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Abstract

A generalized, finite-element-based, cross-sectional analysis for nonhomogenous, initially curved and twisted, an-
istropic beams is formulated from geometrically nonlinear, three-dimensional (3-D) elasticity. The 3-D strain field is
formulated based on the concept of decomposition of the rotation tensor and is given in terms of one-dimensional (1-D)
generalized strains and a 3-D warping displacement that is obtained from the formulation, not assumed. The warping is
found in terms of the 1-D strains via the variational asymptotic method (VAM). In this paper a Timoshenko-like model
is presupposed for a beam with cross-sectional characteristic length /4, wavelength of deformation given by /, and the
magnitude of the radius of initial curvature and/or twist is taken to be of the order R. First, a solution for the as-
ymptotically correct refinement of classical anisotropic beam theory for initially curved and twisted beams through
O(#?/R?) is obtained. Next, the O(h%/?) correction is computed. It is known that Timoshenko-like theory is not ca-
pable of capturing all the O(4%//?) corrections for generally anisotropic beams. However, if all the O(4?//?) terms are
known, then the corresponding Timoshenko-like theory is uniquely defined. Numerical results are presented to illus-
trate the trends of the various classical (extension-twist, bending-twist, and extension-bending) and nonclassical cou-
plings (extension-shear, bending-shear, and shear-torsion) as the initial twist and curvatures are varied.
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1. Introduction

A beam is a flexible body for which one dimension is much larger than the other two. To take advantage
of this geometric feature without a loss of accuracy, one has to capture the behavior associated with the two
dimensions eliminated in the model. To complicate matters, in composite beams there may be elastic
couplings among all the forms of deformation. Moreover, the in- and out-of-plane warping displacements
may be coupled. The stiffness model is strongly affected by these complications. In recent years, research has
yielded significant advances in analyzing composite beams. Hodges (1990b) gives a complete review of such
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literature prior to 1988. Cesnik and Hodges (1997) and Popescu and Hodges (1999b) give additional, more
up-to-date reviews. To the authors’ knowledge, the most recent review of the literature associated with
composite beam modeling can be found in Jung et al. (1999) and Volovoi et al. (2001).

A classical theory accounts for extension, torsion, and bending in two directions. Stemming from the
variational asymptotic method (VAM) developed by Berdichevsky (1976), the development of cross-sec-
tional analyses for classical modeling of nonhomogeneous, anisotropic beams is well understood. There are
at least two unique features of this approach. First, it is based on three-dimensional (3-D) nonlinear theory,
and second it provides the basis for both the (typically) linear, two-dimensional (2-D) cross-sectional
analysis and the one-dimensional (1-D) nonlinear equations. It has now been applied to prismatic beams in
Hodges et al. (1992), initially curved and twisted beams in Cesnik et al. (1996) and Cesnik and Hodges
(1997), beams with oblique cross-sectional planes in Popescu et al. (2000) and modeling of the trapeze effect
in Popescu and Hodges (1999a).

Classical theory is adequate in many situations, namely when the beam is slender, is not a thin-walled
open section, and undergoes motions with large wavelength (i.e, low-frequency modes of vibration).
However, a refined theory is required for high accuracy in other situations. There are at least three types of
refinements: (1) the Timoshenko refinement, needed for short-wavelength modes associated with transverse
shear effects; (2) the Vlasov refinement, typically needed for thin-walled, open-section beams; (3) a general
refined theory, in which new degrees of freedom are chosen based on criteria that are problem dependent
(high frequency vibrations, sandwich beams, etc.). Only the first type of refinement is considered in this
paper.

This type of theory was first developed for beams with arbitrary cross-sectional geometry and material
properties in Giavotto et al. (1983). Therein, in accordance with Saint—Venant’s principle, only the so-called
“central” solutions are directly sought after. These are the ones with a stress distribution that only has a
polynomial dependence on the axial coordinate. This way all the decaying solutions are explicitly removed
from the problem and six canonical problems were solved in order to obtain a 6 x 6 cross-sectional flex-
ibility matrix. The procedure has been further refined in Borri and Merlini (1986) where the more clegant
concept of “intrinsic warping” was introduced and used instead of solving six canonical problems. The
ramifications of this refinement on final values of beam model are not obvious, but no differences in the
results have been reported. The approach used in Borri and Merlini (1986) was later applied to initially
curved and twisted beams as well in Borri et al. (1992). This work led to the computer code anisotropic
beam analysis which has been the standard by which other analyses have been judged since the early 1980s.
The English version of this code we have used for comparison is an implementation of Giavotto et al.
(1983), which applies only to prismatic beams and created for internal use at Georgia Tech by Prof.
O. Bauchau. This version was called nonhomogeneous, anisotropic beam section analysis (NABSA).

