;2 þ 2ðV T

;1Dl1��þ V T
;2Dl2��þ V T

;1Dl1l2V;2Þ þ 2V TL; ð42Þ

where L contains the load related terms such that

L ¼ �SþTs � S�Tb � hST/i: ð43Þ
The new matrices carry the properties of both the geometry and material:

E ¼ h½ChS�TD½ChS�qi; Dh� ¼ h½ChS�TDC�qi;
Dhl1 ¼ h½ChS�TD½Cl1S�i; Dhl2 ¼ h½ChS�TD½Cl2S�i;
D�� ¼ hCT

� DC�qi; Dl1l1 ¼ h½Cl1S�
TD½Cl1S�i;

Dl1l2 ¼ h½Cl1S�
TD½Cl2S�i; Dl2l2 ¼ h½Cl2S�

TD½Cl2S�i;
DhRh ¼ h½ChS�TD½CRhS�i; DhR� ¼ h½ChS�TDCR�i;
DRh� ¼ h½CRhS�TDC�i; D�R� ¼ hCT

� DCR�i:

ð44Þ
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One can observe that the first term of Eq. (22) has order kV k=h and the last two terms have order kV k=l
which is clearly one order of h=l higher than the first term. This observation allows us to avoid dealing with
derivatives of unknown functions with respect to in-plane coordinates. As mentioned before, although
reduced-order models based on ad hoc kinematic assumptions regularly appear in the literature, there is no
basis whatsoever to justify such assumptions. Rather, in this work, the VAM will be used to mathematically
perform a dimensional reduction of the 3-D problem to a series of 2-D models. One can refer to Ref. [1] for
a brief introduction of the VAM. To proceed by this method, one has to assess and keep track of the order
of all the quantities in the formulation. Following Ref. [14], the quantities of interest have the following
orders:

�ab � hjab � e; f3 � lðh=lÞ2e;
fa � lðh=lÞe; ma � lhðh=lÞe:

ð45Þ

It is noted that m3 ¼ 0 if the elastic body is not subject to body moments.
The VAM requires one to find the leading terms of the functional according to the different orders. The

total potential energy consists of quadratic expressions involving the warping and the generalized strains. In
addition there are terms that involve the loading along with interaction terms between the warping and the
both of the other types of quantities. For the zeroth-order approximation, these leading terms of Eq. (42)
are

2P0 ¼ V TE0V þ 2V TDh�0�þ �TD��0�; ð46Þ
where E0, Dh�0 and D��0 are the E, Dh�, and D�� matrices defined in Eq. (44) with q ¼ 1 (no geometrical
correction). The discretized form of Eq. (15) can be written as

V THw ¼ 0; ð47Þ
where H ¼ hSTSi and w is the normalized kernel matrix of E0 such that wTHw ¼ I . Our problem has now
been transformed into the numerical minimization of Eq. (46) subject to constraints Eq. (47). The Euler–
Lagrange equation for this problem can be obtained by usual procedure of the calculus of variations with
the aid of a Lagrange multiplier as follows:

E0V þ Dh�0� ¼ HwK: ð48Þ

Considering the properties of the kernel matrix w, one calculates the Lagrange multiplier K as

K ¼ wTDh�0�: ð49Þ
Substituting Eq. (49) back into Eq. (48), we obtain

E0V ¼ ðHwwT � IÞDh�0�: ð50Þ
There exists a unique solution linearly independent of the null space of E0 for V because the right-hand-side
of Eq. (50) is orthogonal to the null space. Since the solution is unique, we can choose any convenient
constraints to make the problem determined. In our implementation, we arbitrarily constrain three degrees
of freedom to obtain a solution V � for the linear system, so that the final solution can be written as

V ¼ V � þ wk; ð51Þ
where k can be determined by Eq. (47) as

k ¼ �wTHV �: ð52Þ
Hence the final solution minimizing the functional Eq. (46) subject to constraints Eq. (47) is

