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Theory of Anisotropic Thin-Walled
Beams
Asymptotically correct, linear theory is presented for thin-walled prismatic beams made
of generally anisotropic materials. Consistent use of small parameters that are intrinsic to
the problem permits a natural description of all thin-walled beams within a common
framework, regardless of whether cross-sectional geometry is open, closed, or strip-like.
Four ‘‘classical’’ one-dimensional variables associated with extension, twist, and bend-
ing in two orthogonal directions are employed. Analytical formulas are obtained for the
resulting 434 cross-sectional stiffness matrix (which, in general, is fully populated and
includes all elastic couplings) as well as for the strain field. Prior to this work no
analytical theories for beams with closed cross sections were able to consistently include
shell bending strain measures. Corrections stemming from those measures are shown to
be important for certain cases. Contrary to widespread belief, it is demonstrated that for
such ‘‘classical’’ theories, a cross section is not rigid in its own plane. Vlasov’s correc-
tion is shown to be unimportant for closed sections, while for open cross sections asymp-
totically correct formulas for this effect are provided. The latter result is an extension to
a general contour of a result for I-beams previously published by the authors.
@S0021-8936~00!03003-8#

1 Introduction
The following discussion is restricted to the theory of prismatic

beams where the three-dimensional constitutive law and strain-
displacement relationships can be considered linear. Any beam
theory is associated with introduction of variables which depend
only on the coordinate along the beam axis. For a general type of
deformation at least four such one-dimensional variables have to
be introduced: extensional, torsional, and two bending variables
~corresponding to deformation along two orthogonal directions!.
The corresponding one-dimensional governing equations are un-
coupled for isotropic beams with doubly symmetric cross sections
and are given by Euler-Bernoulli theory for extension and bending
and St. Venant theory for torsion. If one wishes to extend this
theory to composite beams, the governing equations become
coupled due to the appearance of off-diagonal terms in the cross-
sectional stiffness matrix. This 434 stiffness matrixCab charac-
terizes elastic properties of the beam. Then, the strain energy per
unit length is expressed in terms of the four one-dimensional
strain measures as

2Fclassical5aaCabab where aT5$U18 ,U29 ,U39 ,u8%. (1)

For thin-walled beams this problem was first posed in Reissner
and Tsai@1#. However, the approach employed therein led to a
complicated set of equations, especially in the case of closed cross
sections. The solution of those equations was presented only for a
special type of three-dimensional constitutive equations.

The introduction of the variational-asymptotic method in con-
text of anisotropic beams Berdichevsky@2# allowed the treatment
of this problem from a different perspective: beam theory can
obtain three-dimensional elasticity without making anyad hoc
assumptions using the small parameterl

a!1, wherea is a charac-
teristic dimension of the cross section andl is a the wavelength of
deformation along the beam reference line. For a general~but not
thin-walled! cross section the problem is reduced to a system of

two-dimensional equations on a cross section. A development of a
numerical solution of this problem is presented in Cesnik and
Hodges@3#.

Applying the variational-asymptotic procedure to thin-walled
cross sections where another small parameter exists, namely

a
h!1 ~whereh is a wall thickness!, allows one to start with shell
theory rather than three-dimensional elasticity. Rather than having
to solve a two-dimensional problem over the cross-sectional
plane, one instead solves a one-dimensional problem over the
length of the thin walls. This dimensional reduction can be also
conducted in another way: the asymptotic procedure with respect
to a

h can be applied directly to the two-dimensional cross-sectional
problem that results when starting with three-dimensional elastic-
ity. Both approaches lead to the same final results, but the latter
procedure is more computationally involved.

The former procedure was used in Berdichevsky et al.@4# to
obtain analytical solutions for closed sections. The resulting con-
venient cross-sectional stiffness formulas published in that paper
are presently widely used in engineering community. Although
shell bending strain measures were neglected in that paper, these
for most practical purposes do not affect final stiffness results.
However, as shown below, for certain material properties the de-
viation of their results from the asymptotically correct results
might be significant.