It is useful to point out the main differences between the work found in Borri and Merlini (1986) and
Borri et al. (1992) and the present work. In the earlier work no asymptotic assessment of the 3-D strain
energy was made. Instead the Timoshenko-like form of the 1-D strain energy was directly fit to the 3-D
strain energy. The mismatch between the 3-D energy and its 1-D representation was reconciled using a
semi-discretization in which the axial coordinate appears as a low-order polynomial and the cross-sectional
coordinates are treated using a finite-element discretization. Furthermore, those authors made use of a
concept they called intrinsic warping that effectively redefines the 1-D variables. There is no known basis for
extending the earlier work to include end effects, such as the Vlasov phenomenon. Finally, this analysis is
essentially linear in all aspects, and the trapeze effect was added by consideration of the axial stress as initial
stress.

On the other hand, the asymptotic approach reveals that Timoshenko-like terms in the energy are
O(h?/1?), and it is only those terms that are being ““fit” into the Timoshenko-like form of the 1-D strain
energy. As a result, no introduction of intrinsic warping is required, and the constraints that are imposed on
the warping do not redefine the 1-D variables. It has to be noted that the asymptotic approach naturally
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includes the treatment of nonlinearities and provides a rigorous basis for extension to refinements of other
kinds. It is remarkable that, as shown below, both approaches lead to results that are very close to each
other numerically.

The VAM was applied to the Timoshenko-like modeling of prismatic isotropic beams by Berdichevsky
and Kvashnina (1976). Their work was extended to treat composite, prismatic beams in Popescu and
Hodges (1999b). However, this work invoked some compromises. First, a least squares technique was used
to calculate the stiffness matrix, which turns out to be unnecessary as shown in this paper. Second, there is a
slight inconsistency in the equations in that work (which has turned out to have little or no effect on the
results for most cases). Finally, the initial curvature and twist effects, although treated for classical theory in
Cesnik and Hodges (1997), were not yet developed for the refined theory. Most important is that now the
engineering software—the variational asymptotic beam sectional analysis (VABS)—has been extended to
include all the capability described here. It can be used to perform a generalized cross-sectional modeling
approach to obtain a 6 x 6 stiffness matrix along with the interior solution of the warping for initially
curved and twisted composite beams with arbitrary choice of reference line, which is sufficient for most
engineering application.

2. Beam kinematics

To analyze a beam, a reference line r should be specified (Fig. 1). This choice is arbitrary. A typical cross-
section could be described as a prescribed domain s with / as its characteristic size. Any material point of
the beam in 3-D space can be located by a position vector r, which is specified by the beam axial coordinate
x; along r and cross-sectional Cartesian coordinates (x,,x3) embedded in a chosen reference cross-section.
At each point along r an orthogonal reference triad b; is introduced such that b, is tangent to x, and
b, = b, x b;. (Here and throughout all the paper, Greek indices assume values 2 and 3 while Latin indices
assume 1, 2, and 3. Repeated indices are summed over their range except where explicitly indicated.) The
vectors b; have the properties that

b -b; = J; ()

where 0;; is the Kronecker symbol.

b,
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Fig. 1. Schematic of beam deformation.



5104 W. Yu et al. | International Journal of Solids and Structures 39 (2002) 5101-5121

Now the spatial position vector f of any point in the cross-section can be written as
F(xy,x0,x3) = r(x1) + x,b,(x1) (2)

where r is the position vector of the points of the reference line, ¥’ = b; and () means the derivative to x;.