V ¼ ðI � wwTHÞV � ¼ bVV0� ¼ V0: ð53Þ
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Substituting Eq. (53) back into Eq. (42), one can obtain the total energy asymptotically correct through the
order of le2 as

2P0 ¼ �TðbVV T
0 Dh�0 þ D��0Þ� ¼ �TA�: ð54Þ

As pointed out in Ref. [18], the energy of this approximation coincides with classical laminated shell
theories. However, we do not use ad hoc kinematic assumptions such as the Kirchhoff assumption to obtain
this result. Although the energy is the same, the transverse normal strain from our zeroth-order approxi-
mation is not zero. The result is also the same as the zeroth-order approximation of plate theory because we
have not yet included the geometrical correction due to the initial curvatures.
Although shell theory based on this zeroth-order approximation can do a good job in predicting the

global deformation and in-plane quantities for thin structures, refined theories taking advantage of small
parameters h=R and h=l are required for moderately thick shells to give a better prediction of global de-
formation, in-plane quantities and especially out-of-plane stresses and strains ðri3;Ci3Þ. Let us obtain the
correction coming from h=R first to include the effect of initial curvatures of the structure. Usually to find
the refinement, one needs to calculate the refined warping functions based on the next approximation.
However, since we are only interested in obtaining an energy asymptotically correct up to the order of h=R
which is sufficient for most of the engineering applications, it is unnecessary to calculate the refined warping
with respect to h=R which makes no contribution to the energy up to the order of h=R. At this stage we will
postpone the consideration of the load contribution to the step of h=l correction. The strain energy as-
ymptotically correct up to the order of h=R can be expressed as

2PR ¼ �TðbVV T
0 Dh�0 þ D��0Þ�þ �TðbVV T

0 E
� bVV0 þ D�

��Þ�
þ 2�TðbVV T

0 DhR� þ bVV T
0 DhRh

bVV0 þ D�R� þ bVV T
0 DRh� þ bVV T

0 D
�
h�Þ�; ð55Þ

where

E� ¼ h½ChS�TD½ChS�ðq � 1Þi;
D�

h� ¼ h½ChS�TDC�ðq � 1Þi;
D�

�� ¼ hCT
� DC�ðq � 1Þi:

ð56Þ

To account for transverse shear deformation, one needs to find an energy that is asymptotically correct
through the order of ðh=lÞ2 relative to the leading terms. To obtain this refinement, one needs to find the
refined warping field in the order of h=l. Perturbing the zeroth-order result with a warping field V1 which is
of the order of ðh=lÞV0, one obtains

V ¼ V0 þ V1; ð57Þ
Substituting Eq. (57) back into Eq. (42), one can obtain the leading terms for the first-order approximation
as

2P�
1 ¼ V T

1 EV1 þ 2V T
1 D1�;1 þ 2V T

2 D2�;2 þ 2V T
1 L; ð58Þ

where

D1 ¼ ðDhl1 � DT
hl1
ÞbVV0 � Dl1�; ð59Þ

D2 ¼ ðDhl2 � DT
hl2
ÞbVV0 � Dl2�: ð60Þ

It is understood that the order of the loads in Eq. (45) is associated with warping functions of different
orders, as shown in Ref. [18]. For example, L in Eq. (58) is only comprised of the in-plane components of
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the applied loads. Integration by parts with respect to in-plane coordinates is used here and hereafter
whenever it is convenient for the derivation, because the present goal is to obtain an interior solution for the
shell without consideration of edge effects.
Similarly as in the zeroth-order approximation, one can solve the first-order warping field as

V1 ¼ V11�;1 þ V12�;2 þ V1L ð61Þ

and obtain a total energy that is asymptotically correct up to the order of lðh=lÞ2e and lh=Re, given by