Concerning the application of the variational-asymptotic
method to beams with open cross sections, an I-beam was viewed
as an assembly of strips in Volovoi et al.@5#. Asymptotically cor-
rect formulas were obtained therein which account for Vlasov’s
correction. Those results are generalized here for beams with ar-
bitrary open contours.

2 Present Approach
Beams are considered thin walled ifh!a,R whereR is a char-

acteristic radius of curvature of the midsurface. No assumptions
are made about the relative orders ofa andR, and shell theory is
employed. A curvilinear system of coordinates is introduced~see
Fig. 1!, with s andj being contour and through-the-thickness co-
ordinates, respectively;r5xixi is a position vector of the shell
midsurface, vectors are denoted with bold letters. The notation to
be used is
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n5t3x15 ẋ3x22 ẋ2x3 (2)
r t5t•r 5 ẋ2x21x3ẋ3

r n5n•r5x2ẋ32x3ẋ2

R5 ẋ2 / ẍ352 ẋ3 / ẍ2 .

Curvilinear displacementsv i are expressed in terms of Cartesian
displacementsui as

v15u1

v25u2ẋ21u3ẋ3 (3)

v35u2ẋ32u3ẋ2

Shell strain measures are taken from the works of Koiter@6#
and Sanders@7#, which for cylindrical shells yields

g115v1,1 r115v3,11

2g125v1,21v2,1 r125v3,121
1

4R
~v1,223v2,1! (4)

g225v2,21
v3

R
r225v3,222S v2

R D
,2

.

Here gab and rab are the extensional~membrane! and bending
strain measures, respectively. Then, the strain energy density of
the shell has the form

2Eshell5hEe
abgdgabggd1h3Eb

abgdrabrgd12h2Eeb
abgdgabrgd

(5)

where Greek indices vary from 1 to 2;Ee
abgd andEb

abgd are two-
dimensional material constants corresponding to membrane and
bending deformation, respectively, andEeb

abgd corresponds to cou-
pling between these two types of deformation. These two-
dimensional material constants are obtained from the reduced
three-dimensional material constantsDabgd by use of the relations

$Ee
abgd ,Eeb

abgd ,Eb
abgd%5

1

h E2h/2

h/2

DabgdH 1,
j

h
,S j

hD 2J dj. (6)

These constants are, in turn, obtained from the regular three-
dimensional constants as

Dabgd5Eabgd2
Eab33Egd33

E3333 2HmlGabmGgdl

where Hml
215Em3l32

Em333El333

E3333

Gabm5Eabm32
Eab33Em333

E3333 . (7)

For the following derivation it is convenient to rewrite Eq.~5!
as

2Eshell5c1Qi j c j12f iSi j c j1f i Pi j f j (8)

where cT[$g11,hr11,hr12%, and fT[$g12,g22,hr22%; i , j
51 . . . 3 and 333 matricesQi j , Si j , andPi j are corresponding
combinations ofEe

abgd , Eeb
abgd , andEb

abgd .
In the derivation below it is the axial coordinatex1 that is

distinct from the other two, so it is now convenient for Greek
indices to vary from 2 to 3. The variational-asymptotic method
Berdichevsky@2,8# is used in what follows. While we avoid a
detailed discussion of this method, sufficient information is pro-
vided here to facilitate understanding of the derivation. We are
using the term ‘‘asymptotically correct’’ concerning an approxi-
mate solution to denote its agreement with the expansion of the
exact solution to a specified order in terms of a specific small
parameter. It is clear that any theory which is not asymptotically
correct will certainly fail to achieve the accuracy of one which is.

Setting up the Problem.Since only statics is considered, only
the strain energy and work of external forces are present in the
total functional. External forces are considered slowly varying so
that our minimization is not affected by those forces. This leads to
minimization of the strain energy density given in Eq.~5! with the
strains given by Eqs.~4!. Next, this functional is represented in
terms of a series with respect to small parameters. A recursive
procedure is invoked when perturbation of the previous approxi-
mation is used to obtain the following approximation. From this
point of view ‘‘classical’’ approximation corresponds to the first
~main! nonvanishing terms in that series.