When the beam deforms, the triad b; rotates to coincide with new triad B;. Here B, is not tangent to x; if
shear deformation is considered. For the purpose of making the derivation more convenient, we introduce
another triad T; associated with the deformed beam (see Fig. 2), with T; tangent to the deformed beam
reference line and T, determined by a rotation about T;. Obviously, the difference in the orientations of T;
and B; is due to the small rotations associated with transverse shear deformation. The relationship between
these two basis vectors can be expressed as

B, 1 =2y, =2y T,
B2 = 2?12 1 0 T2 (3)
B3 2'})13 0 1 T3

where 2y,, and 2y,; are the small angles caused by the shear deformation.
One can represent the position vector of any particle in the deformed beam which had position f in the
undeformed beam as

R(x,x,x3) = R(xy) 4+ x, Ty (x1) + wi(x1,x2,x3)Ti(x1) 4)
where R is the position vector to a point on the reference line of the deformed beam, and w; are the
components of warping. Note in this formulation, that we choose T, to be tangent to the deformed beam
reference line, which means we classify the transverse shear deformation as part of the warping field. Within
the framework of small strain this does not introduce any additional approximation or result in any loss of
information. We note that the transverse shear strain measures are typically one order higher in 4// than
the classical 1-D strain measures. The 1-D generalized strain measures of the classical theory can be ex-
pressed as

e=[y, K1 K2 K3] (5)

Here, consistent with the geometrically exact framework of Hodges (1990a), the “moment-strain’ measures
k; are defined based on the changes along x; of the triad T;, viz.,
dT

Eli = (k; +1,)T; x T, (6)

27,5

T

B,

Fig. 2. Coordinate systems used for transverse shear formulation.
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where k; is the initial twist and k&, are the initial curvatures such that

db,
a = kjbj X b,‘ (7)
Because of the special choice of triad T;, the 1-D ““force-strain” measures associated with shear deformation
are zero. In order to consider the case in which the 1-D transverse shear measures are not zero, another set
of moment-strain measures associated with the B, basis will be introduced below, denoted by f; (see Eq.
(34)) where

dB;

v (ki + B;)B; x B, (8)
One should note that Eq. (4) is four times redundant because of the way warping was introduced. One
could impose four appropriate constraints on the displacement field to remove the redundancy. The four
constraints applied here are

{wi) =0 ©)
<<)C2W3 — )C3W2>> = O (10)

where the notation ((}) means integration over the reference cross-section. The implication of Eq. (10) is
that warping does not contribute to the rigid displacements of the cross-section. This leads to the 1-D
displacement variables for extension and bending that have easily identifiable geometric meanings: they
correspond to the measure numbers in the b; basis of the average displacement of the cross-section. The
torsional rotation variable is the average rotation of the cross-section about B;.

3. 3-D formulation

Based on the concept of decomposition of the rotation tensor in Danielson and Hodges (1987), the
Jauman-Biot—Cauchy strain components for small local rotation are given by

Iy =5(F;+F;) =6y (11)
where Fj; is the mixed-basis component of the deformation gradient tensor such that
Fy=T; - Gig - b, (12)
with the base vectors defined as
&
gi - axi
R
G, = (13)
ax,-
g — €ijk8; X 8
2Ve

where g is the determinant of the metric tensor for the undeformed geometry g;; = det(g; - g;), and e;; are
the components of the permutation tensor in a Cartesian coordinate system.

Discarding the product of the warping and 1-D generalized strains (both of which are of the order of the
strain), one can express the 3-D strain field as

IF=I'w+ e+ Tgw+I'iw (14)
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where I'=[I'yy 2y, 23 Iyp 20 F33]T, w=[w w w3]T. All of the operators in Eq. (14) are
defined as follows:

rT0 0 07
20 0
oy
W 00
r,= 0 ai 0 (15)
e
L0 0 &)
1 0 X3 —X2
0 —x3 0 0
- 1 0 X2 0 0
=710 0o o o (16)
0 0 0 0
0 0 0 0
= L [E bt (o -t )
V8 0s
1 [ L
I =— 18
-%|a] (18)
where O; is a 3 x 3 null matrix, /3 is a 3 x 3 identity matrix, and the operator ~is defined as & = —e;j 0.
This form of strain field is of great importance, because it is now linear in ¢, w and its derivatives.
The strain energy of the cross-section or the strain energy density of the beam may be written as
U=Y{r'ar) (19)

The notation (e) = ﬁ e,/gdx; dx; is used throughout the paper, where & is the 6 x 6 symmetric material
matrix in the b; basis. Now the basic 3-D elastic beam problem is to minimize the functional Eq. (19) subject
to the constraints in Egs. (9) and (10) to find the unknown warping function.

