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Abstract

The refined theory for small-strain extension, twist, bending, and shearing of composite

beams that is embedded in the computer program VABS (Variational Asymptotic Beam

Sectional Analysis) has the same structure as Timoshenko’s original theory for isotropic

beams, but it has none of the restrictive assumptions of the original theory. An overview

of this theory, referred to as a generalized Timoshenko theory, is presented so that readers

can appreciate its general and rigorous framework. Certain theoretical details missing from

previous developments are supplied, such as the proof of a kinematical identity and the

expression of the recovery theory in terms of sectional stress resultants. As an analytical

validation of the theory it is demonstrated that the VABS generalized Timoshenko theory

reproduces the elasticity solution for the flexure problem of an isotropic prism. Additional

numerical results are presented in support of the long-term validation effort, focusing es-

pecially on calculation of sectional stiffnesses (including shear correction factors) and shear

center location, making use of the VABS model for composite beam analysis (including buck-

ling and vibration), and recovering three-dimensional field variables over an interior cross

section. The accuracy of the VABS generalized Timoshenko theory is demonstrated, and

some of its practical advantages over three-dimensional finite element analysis are exhibited.

Introduction

Due to the special geometric feature of beams, in which one dimension is much larger

than the other two, beam modeling has been regarded as an elasticity problem for centuries,

starting with Galileo’s inquiry, Ref. 1. In the more than three hundred years that followed,

investigators tried to simplify the analysis by taking advantage of the geometric features

to model beams as one-dimensional (1-D) problems. However, to obtain an accurate beam
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representation for the physically three-dimensional (3-D) structure, one has to find a way

to reproduce the 3-D energy stored in the structure as accurately as possible. That is, one

must find a way to take into account the eliminated two-dimensional (2-D) cross-sectional

coordinates. The famous Euler-Bernoulli hypothesis was introduced in order to meet this

requirement. Therein it is assumed that a normal cross-sectional plane remains plane and

normal to the reference line when the beam deforms. The theory resulting from this as-

sumption can account for extension and bending in two directions. In order to account for

torsion, the cross section cannot in general be constrained to remain plane. However, its

shape and size in its own plane are assumed to be preserved during torsion, and the cross

section can warp out of its plane freely. The simplest beam theories for isotropic beams ac-

count for extension, torsion and bending in two directions based on these assumptions and,

in spite of the incorporation of Saint-Venant torsion, are sometimes called Euler-Bernoulli

beam theories.

Refined theories are required for higher accuracy when either the beam structure is not

slender or when the wavelength of the beam deformation is shorter than its length (such as

when it is vibrating in a mode higher than the first). For isotropic beams the next logical

step beyond Euler-Bernoulli beam theory is Timoshenko beam theory, in which there are six

fundamental global deformations (bending and transverse shear in two directions, extension,

and twist). The assumption of Euler-Bernoulli theory, that a cross section of the undeformed

beam normal to the reference line remains normal during deformation, is relaxed. Rather, a

cross section of the undeformed beam normal to the reference line will be, in general, oblique

to the reference line of the deformed beam because of transverse shearing. To ensure that

the reduced 1-D strain energy is equivalent to the original 3-D model over a broader range of

slenderness ratios, shear correction factors are often introduced to modify the shear stiffness

for isotropic beams. These factors typically reduce the transverse shear stiffness of a cross

section relative to what it would have been were there no out-of-plane cross-sectional warping

due to transverse shear. For long-wavelength deformation of slender, isotropic beams, it

suffices to use Euler-Bernoulli theory. When the beam structure is not slender or when the

wavelength of the beam deformation is shorter than its length, Timoshenko theory offers

some improvement for various applications.

However, for beams made with generally anisotropic materials, the imposition of such

ad hoc kinematic assumptions can introduce significant errors. To accurately capture such

behavior when a theory governing extension, torsion, and bending in two directions is gener-

alized to include composite material effects, one must abandon the restrictive assumptions of

Euler-Bernoulli theory and include all possible deformation. In the limit of small h/l, where

h is the cross-sectional characteristic dimension and l is the wavelength of the deformation
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along the beam reference line, the resulting theory governs fully coupled extension, twist, and

bending. Thus, instead of four fundamental stiffnesses there could be as many as 10 (a fully

populated 4×4 symmetric matrix). Such a generalized Euler-Bernoulli theory is typically

termed “classical beam theory” and can predict well the static and low-frequency dynamic

behavior of slender, composite beams, Ref. 2. The stiffness model of classical theory can be

refined to take initial twist and curvature into account, Ref. 3, without changing the types of

deformation or the number of stiffness constants. Classical theory only takes 3-D transverse

shearing into account for the calculation of extension, twist, and bending stiffness constants.