In our case there are two small parameters:a
l and h

a. These
parameters are considered independent: for a given order of terms
with respect toa

l we sort out the terms with respect toh
a as well.

The small parameteral enters the problem from the observation
that X,1'

X
l andX,2'

X
a for any quantityX.

‘‘Zeroth’’ Approximation. This is a starting point of the recur-
sive procedure. All terms that contain the small parametera

l in the
functional are set to zero. The resulting functional is degenerate
and the general solution for its kernel~null space! is found. This
defines one-dimensional variables. In our case setting all terms in
Eqs. ~4! containing derivatives with respect to a ‘‘slow’’ axial
variable leads to an expression for nonzero strains of ‘‘zeroth’’
functional given by

2g125v1,2 r125
1

4R
v1,2

g225v2,21
v3

R
r225v3,222S v2

R D
,2

. (9)

Since Eq.~5! is a positive-definite quadratic form of strains, for a
displacement field to belong to the kernel of ‘‘zeroth’’ functional,
all strains in Eq.~9! must vanish. It can be directly checked that
the general solution of this problem has the form

v15U1 v25Uaẋa1ur n (10)
v35U2ẋ32U3ẋ22ur t

whereUi and u[v2 /R2v3,2 are arbitrary functions ofx1 . It is
easy to see~using Eqs.~3!! that these one-dimensional variables
correspond to motion of a cross section as a rigid body:Ui(x1)
translation of a cross section in thexi-direction, andu(x1) is the
rotation of a cross section aboutx1 .

Fig. 1 Configuration and coordinate system
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Asymptotic Recursion.Perturbation of the displacement field
which was obtained at the previous step is now introduced,
namely,

v15U11ŵ1

v25U2ẋ21U3ẋ31ur n1ŵ2 (11)

v35U2ẋ32U3ẋ22ur t1ŵ3 .

Substituting this displacement field, Eq.~11!, into the strains, Eqs.
~4!, and, in turn, substituting the strains into Eq.~5!, one obtains
an energy functional. Only the leading terms with respect to small
parameters are retained at this step, and a minimization with re-
spect tov̂ i is conducted. As a result of this procedure the pertur-
bations v̂ i are found as functions of one-dimensional variables
and their derivatives.

In the most general case, deformations due to all four one-
dimensional strain measures are of the same order~denoted bye,
a nondimensional constant of the order of the maximum strain in
the beam!. If this were not the case, any smaller deformations
could be simply neglected in the main approximation. The one-
dimensional strain measures are given in Eq.~1!. The only prob-
lem is to determine appropriate dimensional constants that need to
multiply these measures to provide a term of the ordere ~this does
not affectU18 which is already nondimensional!. As shown below,
this constant must be eithera or h, depending on the geometry of
the contour. One can calculate the appropriate order using the
expression for the one-dimensional energy for the isotropic case,
since all material properties are assumed to be of the same mag-
nitude, so the order of the one-dimensional strain measures is not
affected. However, these orders will naturally fall out of our deri-
vation. Let us emphasize that the order of perturbations is not
assumed but determined during the minimization. In fact, it is
easily estimated prior to the minimization by reckoning that lead-
ing quadratic and linear terms in the functional with respect to the
unknown perturbation are of the same order.