4. Solution for the warping

The behavior of an elastic body is completely determined by its energy. Hence, to derive 1-D beam
theory, one has to reproduce the 3-D energy in terms of 1-D quantities. This dimensional reduction cannot
be done exactly. The VAM (Berdichevsky, 1976) is a powerful mathematical method that can be used to
find the 1-D energy which approximates the 3-D energy as closely as possible. To solve this problem via the
VAM, small parameters should be first identified. While it is true that the strain is a small parameter,
because we are limiting the present discussion to physically linear theory, it is appropriate to discard terms
from the strain energy that are of higher order than quadratic in the strain. It is known for a beam that
h/l <1 and h/R < 1, where / is the characteristic wavelength of deformation along the beam axial coor-
dinate and R is the characteristic radius of initial curvature/twist of the beam. For convenience, and because
it is sufficient for the purposes of developing a Timoshenko-like theory for initially curved and twisted
beams to do so, we assume that / and R are of the same order. Then it is necessary only to expand all
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unknown functions in asymptotic series of #; VAM can then be used to asymptotically reduce the original
3-D problem to a 1-D problem.

In order to deal with arbitrary cross-sectional geometry and anisotropic materials, one may turn to a
numerical approach to find the stationary value of the functional. The warping field can be discretized as

w(xr,x2,x3) = S(%x2,x3)V (x1) (20)

with S(x,,x3) representing the element shape function and V" as a column matrix of the nodal values of the
warping displacement over the cross-section. Substituting Eq. (20) back into Eq. (19), one obtains

2U = VIEV + 2V (Dje + DV + Dy V') 4 €' Dyye + VIDpgV 4+ V"D V' 4 2V Dpe
+ 2V Dye + 2V Dy V' (21)

where the newly introduced matrices are defined as

E= <[FhS}T 9 [FhS]> Dy = <[I“hS]T 9 [r8}>
D = <[rhsf 9 [FRS]> Dy = <[F,,S]T 9 [F,S}>
Du=([L]" 7 1)) D= (IeS]"  [1eS]) (22)
Dy = <[F;S]T 7 [F,S]> Dy, = <[FRS]T 7 [F£]>
Dy = <[r,5}T 9 [r£]> Dy = <[FRS]T 9 [F,S]>
These matrices carry information on the material properties as well as the geometry of a given cross-section.

To use the VAM, one has to find the leading terms of the functional according to different orders. For
the zeroth-order approximation, the leading terms of Eq. (21) are

2Uy = VIEV 4+ V' 'Djee + e"De (23)

Minimizing the functional in Eq. (23) subject to the constraint in Egs. (9) and (10), one finds the zeroth
approximation of the warping to be

V="V, = Vot (24)

Plugging Eq. (24) back into the energy expression, Eq. (23), one can obtain the energy up to the order of
O(&?) as

2Uy = " (V' Dy + Dyy)e (25)

We now perturb the unknown warping field as a series in the parameter /, so that

V="V +hVi + Vs + O(h°) (26)

Substituting Eq. (26) into Eq. (21), one can prove that it is not necessary to calculate 4?5 and higher-order
quantities in order to obtain an asymptotically correct energy expression through O(/%¢?). Thus, the energy
can be written as

2U; = &' (Vy Dy + Duu)e + 2(Vy Dur Vo + Vy Dy Vy + Vi Dpote + V' Dyye) + LV EV;
+ 2VlT (DwrVo + DZRVE) + Dp.€) + 2V1Tth Vs + 2%Tth "+ 2V1/TD1xc9 + VOTDRR 2
+ 20" DriVy + V3" DuVy (27)
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After integrating by parts, the second-order leading terms (without the constant terms) are

2U, = V"EV; + 2V,"Dge + 2V{" Dsé' (28)
where

Dg = Dy Vo + D}y Vo + Dy, (29)

Ds = Dy Vy — D, Vy — D, (30)

From here, one could solve for the first-order approximation of warping, obtaining
Vi = Vire + Vg€ (31)
Using Eq. (31), the second-order asymptotically correct energy can now be obtained from Eq. (27) as
2U = &'Ae + 2" B + T Ce + 2" De” (32)
where