Although for many cases of static and low-frequency dynamic deformation of beams it

is shown in Ref. 4 that an asymptotically correct classical model is at least as accurate as

refined theories based on ad hoc assumptions, classical theory has its limitations. It is not

only possible but desirable to generalize Timoshenko theory for composite beams, so that a

transverse shearing beam variable and short-wavelength phenomena can be included in the

model. A significant literature review is beyond the scope of this paper. However, recent

research has resulted in significant advances in this field; see the extensive literature reviews

in Refs. 4–7.

One of the recent developments pointed out in the more recent review papers is the com-

puter program VABS, a finite element based cross-sectional analysis for composite beam-like

structures originally developed by Hodges and his co-workers, Refs. 2,8–11. VABS takes the

Variational Asymptotic Method (VAM), Ref. 12, as the mathematical foundation to decou-

ple a general 3-D nonlinear anisotropic elasticity problem into a linear, 2-D, cross-sectional

analysis and a nonlinear, 1-D, beam analysis. The cross-sectional analysis calculates the

3-D warping functions asymptotically and finds the constitutive model for the 1-D nonlinear

beam analysis. After one obtains the global deformation from the 1-D beam analysis, the

original 3-D fields (displacements, stresses, and strains) can be recovered using the already-

calculated 3-D warping functions. VABS was first mentioned in Ref. 2. Its development over

the past decade is described in Refs. 8–11,13–16.

VABS can perform a classical analysis for beams with initial twist and curvature with

arbitrary reference cross sections. VABS is also capable of capturing the trapeze and Vlasov

effects, which are useful for specific beam applications. VABS is able to calculate the 1-

D sectional stiffness matrix with transverse shear refinement for any initially twisted and

curved, inhomogeneous, anisotropic beam with arbitrary geometry and material properties.

Finally, VABS can recover asymptotically correct 3-D displacement, stress and strain fields

within a modeled cross section. To the best of the authors’ knowledge, there does not exist

any other published treatment of nonlinear composite beam modeling with such generality

and versatility. It should be emphasized, however, that the recovery operations within cross
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sections that are near beam boundaries, concentrated loads, or sudden changes in the cross-

sectional geometry along the span are not accurate. Indeed, in these areas one has truly 3-D

behavior, and the structure is not behaving as a beam.

To emphasize that ad hoc assumptions such as those used in the original Timoshenko

theory are not invoked in development of the VABS composite beam theory that accounts

for bending and transverse shear in two directions, extension, and twist, it is referred to as a

generalized Timoshenko theory. For composite beams, instead of six fundamental stiffnesses,

there could be as many as 21 in a fully populated 6×6 symmetric matrix. The purpose of

this paper is to explain, validate and assess this theory embedded in VABS.

We first present an overview of the VABS generalized Timoshenko theory along with a

few theoretical details missing from previous treatments of this topic such as Refs. 10, 11.

Then, the relation between VABS and elasticity theory is briefly reported as an analytical

validation of the theory, building on Ref. 17. Finally, several examples are presented as

numerical validations in which VABS results are compared with those from the commercial

finite element analysis (FEA) package ANSYS and other approaches in the literature where

available and appropriate.

The Generalized Timoshenko Theory of VABS

Construction of Strain Energy Density

The first step of developing the generalized Timoshenko beam theory of VABS is to find

a strain energy asymptotically correct up to the second order of h/l and h/R, where h is

the characteristic size of the section, l the characteristic wavelength of deformation along

the beam axial coordinate and R the characteristic radius of initial curvatures and twist

of the beam. We conclude that a complete second-order strain energy is sufficient for the

purpose of constructing a generalized Timoshenko model because it is generally accepted that

the transverse shear strain measures are one order less than classical beam strain measures

(extension, torsion and bending in two directions). By formulating the beam kinematics

exactly in an intrinsic fashion, one obtains the 3-D strain field in terms of beam strain

measures and arbitrary warping functions. The 3-D warping functions are solved by VAM

asymptotically. Finally, a strain energy asymptotically approximating the 3-D energy up to

the second order can be achieved. All the derivation of this procedure is presented in Ref. 10.

Here only the resulting asymptotically correct strain energy is presented, given as

2U∗ = εTAε + 2εT Bε′ + ε′
T
Cε′ + 2εT Dε′′ (1)

where A, B, C, D are matrices that carry information on both the geometry and material

of the cross section; ε = bγ
11

κ1 κ2 κ3c
T are the strain measures defined in the classical
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beam theory; ( )′ means the partial derivative with respect to the beam axial coordinate x1;

and xα are the local Cartesian coordinates for the cross section. (Here and throughout the

paper, Greek indices assume values 2 and 3 while Latin indices assume 1, 2, and 3. Repeated

indices are summed over their range except where explicitly indicated.)