2.1 Phantom Step. There are some terms in the strains
which are larger in magnitude than the corresponding strain com-
ponent itself. Those terms are balanced by equally large terms, so
that their combination is of a smaller order. We call such terms
‘‘phantom’’ ones. Since at each step of asymptotic procedure only
the leading terms are considered, it means that those ‘‘phantom’’
terms are minimized to zero. This procedure is often referred to,
somewhat cruelly, as ‘‘killing’’ excessively large terms in the
energy. Substituting the displacement field of Eqs.~11! into Eqs.
~4!, one obtains

g115U18
e

1ŵ1,1
e

2g125 ẋ2U28
~a/ l !21e

1 ẋ3U38
~a/ l !21e

1r nu8
e

1 ŵ1,2
~a/ l !21e

1 ŵ2,1
~a/ l !e

g225ŵ2,2
e

1
ŵ3

R
e

hr115h@ ẋ3U29
e

2 ẋ2U39
e

2u9r t
~a/ l !e

1 ŵ3,11
~a/ l !2e

#

hr125hF 1

4R
$ẋaUa81u8r n2ŵ1,2%2u81ŵ3,122

3

4R
~ŵ2,1!G

~a/ l !21e e ~a/ l !21e e ~a/ l !e ~a/ l !e

hr225hS ŵ3,22
ŵ2

R D
2

. (12)

e e

At this step, terms withrab do not enter the minimization proce-
dure. The reason for this is that, for each term inrab , there is a

similar term ingab , but multiplied by a
h. So retaining only the

leading terms with respect toha allows us to discard terms from
rab . The most obvious ‘‘phantom’’ terms of order (a

l )
21 are

present ing12 which defines the orders for the warping, written
underneath the individual terms in Eqs.~12!, and the solution for
v̂1,2

ŵ1,252Ua8 ẋa . (13)

There might be, however, some other ‘‘phantom’’ terms which

are of order (al )
0, but still ‘‘too large’’ due to the presence of

another small parameterha. In other words they are of order
e( h

a)21. The presence of one of this type of terms is related to a
fundamental difference between open and closed cross sections. A
constraint of single-valuedness has to be satisfied around the
closed contours of closed sections for certain variables; these con-
straints do not apply for open cross sections. In particular, this
applies to the single-valuedness ofv̂1 . For open cross sections
r nu8 in g12 is a ‘‘phantom’’ since this term is killed by adding
term 2r nu8 to the right-hand side in Eq.~13!. In this case the
largest nonzero terms in the functional that are proportional tou8
will come from ther12 and u8' e

h. Integration with respect to
circumferential coordinate of Eq.~13! yields

ŵ152Ua8xa2u8E
s0

s

r nds (14)

where the coefficient foru8 is called the ‘‘sectorial coordinate’’
and is given byh(s)[*s0

s r nds. The sectorial coordinate is, in
fact, a solution of a classical St. Venant torsional problem in the
shell approximation. To avoid redefiningU1 , embedded ins0
constant of integration should be chosen such that*v̂1ds50. It is
obviously convenient to choose the origin of the Cartesian coor-
dinates in the geometric center of the cross section, so that
*x2ds5*x3ds50.

On the other hand, for a closed cross section,r nu8 in g12 is not
a ‘‘phantom’’! The requirement of single-valuedness forv̂1 pre-
vents the possibility of displacement field as in Eq.~14!; only the
last term creates a problem, sincerr nu8ds is not zero. As a result,
terms proportional tor nu8 do enter the functional, which implies

that au8'e. Then the terms withu8 in r12 will be of ordere( h
a)

and can be neglected. Therefore, for the closed sections the
equivalent of the last term in Eq.~14! belongs to the next step of
approximation.

There is another ‘‘phantom’’ term that is also of the form

e( h
a)21. If a'R then

g22~ŵ2 ,ŵ3!'S h

aD 21

hr22~ŵ2 ,ŵ3!. (15)

Thus, minimization of the main terms in the functional simply
renders

g225ŵ2,21
ŵ3

R
50. (16)

However, each individual term in Eq.~16! is not zero, but rather
of order e( h

a)21 and is undetermined at this step. The second
equation for these unknowns stems fromr22 and due to Eq.~15!
will be provided in the next approximation. Ifa andR are not of
the same order, then orders ofg22 and r22 for a given displace-
ment field are uncoupled, and no ‘‘phantom’’ terms are present. In
particular this is the case when no curvature is present~i.e., R
5`!. However, formulas for classical stiffnesses will have the
same form in both cases, as shown below.
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2.2 Classical Approximation. At this step terms of order
e2 in the functional are recovered. Displacement field obtained at
the previous step is perturbed again. Denoting these perturbations
aswi , one can write

v15U12xaUa82u8h1w1

v25Uaẋa1ur n1ŵ21w2 (17)

v35U2ẋ32U3ẋ22ur t1ŵ31w3 .