2P1 ¼ �TAR�þ �T;1B�;1 þ 2�T;1C�;2 þ �T;2D�;2 þ 2�TF þ P ; ð62Þ

where

AR ¼ Aþ bVV T
0 E

� bVV0 þ D�
�� þ 2ðbVV T

0 DhR� þ bVV T
0 DhRh

bVV0 þ D�R� þ bVV T
0 DRh� þ bVV T

0 D
�
h�Þ;

B ¼ bVV T
0 Dl1l1

bVV0 þ V T
11D1;

C ¼ bVV T
0 Dl1l2

bVV0 þ 1
2
ðV T
11D2 þ DT

1 V12Þ;
D ¼ bVV T

0 Dl2l2
bVV0 þ V T

12D2;

F ¼ bVV T
0 L� 1

2
ðDT

1 V1L;1 þ V T
11L;1 þ DT

2 V1L;2 þ V T
12L;2Þ;

P ¼ V T
1LL:

ð63Þ

Here we have already taken advantage of monoclinic symmetry to obtain the asymptotically correct energy
in Eq. (62). It is noted that P is a set of quadratic terms from the applied loads and it cannot be varied in the
2-D model. When there is no load, this term will vanish. It comes from the applied load and the warping of
refined approximations introduced by the applied load. Also, the applied loads should not vary rapidly over
the shell reference surface. Otherwise, the derivative terms contained in F will not be higher-order terms to
meet the requirement of asymptotical correctness.

4. Transforming into a Reissner–Mindlin model

Although Eq. (62) is asymptotically correct through the second order and straightforward use of this
strain energy expression is possible as mentioned in Ref. [14], it involves more complicated boundary
conditions than necessary since it contains derivatives of the generalized strain measures. To obtain an
energy functional that is of practical use, one can transform the present approximation into a Reissner–
Mindlin model, which is the most commonly used model in practice.
In a Reissner–Mindlin model, there are two additional degrees of freedom, which are the transverse

shear strains. These are incorporated into the rotation of a local line element through the thickness. If
we introduce another triad B�

i for the deformed Reissner–Mindlin shell, the definition of 2-D strains be-
comes

R;a ¼ AaðB�
a þ e�abB

�
b þ 2ca3B

�
3Þ; ð64Þ

B�
i;a ¼ Aað�K�

a2B
�
1 þ K�

a1B
�
2 þ K�

a3B
�
3Þ 	 B�

i ; ð65Þ

where the transverse shear strains are c ¼ b2c13 2c23c
T
. Since B�

i is uniquely determined by Bi and c, one can
derive the following kinematic identity between the strains measures R of Reissner–Mindlin shell and �

� ¼ R�D1c;1 �D2c;2; ð66Þ

5098 W. Yu et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5087–5109



where

D1 ¼
0 0 0 1 0 0

0 0 0 0 1 0

� �T
;

D2 ¼
0 0 0 0 1 0

0 0 0 0 0 1

� �T
;

R ¼ b e�11 2e�12 e�22 j�
11 j�

12 þj�
21 j�

22 c
T
:

ð67Þ

Now one can rewrite the strain energy expressed in Eq. (62), correct to the orders of interest according to
Eq. (41), in terms of strains of the Reissner–Mindlin model as

2P1 ¼ RTARR� 2RTAD1c;1 � 2RTAD2c;2 þRT
;1BR;1 þ 2RT

;1CR;2 þRT
;2DR;2 þ 2RTF þ P : ð68Þ

The generalized Reissner–Mindlin model of practical use can be of the form

2PR ¼ RTARRþ cTGc þ 2RTFR þ 2cTFc: ð69Þ
To find an equivalent Reissner–Mindlin model equation (69) for Eq. (68), one has to eliminate all partial
derivatives of the classical 2-D strain measures R;a. The equilibrium equations are used to achieve this
purpose. From the two equilibrium equations balancing bending moments with applied moments ma which
is calculated from Eq. (35), one can obtain the following formula:

Gc þ Fc ¼ DT
1AR;1 þDT

2AR;2 þ
m1

m2

� �
: ð70Þ

Using Eq. (70), one can rewrite Eq. (68) as

2U ¼ RTARþ cTGc þ 2RTF þ P þ U �; ð71Þ
where

U � ¼ RT
;1BR;1 þ 2RT

;1CR;2 þRT
;2DR;2 ð72Þ

and

B ¼ Bþ AD1G�1DT
1A;

C ¼ C þ AD1G�1DT
2A;

D ¼ Dþ AD2G�1DT
2A;

P ¼ P �
m1

m2

� �T

G�1 m1

m2

� �
:

ð73Þ

If we can drive U � to be zero for any R, then we have found an asymptotically correct Reissner–Mindlin
shell model. For general anisotropic shells, this term will not be zero; but we can minimize the error to
obtain a Reissner–Mindlin model that is as close to asymptotical correctness as possible. The accuracy of
the Reissner–Mindlin model depends on how close to zero one can drive this term of the energy.
One could proceed with the optimization at this point, but the problem will lead to a least squares

solution for three unknowns (the shear stiffness matrix G) from a linear system of 78 equations (12	 12 and
symmetric). This optimization problem is far too rigid to be practical. A better solution will be obtained if
we can bring more unknowns into the problem. As stated in Ref. [15], there is no unique shell theory of a
given order. One can relax the constraints in Eq. (15) to be hwii ¼ const and still obtain an asymptotically
correct strain energy. Since the zeroth-order approximation gives us an asymptotic model corresponding to
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classical shell theory, we only relax the constraints for the first-order approximation. This relaxation will
modify the warping field to be

V 1 ¼ V11�;1 þ V12�;2 þ V1L þ L1�;1 þ L2�;2; ð74Þ

where L1, L2 consist of 24 constants. The remaining energy U � will also be modified to be

U � ¼ RT
;1
bBBR;1 þ 2RT

;1
bCCR;2 þRT

;2
bDDR;2 ð75Þ

and

bBB ¼ Bþ 2LT1D1;bCC ¼ C þ ðLT1D2 þ DT
1L2Þ;bDD ¼ Dþ 2LT2D2:

ð76Þ

Since now we have 27 unknowns, the optimization is much more flexible. It can give us a more optimal
solution for the shear stiffness matrix G to fit the second-order, asymptotically correct energy into a
Reissner–Mindlin model. In other words, here we have found the Reissner–Mindlin model that describes as
closely as possible the 2-D energy that is asymptotically correct through the second order in h=l. However,
the asymptotical correctness of the warping field can only be ascertained after obtaining another higher-
order approximation, which will be discussed in the next section.
And after minimizing U �, the Reissner–Mindlin model to be used for 2-D shell problem can be expressed

as

2PR ¼ RTARRþ cTGc þ 2RTF ; ð77Þ

where from Eq. (71) the quadratic loads term of P is dropped because it will not affect the 2-D governing
equations. It should be noted that the load-related terms in F are a new feature in the present development.
One must modify traditional Reissner–Mindlin shell solvers to accommodate these terms. This modification
is not difficult and has a form similar to terms that must be included when considering thermal effects or
actuated materials.

5. Recovery relations

From the above, we have obtained a Reissner–Mindlin shell model which is as close as possible to being
asymptotically correct in the sense of matching the total potential energy. The stiffness matrices obtained,
AR and G, along with the load related term F can be used as input for a shell theory derived from the total
energy as shown in Eq. (77). A geometrically nonlinear shell theory that is consistent with present for-
mulation has been developed in [16].
In many applications, however, while it is necessary to accurately calculate the 2-D displacement field of

composite shells, this is not sufficient. Ultimately, the fidelity of a reduced-order model such as this depends
on how well it can predict the 3-D results in the original 3-D structure. Hence recovery relations should be
provided to complete the reduced-order model and the results then compared with those of the original 3-D
model. By recovery relations, then, we mean closed-form expressions for 3-D displacement, strain, and
stress fields in terms of 2-D quantities and x3.
For a strain energy that is asymptotically correct through the second order, we can recover the 3-D

displacement, strain and stress fields only through the first order in a strict sense of asymptotical cor-
rectness. Using Eqs. (1), (13), and (14), one can recover the 3-D displacement field through the first order as
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U3-D ¼ u2-D þ x3
C31
C32