Although the strain energy expressed in Eq. (1) is asymptotically correct, it is difficult

to use in practical analyses because it contains derivatives of the classical strain measures,

which requires boundary conditions that are more complicated than necessary. Timoshenko

beam theory, commonly used in engineering practice, is free from such drawbacks. Therefore,

the second step is to fit the obtained asymptotically correct strain energy, Eq. (1), into a

generalized Timoshenko model of the form

2U = εT Xε + 2εT Fγs + γT
s Gγs (2)

where ε = b γ11 β1 β2 β3 cT , the classical strain measures (defined in the framework of a

generalized Timoshenko model), and γs = b2γ12 2γ13c
T transverse shear strains. Generally, it

is impossible to achieve this transformation while keeping the resulting model asymptotically

correct. Although it is noted that Berdichevsky and Starosel’skii, Ref. 18, used changes of

variable to achieve a model of the form of Eq. (2), the 1-D transverse shear strain measures

are not equivalent to those commonly used. Hence, because the model of Ref. 18 differs in

this way, direct use of this model could produce misleading results if one does not take this

subtlety into account, Ref. 17. However, one should be able to recover 3-D fields based on

that work that are equivalent to those obtained in the VABS generalized Timoshenko theory.

To ensure that the generalized Timoshenko model represents the original asymptotically

correct model as accurately as possible, the best one can do is to make use of all the known

information between these two models. First, we need to find a relation to express the beam

strain measures (ε and γs) defined in the generalized Timoshenko model in terms of the

strain measures (ε) defined in the asymptotically correct model. In fact, the strain measures

of the asymptotically correct and generalized Timoshenko models are associated with two

different triads, Ti and Bi, respectively. As sketched in Fig. 1, they are related according

by the following equation: 



B1

B2

B3





= CBT





T1

T2

T3





(3)
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where

CBT =




1 −2γ12 −2γ13

2γ12 1 0

2γ13 0 1


 (4)

Based on the definition of 1-D “force-strain” measures, Ref. 19, we have the identity

R′ = (1 + γ11)B1 + 2γ1αBα = (1 + γ
11

)T1 (5)

where γ
11

is the extensional strain associated with Ti and γ11 and 2γ1α are the “force-

strains” associated with Bi. Dot multiplying this equality with B1, making use of Eq. (3),

and assuming the strain components are small, one obtains

γ
11

= γ11 (6)

According to Ref. 19, the “moment-strain” measures can be related by

KB =

(
I − 1

2
α̃
)
α′

1 + 1

4
αT α

+ CBT KT (7)

with I denoting the 3×3 identity matrix and

KB = β + k

KT = κ + k (8)

where β and κ are the column matrices representing the “moment-strain” measures associ-

ated with bases Bi and Ti, respectively; the column matrix k contains the initial twist and

curvatures measured in basis bi; and the column matrix α = b0 2γ13 − 2γ12c
T denotes

the Rodrigues parameters corresponding to the direction cosine matrix in Eq. (4) for small

strain. By virtue of the restriction to small strain, the generalized Timoshenko constitutive

model being sought is linear. Thus, one can rewrite Eq. (7) as

κ = β − α′ + k − CBT k (9)

which can be written explicitly as





κ1

κ2

κ3





=





β1

β2

β3





+





0

−2γ′

13

2γ′

12





+





2γ1αkα

−2γ12k1

−2γ13k1





(10)
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It should be noted that in spite of the linearity of the constitutive model, which is a byproduct

of the restriction to small strain, the 1-D beam analysis (including both kinematical equations

and equations of motion) is geometrically exact; see, for example, the work of Ref. 19.

Combining Eqs. (6) and (10), one obtains a kinematical identity between these two sets of

strain measures, given by

ε = ε + Q γ′

s + P γs (11)

with

Q =




0 0

0 0

0 −1

1 0




P =




0 0

k2 k3

−k1 0

0 −k1




(12)

Making use of Eq. (11), one can express the asymptotically correct strain energy, Eq. (1),

in terms of the generalized Timoshenko beam strain measures as

2U∗ =εT Aε + 2εT AQγ′

s + 2εT APγs+

2εT Bε′ + ε′
T
Cε′ + 2εT Dε′′

(13)

To fit Eq. (13) into the generalized Timoshenko form as in Eq. (2), we must express the

derivatives of strain measures in terms of the strain measures themselves. Fortunately, the

1-D equilibrium equations based on the generalized Timoshenko model provide a convenient

way to relate the derivatives of strain measures with the strain measures themselves. Taking

advantage of such relations, the unknowns in Eq. (2) can be calculated and a generalized

Timoshenko constitutive model can be obtained. The details of this process are given in

Ref. 10.