This is the most general form of the perturbed displacement field.
As described above, the underlined term is present only for open
cross sections, whileŵa are present only ifa'R. The latter terms
are still unknown, but connected by Eq.~16!. Substitution of Eqs.
~17! into Eqs.~4! leads to the following expressions for strains:

g115U18
e

2xaUa9
e

2 u9h
~a/ l !ea/h

1 w1,1
~a/ l !e

2g125r nu8
=

e

1w1,2
e

1 ŵ2,1

~a/ l !ea/h

g225w2,2
e

1
w3

R
e

hr115h@x3U29
e

2x2U39
e

2u9r t
~a/ l !e

1ŵ3,111w3,11
~a/ l !2e

#

hr125hF2u81
u8r n1w1,2

4R
1ŵ3,121w3,122

3~ŵ2,11w2,1!

4R G
e e ~a/ l !e ~a/ l !2e

hr225hF S ŵ3,22
ŵ2

R D
2

1S w3,22
w2

R D
2
G . (18)

e e

Note that the still unknownŵa are present along withwa—they

are distinct, so thathaŵa'wa . This allows one to neglect the
latter with respect to former inrab . Of course, when terms due to
ŵa vanish, terms due towa have to be retained—this is the case
for g22 ~or for rab whenŵa themselves vanish—see the previous
step!. Underlined terms exist only for open sections while double-
underlined term only for closed cross sections. Let us keep in Eqs.
~18! only terms of ordere, denote them with bars and sort the
result into two arrays: those containing the one-dimensional strain
measures (c̄T[$ḡ11,hr̄11,r̄12%) and those with only unknown
quantities which will be found in the process of minimization
(f̄T[$ḡ12,ḡ22,hr̄22%). This provides the motivation for writing
strain the energy density in the form Eq.~8! and resembles the
semi-inversion procedure that was used in Reissner and Tsai@1#.
Depending on the geometry of the cross section, the following
distinct cases can be identified.

2.3 Strips and Open Cross Sections. Ironically, strips rep-
resent the only case where all three components ofc̄ are needed.
If we align the larger dimension of the strip along withx2 then
x350 andU3 drops from theḡ11, therefore the largest term with
U3 comes fromr̄11. The double-underlined term in Eqs.~18! is
absent~no constraint of single-valuedness!, so the largest terms
with u comes from r̄12. The resulting orders follow asaU29
'hU39'hu8'e, so c̄T5$U182x2U29 ,hU39 ,2hu8%, or in matrix
form c̄5Tstrip(s)a, whereTstrip is a 334 matrix.

For open cross sectionsU3 does not drop out from theḡ11 so
r̄11 can be neglected andaU39'e. Thus, the known strains depend
on the one-dimensional strain measures asc̄T5$U182x2U29
2x3U39,0,2hu8%, or in matrix form,c̄5Topen(s)a.

There is no constraint onf̄, so minimization is straightforward,
yielding

f̄ i52Pi j
21Sjkc̄k . (19)

Substituting the result into Eqs.~8!, we obtain the final expression
for the classical strain energy, given by

C5E TT~Q2SP21S!Tds (20)

whereT is eitherTstrip or Topen, depending on the cross section in
question.