A=V Dy, + Dy, + V' (Di + D}y + Drr) Vo + V" Dr, + DL, Vo + DEVig
B = V"D Vo + D, Vo + Vy" Dy Vir + D, Viz + V' Dri Vs
+3(DVis + VigDu Vo + VikDy, Vo + VigDye) (33)
C =V, "D}y Vis + VisDy, Vo + VigDy + V' Du Vo
D= (D, + IA/OTth)Vls

5. Transformation to Timoshenko-like theory

Straightforward use of the strain energy, Eq. (32), is possible as mentioned in Sutyrin (1997); but this
involves boundary conditions that are more complicated than necessary. Although this formulation is
asymptotically correct up to the second order, it contains derivatives of the classical strain measures. The
problem of how to get rid of these undesirable derivatives, while keeping the theory asymptotically correct,
has not yet been brought to a completely general conclusion. Berdichevsky and Starosel’skii (1983) used
changes of variables to tackle this problem, while Popescu and Hodges (1999b) used the 1-D equilibrium
equations to build a relationship between the strains and derivatives of strains. Although the change of
variables can yield an elegant strain energy of Timoshenko-like form, the kinematic meaning of transverse
shear strains is lost. Hence, equilibrium equations are used in the present work.

First, one has to change the asymptotically correct formulation to be expressed by the strain measures of
Timoshenko theory. Recalling the deformed beam system B;, we have already mentioned that B; is not
tangent to x; because of shear deformation (see Fig. 2). Based on the relation between T; and B; and as-
suming small strains, one can derive a kinematic identity between classical strains in the T; system and the
Timoshenko strains in the B; system, similar to the manner in which this was done in Popescu and Hodges
(1999b). Thus,

e=ec+ 0y +Py (34)

where ¢ is the same as mentioned before and e =[y,;, S, S, s ]T represents the 1-D generalized strains
associated with the B; system due to extension, torsion, and bending. The matrices Q and P are given by
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0 0 00

1o o e K

O0=1o 1| P= |-k o (35)
10 0 —k

with 9 = [2y,, 27,5]" as the column matrix of transverse shear strain measures associated with the B,
basis. Definitions of y,; and y in a geometrically exact framework are given in Hodges (1990a).

Substituting Eq. (34) into Eq. (32) and dropping higher-order terms, one can express the strain energy in
terms of the Timoshenko-like beam strain measures as

2U; = €"Ae + 26"40) + 2TAPy + 26'Bé + ¢ Ce + 2" De” (36)
The Timoshenko-like strain energy should be written as
2U = 'Xe+2¢"Fy + 997Gy (37)

Theoretically, if the Timoshenko-like theory is asymptotically correct, Eqs. (36) and (37) should be
equivalent. To prove this, one has to get rid of the derivatives in Eq. (36). Using the equilibrium equa-
tions is a feasible way to achieve this. Following Hodges (1990a), the nonlinear 1-D equilibrium equa-
tions for initially curved and twisted beams without distributed forces, both applied and inertial, can be
written as

F +KF=0
- _ (38)
M +KM+ (et +p)F =0
with
ee=[1 0 0"
p=1rm 2 2’/13JT (39)

K=k+§

Here F is the column matrix of the cross-sectional stress resultant measures in the B; basis, and M is the
column matrix of the cross-sectional moment resultant measures in the B; basis. In our asymptotic analysis,
terms of order ue® and ue*h’ are neglected in the strain energy which leads to the estimation & = O(/?).
Because the strain energy is only asymptotically correct up to the second order of 4, nonlinear terms in the
equilibrium equations do not affect the strain energy. Therefore, for the purposes of creating the cross-
sectional model, Eq. (38) can be simplified to read

B

{§§}+D1{2}+D2 g; =0 (40)
M

F 2

%; +D; AAZ +D4{2}:0 (41)

M; M,
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where
0 0 0 0
10 =k |k 0 0 Of 100 -k ks
Dl_[kl 0 } D2_|:—k2 0 0 o]’ B=lo & 0o -k (42
0 -k K 0
and D, = Q — Dj.
One can express € and ' in terms of € and y from Egs. (40) and (41) as
6/ :Nil(Aj)) +A4€) (43)
Y = —G '(FTN"'45 + D,G + DyF)y + (FTN'44 + D\F" + D,X)¢] (44)
where
Ay = (FG''D, — D4)G + (FG™'D, — D;)F (45)
Ay = A3G'FT + (FG'D, — D3)N (46)
N=X-FG'F' (47)