Recovery Relations

There are at least two applications of the generalized Timoshenko model. First, the

main application of the constitutive model obtained from VABS is to use it as input for

1-D beam analysis. Although VABS casts the strain energy into a form that has types of

deformation similar to those of the original Timoshenko beam theory, it does not make the

limiting kinematical assumptions of that theory. In fact, VABS considers all possible 3-D

deformation but still creates a seamless connection to traditional beam theories so that the

1-D beam analysis remains essentially the same. The additional 3-D information, which is

eliminated in the construction of the 1-D beam analysis, is included by introducing arbitrary

warping functions and is retained to a degree sufficient to give accurate stress, strain, and

displacement recovery. Note that any general 1-D beam solver can directly make use of the
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VABS generalized Timoshenko constitutive model to carry out buckling, dynamic, static

and aeroelastic analyses as long as the 1-D beam solver uses 1-D strain measures that are

equivalent to the standard ones that are used in the VABS development; see, for example,

Ref. 19.

A second application is to use this model to calculate the shear center location for a cross

section with arbitrary geometry and material. The reader can refer to Refs. 10, 11 for the

details of using the VABS generalized Timoshenko model to locate the shear center.

There are several criteria for evaluation of composite beam theories and modeling ap-

proaches. Although it is necessary for a methodology to provide accurate results for the

various types of beam global behavior (i.e., static deflections, natural frequencies, mode

shapes, nonlinear transient behavior, buckling loads, etc.), this is not sufficient. Indeed, it is

misleading to focus only on the 1-D behavior, per se, because an insufficiently detailed study

of published results may lead one to believe that differences among the various published

composite beam theories are insignificant. Actually, the adequacy of a composite beam mod-

eling approach should be measured based on how well it predicts 3-D behavior of the original

3-D structure. Therefore, a full set of recovery relations should be provided to complete the

modeling. By recovery relations we mean expressions for the 3-D displacements, strains and

stresses in terms of 1-D beam quantities and the local cross-sectional coordinates, xα.

Such relations are provided in the VABS generalized Timoshenko model. The recovery

relations of the 3-D strains and stresses in terms of the 1-D generalized strains and their

derivatives are reported briefly in Ref. 11. However, it is difficult to obtain the strain

derivatives if the 1-D analysis is solved by a 1-D finite element method using lower-order

shape functions. To be consistent with the procedure used to construct the generalized

Timoshenko theory, the final version of recovery theory in VABS for 3-D displacements,

strains and stresses will now expressed in terms of sectional stress resultants and the applied

and inertial loads using the 1-D equations of motion.

For modeling an initially curved and twisted beam, the warping that is asymptotically

correct up to the order of h/R and h/l can be expressed as

w(xi) = (V0 + V1R)ε + V1Sε′ (14)

where w(xi) are the 3-D warping functions, V0, V1R, and V1S are the asymptotically correct

warping functions for classical modeling, the correction due to initial curvatures/twist, and

the refined warping of the order of h/l, respectively.

The recovered 3-D displacement field of the generalized Timoshenko model can be ex-
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pressed as

Ui(x1, x2, x3) = ui(x1) + xα[Cαi(x1) − δαi] + wi(x1, x2, x3) (15)

where Ui are the 3-D displacements, ui are the 1-D beam displacements, Cαi are components

of the direction cosine matrix representing the rotation of beam triads during deformation,

and δαi is the kronecker symbol. Strictly speaking, although the warping field has been

calculated only to first order, the strain energy density is asymptotically correct through

the second order in the small parameters. With the first-order warping the 3-D fields can

only be recovered through the first order. To recover the 3-D fields up to the second order

requires calculation of the second-order warping field, which means additional complexity

and computation. Here the 3-D results will be recovered based on the first-order warping and

all the other information we have. Numerical examples show that such recovery relations

yield accurate results without introducing additional computational cost.

The 3-D strain field can be recovered as follows:

Γ = [(Γh + ΓR)(V0 + V1R) + Γε] ε

+ [(Γh + ΓR)V1S + Γl(V0 + V1R)] ε′

+ ΓlV1Sε′′ (16)

where the 3-D field

Γ = b Γ11 2Γ12 2Γ13 Γ22 2Γ23 Γ33 cT (17)

All the operators in Eq. (16) can be found in Ref. 10. As mentioned previously, it is more

useful to write the recovery relations in terms of stress resultants because one can obtain

those quantities and their derivatives through the 1-D equilibrium equations. Denoting S

as the 6×6 stiffness matrix for the generalized Timoshenko beam model, one can obtain the

generalized strain measures in terms of sectional stress resultants as

εt = S−1F (18)

where εt = b γ11 2γ12 2γ13 β1 β2 β3 cT are the generalized 1-D strain measures obtained

from a generalized Timoshenko model, and F = b F1 F2 F3 M1 M2 M3 cT the cross-

sectional stress and moment resultants. To find the derivatives of stress resultants, the 1-D

nonlinear equilibrium equations can be arranged as

F ′ = −RF − f =

[
K̃B 0̃

ẽ1 + γ̃ K̃B

]
F − f (19)
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with

(̃ )ij = −eijk( )k (20)