C33 � 1

2
4

3
5þ SV0 þ SV 1; ð78Þ

where U3-D is the column matrix of 3-D displacements and u2-D is the shell displacements. Cij are the
components of global rotation tensor from Eq. (13). And from Eq. (22), one can recover the 3-D strain field
through the first order as

C ¼ ChSðV0 þ V 1Þ þ C��þ Cl1SV0;1 þ Cl2SV0;2 þ CRhV0 þ CR��: ð79Þ
Then, one can use the 3-D constitutive law to obtain 3-D stresses rij.
Since we have obtained an optimum shear stiffness matrix G, some of the recovered 3-D results through

the first order are indeed better than classical theory and conventional first-order shear deformation theory.
However, the transverse normal components of strain and stress (i.e. C33 and r33) do not agree well at all.
Let us recall, that the Reissner–Mindlin theory that has been constructed only ensures a good fit with the
asymptotically correct 3-D displacement field of the first order (while energy is approximated to the second
order). Thus, in order to obtain recovery relations that are valid to the same order as the energy, the VAM
iteration needs to be applied one more time.
Using the same procedure listed in previous section, the second-order warping can be obtained and

expressed symbolically as

V2 ¼ V21�;11 þ V22�;12 þ V23�;22: ð80Þ

Eq. (80) is obtained by taking the original first-order warping V1 to be the result of the first-order ap-
proximation. It is clear that V2 is one order higher than V1 which confirms that V1 is the first-order ap-
proximation. One might be tempted to use V1 in the recovery relations. However, the VAM has split the
original 3-D problem into two sets of problems. As far as recovery relations concerned, it is observed that
the normal-line analysis can at best give us an approximate shape of the distribution of 3-D results. The 2-D
shell analysis will govern the global behavior of the structure. Since V 1 is the warping that yields a Reissner–
Mindlin shell model that is as close as possible to being asymptotically correct, we should still use V 1 in the
recovery relations instead of V1. By doing this, we choose to be more consistent with Reissner–Mindlin shell
model while compromising somewhat on the asymptotical correctness of the shape of the distribution. It
has been verified by numerical examples that this is a good choice.
Hence, we write the 3-D recovery relations for displacement through the second order as

U3-D ¼ u2-D þ x3
C31
C32

C33 � 1

2
4

3
5þ SðV0 þ V 1 þ V2Þ ð81Þ

and the strain field through the second order is

C ¼ ChSðV0 þ V 1 þ V2Þ þ C��þ Cl1SðV0;1 þ V 1;1Þ þ Cl2SðV0;2 þ V 1;2Þ þ CRhV0 þ CR��: ð82Þ
Again the stresses through the second order can be obtained from use of the 3-D material law. It will be
shown in the next section that the recovered 3-D results through the second order agree with the exact
solutions very well.

6. Numerical examples

The computer program, VAPAS, has been extended to include the present theory. Several numerical
examples are given here to validate the theory and code. We investigate several cases for cylindrical bending
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of composite cylindrical shells. All the distributions of 3-D transverse shear and normal stresses through the
thickness are compared with results from classical laminated shell theory (CLST), first-order shear de-
formation theory (FOSDT), and 3-D exact solutions based on Refs. [7,12]. The excellent agreement with
exact solutions demonstrate that our Reissner–Mindlin shell model can be used to analyze composite shells
efficiently and accurately (Fig. 1).
The structure analyzed is a cylindrical shell (see Fig. 2) with x1 max¼ R/ along x1 (the ‘‘lateral’’ direction)

and infinite length in the x2 direction (the ‘‘longitudinal’’ direction). The thickness of the shell is 1 in., and
the radius of the cylinder is R. The material properties of the laminated shell are