Differentiating the both sides of Eq. (43), one can express ¢” in terms of € and y with the help of Eq. (44) as
¢ =N'[(FG'Dy — D3)4; — 4;G ' (D1G + D>F)|y + N~ ' [(FG™'D; — D3)As — A3G ' (D\F' + D>X)]e

(48)

Substitution of Egs. (43), (44) and (48) back into Eq. (36), one will get a Timoshenko-like energy ex-

pression. The next step is to set this form equal to Eq. (37), after which one can obtain by inspection the
following matrix equations

X =4-240G " (FN"'44 + D\F" + DyX) + 2BN 4, + AJN'CN ' 4,
+2DN'[(FG™'D, — D3)44 — A3G'(D,F" + D,X)] (49)

F=—A0G '(FN"'43 + DG+ DyF) + BN A3 + AIN"'CN'45 + AP + N ' [(FG'D, — D3)4;
— A5G (D1G + DyF))] (50)

G=AIN"'CN'4; (51)

The final task is to solve this set of complicated matrix equations for the unknown matrices X, F and G. One
may simplify these equations and still obtain an asymptotically correct theory by dropping higher-order
terms, yielding

A=X-FG'FT =N (52)
P=0G ' (F'TN"'434 DG+ D,F) — (FG'Dy — D3)'N"'CN 43 — A'BN ' 4,

— A7'DN7'[(FG™'D, — D3)45 — 435G (D,G + D,F)] (53)
ANT'CN 43 =G (54)

All the difficulty of solving these equations comes from the D; matrices. Note that these matrices contain the
initial curvature and twist parameters, which are characterized as small in our problem. Thus, one can solve
these equations by a perturbation method. We perturb the unknowns symbolically yielding
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F = Fy+ kF} + K°F

2 (55)
G=Gy+kG + kG,

where k is a scalar with a magnitude characteristic to that of our initial curvatures. We are not interested in
finding > and G, because these two terms will not make any contribution to a second-order asymptotically
correct energy. From Eq. (52) we know, as soon as we have found Gy, G, Fy and F;, we can find X. The
zeroth perturbations of Egs. (53) and (54) are

—~AQG,'FIN 43+ BN '43 = 0 (56)

A3 N'CN 450 = Gy (57)
where

A3 = —0G, (58)
One can obtain the zeroth-order equation from Egs. (56) and (57) as

v'o)fen'o =G (59)

Fy =B"47'0G, (60)

Then from Eq. (52) one obtains X.
The first-order equations from Eqgs. (53) and (54) are

AZNT'CN ' A3 + ATNT'CN 43 = G, (61)

— OG; Y (FT — D,Q™ — D,BT — G;'G\F)) + (FyGy'Dy — D3)'N7'C = PG;'Q'N — A7'DN™!
% [(FoGy' Dy — D5)QQ'N — Q(D1Q'N + D,B")] (62)

where 43 = A — 0G, and Az is a known quantity which can be calculated from Fy and Gy. One can then
obtain G| and F, and then can finally obtain X. The special case of a prismatic beam has equations that
correspond to the zeroth-order equations, in which case the stiffness matrices are solved exactly; that is, the
A, B, and C matrices are not corrected by initial curvatures and twist.

6. Numerical results

All the above theory has been implemented into the engineering software VABS. In this section,
numerical results from this code for both isotropic and anisotropic cases are presented and compared
with available published results.