γ = bγ11 2γ12 2γ13c
T (21)

e1 = b1 0 0cT (22)

f = bf1 f2 f3 m1 m2 m3c
T (23)

where eijk are the components of the permutation tensor in the Cartesian system, and f are

the known distributed 1-D generalized applied and inertial loads. Note that the generalized

strains in Eq. (19) can be obtained by Eq. (18). It is clear that one can differentiate Eq. (19)

on both sides to get higher derivatives as

F ′′ = (R2 − F ′)F + Rf − f ′

F ′′′ = (−R3 + RR′ + 2R′R − R′′)F + (−R2 + 2R′)f + Rf ′ − f ′′ (24)

Having F ′, F ′′ and F ′′′, one can obtain ε′t, ε′′t and ε′′′t from Eq. (18). Substituting these values

into Eq. (16) and using Eq. (11), one can express the 3-D strain field in terms of the known

quantities F , f , f ′ and f ′′ from the 1-D beam analysis. Finally, the 3-D stress field can be

obtained using the 3-D constitutive law. The results obtained from use of these recovery

relations are identically the same as from those written in terms of 1-D strains and their

derivatives found in Eq. (16), Ref. 11.

Validation of the VABS Generalized Timoshenko Theory

The aforementioned generalized Timoshenko theory for initially curved and/or twisted

composite beams has been implemented in the computer program VABS. To the authors’

knowledge, there are no other published treatments of composite beam modeling that have its

level of consistency, rigor, and generality. VABS is in use internationally among researchers

who are involved in the design and analysis of composite beam-like structures. Nevertheless,

more validation is always helpful to demonstrate further the accuracy and versatility of this

theory.

Validation of VABS can be undertaken in two different ways. One is analytical and

the other numerical. Several examples are given in this section to support the continuing

validation of the generalized Timoshenko theory of VABS. The examples include isotropic

and anisotropic cases. The comparison is made against 3-D elasticity theory, 3-D FEA and

other published results whenever possible and appropriate.
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Analytical Validation

Analytical validation of VABS is accomplished by establishing the connection between

VABS and 3-D elasticity theory. The first such example appeared in Ref. 11 in which the

variational asymptotic cross-sectional analysis of an elliptic isotropic prism with transverse

shear refinement is solved by using Ritz method. Later, a one-to-one correspondence be-

tween the 3-D elasticity theory and the VABS generalized Timoshenko theory was found,

Ref. 17. There, the general formulation from VABS is specialized to treat isotropic, pris-

matic beams. The governing differential equations and associated boundary conditions of

the VABS classical model and generalized Timoshenko model are exactly the same as those

of the Saint-Venant problem and flexure problem in 3-D elasticity theory, respectively. This

discovery demonstrates that VABS yields exact results for shear correction factors and shear

center location for isotropic prismatic beams. Therefore, any existing model that does not

produce the same results as VABS does for these kinds of beams should be considered in-

ferior. The fact that VABS reproduces the results of elasticity theory clearly confirms the

fact that VABS avoids the difficulties of dealing with 3-D elasticity while at the same time

obtains results that agree very well with exact solutions.

Although it may not be possible to analytically validate the general theory of VABS for

anisotropic beams in the same way, it is a natural deduction based on the derivation of Ref. 17

that the results for generally anisotropic beams should be the same as those calculated by

methods based on 3-D anisotropic elasticity theory, such as 3-D FEA. Indeed, as 3-D FEA

allows one to go beyond the limitations of 3-D elasticity, VABS may also be considered as a

means for going beyond those limits when considering the cross-sectional analysis of beam-

like structures. When coupled with a suitable 1-D beam solver, 3-D stresses on the interior

of a beam are obtained for a computational cost that is two to three orders of magnitude

less than that of 3-D FEA.

Numerical Validation Examples

Another means of validation is to compare results from VABS with those published

and with 3-D FEA; this sort of validation can be called numerical validation. Most of the

numerical examples presented in previous publications on VABS are validations of this kind,

Refs. 9–11,14–16. In Ref. 11 some VABS results are assessed against the 3-D FEA package

ABAQUS.

In this section, several numerical examples related will be investigated to demonstrate

the accuracy and advantages of the VABS generalized Timoshenko theory. The problems

related with generalized Timoshenko modeling of composite beams can be classified into the

following three groups:
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• obtaining the matrix of cross-sectional stiffness constants for general beams, particu-

larly the transverse shear stiffnesses or shear correction factors for isotropic sections;

• locating the shear center, especially for structures that are anisotropic and not thin-

walled;

• recovering 3-D results for the purpose of detailed analysis.