EL ¼ 25	 106 psi; ET ¼ 106 psi; GLT ¼ 0:5	 106 psi; GTT ¼ 0:2	 106 psi; mLT ¼ mTT ¼ 0:25:

The shell is simply supported and subjected to a sinusoidal surface loading of the form

s3 ¼ b3 ¼
p0
2
sin

npx1
R/

� �
ð83Þ

with sa ¼ ba ¼ 0.
Four different cases are investigated:

Case 1: nearly cross ply, ½89:5�=)0:5�� and R ¼ 4, n ¼ 1, / ¼ p=3,
Case 2: nearly cross ply, ½89:5�=)0:5�� and R ¼ 10, n ¼ 2, / ¼ p=5,
Case 3: symmetric nearly cross ply, ½0:5�=90:5�=90:5�=0:5�� and R ¼ 10, n ¼ 2, / ¼ p=5,
Case 4: symmetric angle ply, ½30�=)30�=)30�=30�� and R ¼ 10, n ¼ 2, / ¼ p=5.

It is noted that the reason we have changed the ply angle a small amount from the cross-ply case is because
this will allow us to use a Mathematicae code we developed based on Ref. [7] which does not apply to
cross-ply case.

Fig. 2. Cylindrical bending of composite shell.
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Although the Reissner–Mindlin model obtained above, Eq. (71), can be used along with the nonlinear 2-
D shell theory derived previously, only geometrically linear examples are considered here for the purpose of
comparing the results with the 3-D elasticity solution [7,12] which is based on 3-D linear elasticity.
Transverse stress components ri3 are very important for analyzing composite shells and common shell

models fail to provide a good prediction for these quantities, especially, the transverse normal stress. Out-
of-plane quantities are presented here to validate our shell model. Note that, because r33 is a sine function
of x1 and ra3 are cosine functions of x1, their distributions through the thickness are picked up at the
positions of x1 where those stress components have the maximum values. The present results (dots in the
plots), are compared with results from CLST (dash–dotted line), FOSDT (dashed line) and the exact so-
lutions (solid line) generated here by Mathematicae. The results presented here are normalized as
rij ¼ rij=p0 and z ¼ x3=h.
First, to compare with a very complex higher-order shear deformation theory (an ‘‘improved shear

deformation theory’’ based on layerwise theory enforcing transverse stress continuity) presented in Ref.
[19], we study case 1. The out-of-plane stress components are shown in Figs. 3–5. One can observe that r13

Fig. 3. Distribution of the 3-D stress r13 through the thickness (case 1).

Fig. 4. Distribution of the 3-D stress r23 through the thickness (case 1).
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and r23 have a pretty good agreement with the exact solution. Considering the fact the our shell solver is
still a simple single-layer Reissner–Mindlin model, the excellent agreement between the exact solution and
the present theory is quite significant because in Ref. [19], the prediction of r13 is off by almost 40% from the
exact solution at the middle point of the upper layer.
However, the predicted transverse normal stress is not as accurate as the other components. The reason

is that in this test case h=R is larger than h=L, where L is the wavelength of the loading function. Thus, this
case does not satisfy one of the assumptions of our theory and, consequently, one should not expect an
accurate result. To examine a case for which this requirement is satisfied, for example, one can set / ¼ p=5,
n ¼ 2, and R ¼ 10, which means h=L � 1=6 and h=R ¼ 1=10. Experience shows that for cases in which
h=L > h=R, which is typical for engineering practice, this condition is satisfied and reasonable results will be
obtained. Note, however, that this does not appear to be a strict requirement for using the present theory,
unless one needs accurate transverse normal strain or stress. For the same layup (case 2), the out-of-plane
stress components are shown in Figs. 6–8. In this case one can see that the present theory predicts the
transverse normal stress pretty well.

Fig. 6. Distribution of the 3-D stress r13 through the thickness (case 2).