2.4 Closed Cross Sections.As described above,ḡ12 con-
tains nonzero terms of orderu8 neglected so thatc̄T5$U18
2x2U292x3U39,0,0%. Here the 334 matrix T, which connectsc̄
and a, effectively becomes a column matrixT5$1,2x2 ,
2x3,0%; the f̄ i are not arbitrary and proper constraints have to be
imposed if the minimization is conducted in terms of these un-
knowns. Forn-celled sections there are 43n such constraints—
four constraints per each cell. Single-cell formulas are derived
below, but the procedure is equally applicable for multiple cells as
well.

Let us consider most general case whenR'a ~the other cases
are analogous with obvious simplifications and lead to the same
constraints!. We denoteJ[hŵ3,22hŵ2 /R, so that J ,25f3 .
Clearly rf̄3ds[rJ ,2ds50. Three other constraints stem from
the requirement of single-valuedness of displacements in Carte-
sian coordinates, such thatrui ,2ds50. Note the analogy between
the imposed constraints and the introduction of one-dimensional
variables Eqs.~10!. First, 05ru1,2ds5rŵ1,2ds, so thatrf̄1ds
5u8rr nds. The other two constraints are a bit less straightfor-
ward. Using Eqs.~3! the following relations can be written for
ŵa :

R @ŵ2,2ẋ21ŵ2ẍ21ŵ3,2ẋ31ŵ3ẍ3#ds50
(21)

R @ŵ2,2ẋ31ŵ2ẍ32ŵ3,2ẋ22ŵ3ẍ2#ds50.

Taking advantage of Eqs.~2! this can be rewritten as

R F ẋ2S ŵ2,21
ŵ3

R D1 ẋ3S ŵ3,22
ŵ2

R D Gds50
(22)

R F ẋ3S ŵ2,21
ŵ3

R D1 ẋ2S ŵ3,22
ŵ2

R D Gds50.

Recalling Eq.~16!, one finds that

R ẋaJds50 or R xaf3ds50.

Therefore, for a single-cell cross section functional to be mini-
mized has the form

2L5 R @c̄1
2Q1112f̄ iSi1c̄11f̄ i Pi j f̄ j12l1~f̄11u8r n!

12f̄3~laxa1l4!#ds (23)

wherela are Lagrange multipliers; here and belowa51, . . . ,4.
For multiple-cell cross sections, such a set of four Lagrange mul-
tipliers has to be introduced for each cell, while minimization
should be conducted over the whole cross section.

Then the solution is given by

f̄ i52ci c̄12Pi j
21t j where ci[Pi j

21Sj 1 . (24)

Here tT5$l1,0,(laxa1l4)%[T̂(s)l. We can rewrite Eqs.~24!
explicitly in terms ofa andl, yielding

f̄ i52ciTaaa2Pi j
21T̂jala . (25)

Substituting Eqs.~25! into expressions for constraints, we obtain
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2aa R @c1Ta2Ea#ds5la R @P1 j
21T̂ja#ds

2aa R @$1,xa%c3Ta#ds

5la R @$1,xa%P3 j
21T̂ja#ds (26)

hereE5$0,0,0,r n%. These are four linear equations forl in terms
of the one-dimensional strain measures:Fl5Ja, l5F21Ja.
Substituting the result into Eqs.~24! we obtain the solution forf̄
as

f̄52~cT1P21T̂F21J!a[Y~s!a. (27)

Finally, substituting Eq.~27! into Eq. ~23! yields the stiffness
matrix:

C5 R TTQT2YTPY1LE (28)

whereLa5F1b
21Jba ~LE corresponds to the terml1u8r n!.