Stiffness Model and Shear Correction Factors

One of the main outcomes of a generalized Timoshenko model is a 6×6 stiffness model

including the transverse shear stiffnesses for a cross section. Particularly, for isotropic sec-

tions, shear correction factors are often used to obtain the equivalent shear stiffness to be

used for a Timoshenko beam analysis. These factors are defined as

cα =
Sα

GA
(25)

where cα is the shear correction factor in the xα direction, Sα the equivalent shear stiffness

in the xα direction, G the shear modulus and A the sectional area.

Taking for example a rectangular section with a length of 2a in the x2 direction and 2b

in the x3 direction, we know that the factor 5/6 is normally used in engineering practice.

However, this number is only correct for the x2 direction when b << a and/or the Poisson’s

ratio ν = 0. The exact factor can be obtained by the VABS generalized Timoshenko theory

as

c−1

2
=

6

5
+

(
ν

1 + ν

)2
[

1

5ρ4
−

18

ρ5π5

∞∑

m=1

tanh(mπρ)

m5

]
(26)

with ρ = a/b. As mentioned in Ref. 17, Eq. (26) is exactly the same as that which comes from

the flexure problem of elasticity theory. The same result was also obtained independently by

Refs. 20,21. There are other values proposed in the literature, Refs. 18,22,23, but these are

actually approximations to the exact value and not as accurate as what VABS calculates.

Eq. (26) is obtained by mathematically solving the governing differential equations of the

VABS generalized Timoshenko theory. It will be interesting to investigate the convergence

of the numerical result from the computer program VABS. Letting 2a = 1 in., 2b = 2 in.,

G = 109 psi and ν = 0.3, then the exact value of c2 is 0.784442. Seven different meshes: 1×2,

2×4, 3×6, 4×8, 5×10, 6×12 and 10×20, where the first number is the number of elements

along x2 and the second is the number of elements along x3, are created for this purpose.

The section is meshed by ANSYS shell93 elements and this mesh is imported to VABS using

special-purpose macros created for interfacing VABS and ANSYS. The results for the relative

error of c2 with respect to the exact result are plotted versus the number of elements along
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x2 on a log-log scale in Fig. 2. One can observe from the figure that the numerical results

from VABS converge monotonically to the exact result as one refines the mesh. Even if the

mesh is only comprised of 8 elements, the difference between the VABS numerical result

and the exact solution is less than 1%, which clearly demonstrates the accuracy of VABS in

calculating the shear correction factors for rectangular sections.

To demonstrate that VABS can calculate the shear correction factors correctly for arbi-

trary sections, an irregular section as sketched and meshed in Fig. 3 is studied. VABS results

are compared with those of Ref. 24 and ANSYS beam capability (beam 188/189) in Table 1.

VABS results agree with those of agree with those from Ref. 24 to within 0.2%, while AN-

SYS results are off by as much as 1.3%. Note that the results from ANSYS are independent

of Poisson’s ratio and thus can be only considered as approximations to the exact solution

when ν = 0. Although it is said in the ANSYS manual that the cross-sectional capability

is valid for composite sections, the word “composite” just means that one can build up sev-

eral isotropic sections into an arbitrary section. It is not applicable to sections made with

anisotropic materials. It should be noted that the work of Ref. 24 is devoted to calculate

the shear correction factors only for arbitrary isotropic sections, which is much less versatile

than VABS because this capability is just a small subset of the VABS functionalities.

Usually, when the six global deformations are uncoupled, it is sufficient to obtain the shear

correction factors instead of calculating the 6×6 stiffness matrix. However, more often than

not, the global deformations are coupled, and the full stiffness matrix is needed. Especially

for composite beams, the stiffness matrix is generally coupled as the examples in Refs. 10,11

have demonstrated. Here a more complex composite beam with a cross section described in

Fig. 4 is modeled by VABS. This cross section is comprised of two straight strips and two

half circles, each of which is made with two laminated layers. The material properties are

listed in Table 2, and the dimensions are given in Fig. 4. The cross-sectional properties are

listed in Table 3, from which one can observe extension-twist and shear-bending couplings.

The results labelled as “SVBT” are produced by a computer program based on Ref. 25, a

generalized application of the Saint-Venant approach. Therein, the behavior of all quantities

versus the axial coordinate is represented by polynomials of zeroth and first degree, while the

cross-sectional variations are handled by means of finite element approximation. Although

SVBT is not based on asymptotic methods, the results from it and from VABS agree very

well for most cases compared to date. The generalized Saint-Venant methodology, however,

is limited to linear problems and lacks rigorous connections to treatments of end effects such

as are modeled by Vlasov theory.

Based on the above in combination with previously published demonstrations, we con-

clude that one can confidently use the generalized Timoshenko stiffness model of VABS
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to carry out structural analysis for a wide variety of beam cross-sectional geometries and

materials.