Fig. 5. Distribution of the 3-D stress r33 through the thickness (case 1).
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The beauty of the present theory is that one can easily analyze laminated shells with multiple layers
without increasing the computational effort of a standard 2-D solver since the difficulty of multiple layers is
handled in our modeling process. This step is very efficiently solved by a 1-D finite element method in
VAPAS and allows accurate results to be obtained without undertaking an expensive 3-D or layerwise
solution. To illustrate this, we use VAPAS to analyze cases 3 and 4. The results are shown in Figs. 9–14
where excellent correlation is obtained, as expected.
The in-plane quantities are not shown here for the sake of saving space. The prediction of the present

theory for the in-plane quantities is slightly better than that of FOSDT. Note, however, that our FOSDT
results are based on the shear stiffness matrix G obtained from VAPAS since the traditional FOSDT has no
inherent means to obtain the shear stiffness coefficients for composite shells. The in-plane quantities will
converge to those of CLST if h=R is sufficiently small.
The power of the present theory is clearly exhibited in the excellent agreement with exact 3-D solutions.

Indeed, even though there are more layers in this example, the agreement is still excellent. This clearly
proves that one can use VAPAS along with a standard 2-D shell solver for modeling laminated shells

Fig. 7. Distribution of the 3-D stress r23 through the thickness (case 2).

Fig. 8. Distribution of the 3-D stress r33 through the thickness (case 2).
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Fig. 9. Distribution of the 3-D stress r13 through the thickness (case 3).

Fig. 10. Distribution of the 3-D stress r23 through the thickness (case 3).

Fig. 11. Distribution of the 3-D stress r33 through the thickness (case 3).
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Fig. 12. Distribution of the 3-D stress r13 through the thickness (case 4).

Fig. 13. Distribution of the 3-D stress r23 through the thickness (case 4).

Fig. 14. Distribution of the 3-D stress r33 through the thickness (case 4).
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confidently to get excellent accuracy with much less computational effort than required by 3-D analysis or
by layerwise theories.
It is to be expected that the present theory is far better than ad hoc models. Indeed, mathematically, the

accuracy of the present theory should be comparable to that of a layerwise shell theory with assumed in-
plane displacements as layerwise cubic polynomials of the thickness direction and transverse displacement
as a layerwise fourth-order polynomial. However, the present theory is still an equivalent single-layer
theory, and the computational requirement is thus much less than layerwise theories. Moreover, it is not
necessary to use integration through the thickness of the 3-D equilibrium equations to get the transverse
normal and transverse shear strain and stress results presented herein.

7. Conclusion

A complete Reissner–Mindlin theory for composite laminated shells has been developed from geo-
metrically nonlinear 3-D elasticity. The original 3-D elasticity problem is posed for shells in which each
layer is made with a monoclinic material and is formulated in an intrinsic form that is suitable for both
geometrically nonlinear as well as linear shell theories. The unknown 3-D warping functions are obtained
asymptotically by using the VAM and the principle of minimum total potential energy, a procedure which
is systematic and easy to apply iteratively. All the potential energy terms are included in the formulation
instead of only the strain energy as presented in Ref. [1]. Hence, the resulting 2-D constitutive law includes
also a bilinear load-related term in addition to the quadratic terms associated with generalized 2-D strains.
The resulting theory is as close as possible to asymptotical correctness by virtue of an optimization pro-
cedure.
Although the resulting shell theory is of the form of an equivalent single-layer, first-order shear de-

formation theory, the 3-D displacement, strain and stress are recovered in closed form with accuracy
comparable to that from higher-order, layerwise shell theories that have many more degrees of freedom.
The theory has been implemented in the computer program VAPAS, which calculates the generalized 2-D
stiffness matrices ðA;B;D;GÞ, the load-related term ðF Þ, as well as recovering the 3-D field variables for
nonlinear shell problems. Since VAPAS must only solve a 1-D problem, it executes very rapidly, enabling
these accurate recovery relations to be cheaply embedded in standard shell finite element codes.
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