From the present point of view, the derivation in Berdichevsky
et al.@4# is equivalent to settingf̄3 to zero. It can be shown using
Eqs.~24! and~26! that this assumption is appropriate for so-called
circumferentially uniform sections~CUS! ~i.e., when material
constants can be taken outside the integral and satisfying three
constraints onf̄3 renders it zero!. However, there are some cases
that the influence of this term does make a difference. To demon-
strate this let us consider a box-beam with geometry and material
properties taken from Smith and Chopra@9#. Two following con-
figurations are considered:

outer dimensions: heightb50.53 in.

width a50.953 in.

wall thickness: h50.03 in.

material properties: El520.63106 psi

Et51.423106 psi

Glt58.73105 psi

Gtn56.963105 psi

n l t5n tn50.42

antisymmetric: right and upper wall layup:~U!3 /~2U!3

antisymmetric: left and lower wall layup: ~2U!3 /~U!3

(29)
symmetric: right and left wall layup: ~U!3 /~2U!3

symmetric: upper and lower wall layup:~2U!3 /~U!3 .

Both antisymmetric and symmetric layups exhibit essentially no
elastic coupling, and the one-dimensional stiffness matrices are
diagonal.

The torsional rigidity can be significantly overestimated iff̄3 is
disregarded. This can be observed by comparing the results of
Berdichevsky et al.@4# with the present ones and with the numeri-
cal results obtained from VABS Cesnik and Hodges@3#. The re-
sults of Berdichevsky et al.@4# are far too stiff in torsion relative
to VABS results while the present theory exhibits excellent agree-
ment with VABS. Indeed, forh50.03 the difference is less than
three percent~see Figs. 2 and 3!. With decreasing thickness~leav-
ing the other dimensions the same! analytical results converge to
the numerical results. In fact byh50.006 in the analytical, results
exceed the precision of 1000 six-noded finite elements in VABS.
One should recall here that finite elements with large aspect ratios
are notoriously fickle. We also note that the difference between

the results of Berdichevsky et al.@4# and those of the present
asymptotically correct theory is practically independent of thick-
ness, as can be seen Fig. 4.

It has to be emphasized that while the cases where the theory
from Berdichevsky et al.@4# breaks down are quite rare, it might
actually create a false sense of security: For the considered sym-
metric case torsional rigidity is overpredicted by a factor of two!
On the other hand, another quite obvious approximation would be
to set the hoop bending moment to zero. This can be interpreted as
a thin-walled equivalent of the so-called ‘‘uniaxial stress’’ as-
sumption~when all stresses in the cross-sectional plane are set to
zero! that is quite common in beam theories, e.g., Rand@10# and
Kim and White@11#. As can be observed from Figs. 2 and 3, this
assumption leads to an underprediction of their torsional rigidity.
It has to be added that for the specific cases considered in Ber-
dichevsky et al.@4#, the differences between our results and theirs
are negligible. Thus, for the sake of brevity, the excellent corre-
lations published therein with experimental and numerical data
need not be repeated here.

Fig. 2 Torsional rigidity, antisymmetric layup hÄ0.03 in

Fig. 3 Torsional rigidity, symmetric layup hÄ0.03 in
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The general conclusion can be drawn that, while for most
layups either ‘‘no bending shell strain measures’’ or ‘‘no hoop
moment’’ might work quite satisfactorily, only the present theory
can insure correct results for all the cases.

Strain Field. Let us emphasize that for all types of cross
sections—even in ‘‘classical’’ approximation—the cross section
is not rigid in its own plane! The in-plane strains are not zero but
are given by Eqs.~19! and ~27!. By the same token, unless one
deals with isotropy or similarly restricted case, the shear straing12
is nonzero and essential to the analysis, even without resorting to
Timoshenko-like theories. On the other hand, within the precision
of this approximation,g11, r11, andr12 have very simple expres-
sions, since they are given by appropriate components ofc̄.

Recovering Displacements.When there is no curvaturef̄T

5$w1,2,w2,2,hw3,22%, so oncef̄ is obtained this relationship can
be integrated. In order to preserve the definition of one-
dimensional variables one has to eliminate rigid-body motions
from this warping~i.e., *wids5*(w2x32w3x2)ds50!, this al-
lows one to definewi uniquely which then should be substituted
into Eqs. ~17! to obtain the full displacement field. However,
when R'a only ŵi , andw1 can be obtained, whereas knowing
f̄2 is not sufficient to recoverw2 andw3 individually. Thus, the
full displacement field cannot be recovered in this case. The latter
situation is similar to the one described in Berdichevsky and
Misyura @12#.