Locating the Shear Center

Another important outcome of generalized Timoshenko modeling is the shear center lo-

cation. For thin-walled sections this is straightforward, but for arbitrary sections there is not

much published information. Although it is not a common practice to carry out generalized

Timoshenko modeling to find the shear center, it is indeed very simple to accurately locate

the shear center once an accurate 6×6 stiffness model such as that from VABS is obtained.

The first example is an isotropic open channel-like section with unequal edges and equal

thickness (see Fig. 5) studied in Ref. 26. VABS results are compared against those of Ref. 26

and ANSYS. As one can observe from Table 4, the three sets of results agree within 1.7%

for c2 and to three significant figures for c3.

Another example studied in Ref. 26 is a closed section with three cells (see Fig. 6 for

geometry and mesh). Again the results from VABS, Ref. 26 and ANSYS are compared in

Table 5 and agreement to within 0.5% is observed.

While most research concerning the shear center is focused on isotropic, thin-walled

sections, VABS can also locate the shear center for generally anisotropic cross sections,

whether or not they are thin-walled. On this subject not much work can be found in the

literature.

Beam Analysis with the VABS Generalized Timoshenko Model

Composite beam modeling does not stop at the stage of obtaining the cross-sectional

properties such as beam stiffness matrix (including shear correction factors), and shear center

location, etc. The ultimate goal of beam modeling is to use the obtained sectional properties

to carry out the 1-D beam analysis to predict the global behavior, such as deflections,

buckling load, natural frequencies and so on. Here, we assume the cross section in Fig. 4

is cut from a cantilever beam with length L = 20 in. The sectional mass properties can be

obtained by VABS as:

m = 7.42513 × 10−2 lb/in

m11 = 7.10661 × 10−2 lb.in

m22 = 9.88336 × 10−3 lb.in

m33 = 6.11827 × 10−2 lb.in (27)

where m is the mass per unit span and mii is the mass moments of inertia per unit span

about coordinate xi. We use the VABS stiffness model, Table 3, and sectional mass matrix,
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Eq. (27), along with a 1-D nonlinear beam solver (here we use DYMORE, Ref. 27) to carry

out a 1-D dynamic analysis to obtain the natural frequencies and a 1-D buckling analysis to

obtain the critical Euler buckling load (compression). The natural frequencies for the first

three bending modes are listed in Table 6, where biα denotes the ith bending mode in the

direction of xα. Model 1 is the generalized Timoshenko model given in Table 3 and Model

2 is the corresponding classical model. It should be noted that the 4×4 matrix of classical

stiffness constants can be found by inverting the 6×6 cross-sectional stiffness matrix from

the generalized Timoshenko model, removing the two columns associated with transverse

shear, and then inverting the resulting 4×4 matrix. One can observe from Table 6 that

there is a significant difference between the natural frequencies obtained from the generalized

Timoshenko and classical models. Especially for the higher bending modes, it is clear that

results from the classical model are useless. This shows that to obtain accurate flapping and

lagging frequencies for a rotor blade, one should use a generalized Timoshenko model. We

note that there is no difference between the two models for torsional frequencies.

A static stability problem is also studied for this composite beam. The tip deflection is

excited by a very small tip shear force. As it is obvious from the plots, when the compression

load is approaching the critical load, there is an abrupt change of the tip deflection. There

is a small difference (3.5%) between the results obtained from classical and generalized

Timoshenko models (see Fig. 7).

Recovering 3-D Results

Another capability of VABS is that it can recover the asymptotically correct distributions

of the 3-D fields (displacements, strains, and stresses) over the cross section after obtaining

the 1-D global behavior, which is very important for analyzing the failure of some critical

areas. For demonstration purposes, we consider a composite beam of length 5 inches with a

rectangular cross section, dimensions of which are b=0.25 inches, and h=1 inch; see Fig. 8.

The material properties are given in Table 7, and the layup is a repeating quasi-isotropic

pattern with 80 layers.

A unit shear force was applied in the x3 direction at one end, and the other end was

constrained to have zero displacement at every node. This means that the VABS model

requires an input of F3=1 lb., and M2=2.5 lb.-in. for the purpose of recovering the stress

components on the cross section at the mid-span of the beam (x1 = 2.5 in.); specifically, we

look at the stress along the line x2 = 0 for various x3 locations. For the ANSYS run, the total

number of elements was 25,600, and about one hour of computer time was required. For

the VABS run, the number of elements was 640, and the computer time was less than two

seconds. As can be seen for stress components τ13 and τ12 in Figs. 9 and 10, respectively, the
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results from VABS and ANSYS are so close to one another that it’s difficult to distinguish

them from the plots.

The 3-D stress distributions clearly identify which areas within a cross section are ex-

periencing extreme stresses. This capability of VABS enables the designer to make certain

adjustments to avoid possible damage in the structure before it is actually built and tested,

which means that the cost of a composite beam structure may be reduced. It should be

emphasized, however, that the VABS analysis can only provide accurate stresses away from

beam boundaries, concentrated loads, and sudden changes in the cross-sectional geometry

along the span. In these areas one has truly 3-D behavior, and the structure does not behave

as a beam.

Conclusions

We have provided an overview of the VABS generalized Timoshenko theory so that the

generality and rigor of the framework is emphasized and exhibited to the reader. Certain the-

oretical derivations that were missing from earlier publications are presented herein. These

include a proof of the kinematical identity and a presentation of the recovery theory in terms

of sectional stress resultants. Thus, one now has, with previous publications, a complete for-

mulation of the theory. Examples are presented herein to demonstrate that the generalized

Timoshenko theory in VABS can reproduce the results of elasticity theory, accurately find

the shear correction factors, and locate the shear center for beams made from anisotropic

materials. It is also shown that the generalized Timoshenko model obtained from VABS

can be used to carry out 1-D beam analyses such as buckling, vibration, etc. Significant

differences are found between the results from the classical beam model and the generalized

Timoshenko model. VABS can also be used to recover the 3-D distribution over the cross

section with much less modeling and computational time relative to 3-D FEA.

In summary, the VABS generalized Timoshenko theory provides an accurate prediction

of the behavior of the original 3-D beam structure because it asymptotically approximates

the 3-D elasticity theory for the interior behavior of beams. It can predict the required

results with much less labor time and computational time. Designers should be able to

use this tool at both preliminary and detailed design stages to carry out needed tradeoffs

more effectively, so that better and more cost-effective composite beam-like structures can

be produced. Results from ongoing validation efforts will be presented in later publications

for realistic helicopter blade sections.
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Table 1: Shear correction factors for an arbitrary section

ν Resources 0 0.25 0.5
c2/a VABS 0.7404 0.7367 0.7306

Ref. 24 0.7395 0.7355 0.7294
ANSYS 0.7402 0.7402 0.7402

c3/a VABS 0.6780 0.6764 0.6736
Ref. 24 0.6767 0.6753 0.6727
ANSYS 0.6778 0.6778 0.6778
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Table 2: Properties of the anisotropic pipe section

right wall: [45◦/ − 45◦]
left wall: [45◦/ − 45◦]

upper wall: [90◦/0◦]
lower wall: [90◦/0◦]

Material properties: El = 20.59 × 106 psi
Et = 1.42 × 106 psi Glt = Gtn = 8.7 × 105 psi

νlt = νtn = 0.42 ρ = 0.057 lb/in3
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Table 3: The sectional stiffness matrix of the anisotropic pipe

Stiffness VABS SVBT Rel. error (%)
S11 (lb.) 1.03890 × 107 1.03892 × 107 0.0019%
S22 (lb.) 7.84299 × 105 7.85310 × 105 0.13%
S33 (lb.) 3.29002 × 105 3.29279 × 105 0.084%

S14 (lb.-in.) 9.82878 × 104 9.84575 × 104 0.17%
S25 (lb.-in.) −8.18782 × 103 −8.21805 × 103 0.37%
S36 (lb.-in.) −5.18541 × 104 −5.20981 × 104 0.45%
S44 (lb.-in.2) 6.86973 × 105 6.87275 × 105 0.044%
S55 (lb.-in.2) 1.88236 × 106 1.88238 × 106 0.0011%
S66 (lb.-in.2) 5.38972 × 106 5.38987 × 106 0.0028%
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Table 4: Shear center for the channel section

Resources c2 (in.) c3 (in.)
VABS -0.176 0.186
Ref. 26 -0.179 0.186
ANSYS -0.177 0.186
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Table 5: Shear center for the 3-cell closed section

Resources c2 (in.) c3 (in.)
VABS 4.356 1.000
Ref. 26 4.337 1.000
ANSYS 4.356 1.001
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Table 6: Natural frequencies (rad./sec.) from different models

Modes Model 1 Model 2 Difference
b13 8.417 × 102 8.693 × 102 3.3%
b12 1.410 × 103 1.465 × 103 3.9%
b23 4.488 × 103 5.423 × 103 20.8%
b22 7.244 × 103 8.932 × 103 23.2%
b33 1.054 × 104 1.507 × 104 43.0%
b32 1.665 × 104 2.399 × 104 44.1%
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Table 7: Material properties of anisotropic beam with rectangular cross section

Layup: [(−45/ + 45/0/90)10]s
Material properties: El = 20.59 × 106 psi
Et = 1.42 × 106 psi Glt = Gtn = 8.7 × 105 psi

νlt = νtn = 0.42 ρ = 0.057 lb/in3
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Figure 7: Distribution of the 3-D stress σ13 through the thickness. Solid line: exact
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Figure 9: Stress component τ13 at mid-span and x2 = 0
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Figure 10: Stress component τ12 at mid-span and x2 = 0
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