2.5 Second-Order Terms. The next step of the asymptotic
procedure allows us to obtain terms in the strain energy up to

e2( a
l )

2. While generally this is a cumbersome procedure, it turns
out that sometimes these terms are very significant—and easily
calculated. This can be clearly seen from Eqs.~18!. There are two

terms present ing11 and g12 which are of ordere( a
l )(

a
h). While

we neglected those terms in the ‘‘classical’’ approximation, they
clearly can be quite large. We perturb the ‘‘classical’’ displace-
ment field in a manner similar to the previous step in whichwi
was introduced into the displacement field. This led to the pres-
ence of the unknownf̄ in the strain field. Here we introducew̃i ,
which in turn leads tof̃ in the strain. Let us note that due to the
Euler-Lagrange equations forwi , the leading cross terms between
wi and w̃i vanish in the functional. The term fromg11 exists for
open cross sections only; it is zero for strips, sinceh50. No
constraints are imposed onf̃, so the problem is similar to the
unconstrained problem for closed sections in whichf̃ i5ciu9h.
This leads to the one-dimensional strain energy per unit length

2FVlasov5aaCabab12Maaau91Gu92 (30)

whereCab is given by Eq.~20! for open cross sections and

Ma5E hs1iTiads
(31)

G5E h2~Q11
2 2ci Pi1!ds.

Note thatMa does not have a contribution fromw̃i , since terms
of order e are correctly obtained using only classical warping.
This generalizes the formulas provided in Volovoi et al.@5# where
I-beams were treated as an assembly of strips rather than as a
contour, and the results were extensively correlated with three-
dimensional simulations. For isotropy the formulas obtained re-
duce to Vlasov theory.

Finally, let us consider the termŵ2,1 from g12, which is of

order e( a
l )(

a
h) if R'a. If the cross section is open, there is no

constraint onw̃, so by choosingw̃1,25f̃12ŵ2,1 ~heref̃1 refers to
the solution for Vlasov correction!, this term can be killed. Theo-
retically, for closed sections this is not true ifrŵ2,1ds is not zero.
Value of this integral depends on the constraints imposed on clas-
sical warping. Using constraints that are chosen so that warping
does not affect the definition of one-dimensional variables, it can
be shown that for a closed contour of a constant curvature
rŵ2,1ds50. For a general geometry this is not so, but constraints
can be adjusted appropriately. Therefore, this term is not expected
to play a significant role.

3 Conclusions

Using small parametersah and h
a , which are inherent to thin-

walled beams, and without appeal to anyad hoc geometric as-
sumptions whatsoever, asymptotically correct theories are derived
for thin-walled anisotropic beams. These theories include closed-
form expressions for cross-sectional stiffness constants as well as
recovering relations for strain~and displacement when possible!.

It is noted that the term ‘‘asymptotical correctness’’ concerning
an approximate solution denotes its agreement to a specified order
in a small parameter with an asymptotic expansion of the exact
solution in that parameter. Asymptotical correctness is the most
important characteristic of any approximate solution.

The resulting Vlasov-like theory for beams with open cross
sections is a generalization of the previously published theory for
I-beams in Volovoi et al.@5#. However, unlike any existing theory
for closed sections, the effects of shell-bending strain measures
are included herein and their importance is demonstrated. It is
shown that the Vlasov effect for strips and beams with closed
cross section is negligible.

Unlike most treatments of thin-walled beams in the literature,
the present results are simultaneously obtained for open and
closed-section anisotropic beams, including strip-beams. The sig-
nificant differences entailed by these different geometries are
shown to be naturally resolved within the same asymptotic frame-
work. Now that an asymptotically correct theory is in place for
thin-walled beams, one can undertake critical assessment of pre-
viously published theories of thin-walled beams.
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