6.1. Prismatic beams

Popescu and Hodges (1999b) presents several sets of numerical results for various prismatic beams to
validate the theory introduced there. The present theory reproduces almost all the results there, even
though the two approaches are very different from several perspectives. The reason why the results agree
with each other to such a great extent is primarily due to both approaches being based on asymptotic
methods. Another reason is that both of these methodologies use the equilibrium equations to get rid of the
derivatives of strains in the asymptotically correct energy. It should be noted that the slight inconsistency
invoked in the previous approach can be considered to be an approximation.
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Strictly speaking, our results must be validated against full 3-D finite-element analyses and experiments.
This aspect of the work is still preliminary, but what has been done to date is reported in Yu et al. (2001).
Another excellent source of validation is against NABSA, an existing beam sectional analysis of sufficient
generality to offer meaningful comparisons. Although NABSA is not based on asymptotic considerations
and thus cannot be considered to be the standard of our validation, one should expect our results to agree
reasonably well with it. Indeed, we have found excellent agreement with results obtained from NABSA for
many cases, including both isotropic and anisotropic beams. While there were only minor differences in
most cases with NABSA and the analysis of Popescu and Hodges (1999b), there were some cases in which
the agreement, particularly with the shear stiffnesses, was surprisingly poor. Thus, it is somewhat heart-
ening that we have cases in which the present results agree better with NABSA than those of Popescu and
Hodges (1999b) did.

For example, we consider a box-beam with the material properties as specified in Table 1. This case has
an almost fully populated stiffness matrix. For NABSA we have a 16 x 6 mesh along the width and a 12 x 6
along the height. The total mesh has 336 9-noded quadralateral elements having 4368 degrees of freedom in
total. For VABS we have a 15 x 6 mesh along the width and 10 x 6 along the height. The total mesh has
300 6-noded quadralateral elements having 2100 degrees of freedom in all. The present results agree very
well with NABSA, as shown in Table 2. The 6 x 6 stiffness matrix is arranged as 1-extension; 2, 3-shear; 4-
torsion; 5, 6-bending, and the units associated with stiffness values are S; (Ib), S;;+3 (Ibin.), and Siy3 43
(Ibin.?) for i,j = 1,2,3. Here VABS;, is the inverse of the 4 x 4 subset of 6 x 6 flexibility matrix corre-
sponding to classical strain measures. It is also noted that the fact this layup configuration exhibits strong
bending-torsion coupling, which is even larger than the torsional stiffness, can be used for the benefit of
elastically tailoring airplane wings to meet requirements of aeroelastic stability.

Table 1
Properties of thin-walled box-beam
Outer dimensions CASI Material properties
Width a = 0.953 in. Right wall: [15°/-15°]; E; =20.59 x 10° psi
Thickness # = 0.03 in. Left wall: [-15°/15°]; E, = 1.42 x 10° psi
Height 5 = 0.53 in. Upper wall: [-15°¢ G, = 8.7 x 10° psi
Lower wall: [15°]¢ G, = 6.96 x 10° psi
Vi =V, =042
Table 2
Stiffness for box-beam configuration CASI1
N NABSA Popescu et al. Present VABS;
S 0.137 x 107 0.137 x 107 0.137 x 107 0.985 x 10°
S —0.184 x 10° —0.184 x 10° —0.184 x 10° -
Si3 —0.150 x 10° 0.176 x 10* —0.131 x 10° -
S»n 0.885 x 10° 0.883 x 10° 0.884 x 10° -
S 0.803 x 10° —0.842 x 10° 0.719 x 107 -
Si3 0.387 x 10° 0.775 x 10* 0.389 x 10° -
Sua 0.170 x 10° 0.174 x 10° 0.170 x 10° 0.170 x 10°
Sus 0.176 x 10° 0.180 x 10° 0.176 x 10° 0.176 x 10°
Su6 —0.349 x 10° —0.362 x 10° —-0.351 x 10° —0.351 x 10°
Sss 0.591 x 10° 0.608 x 10° 0.591 x 10° 0.591 x 10°
Sse —0.371 x 10 —0.372 x 10° —-0.371 x 10° —0.372 x 10°

Se6 0.141 x 10° 0.143 x 10° 0.141 x 10° 0.141 x 10°
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6.2. Curved/twisted beams

So that readers will understand some of the motivation for the results presented herein, some expla-
nation is needed. For initially curved or twisted beams, there are not many published results with which to
compare. Indeed, there are only two papers on this topic known to the authors, Berdichevsky and
Starosel’skii (1983) and Borri et al. (1992). As mentioned previously, Berdichevsky and Starosel’skii (1983)
used a change of variables to construct the strain energy including transverse shear deformation. The re-
sulting transverse shear measures combine information from the original transverse shear measures and the
derivatives of the bending measures. The clear kinematical meaning of these strain measures is lost in this
process, and they are obviously different from our definition here. Thus, as shown by Yu et al. (2001), the
shear stiffness coeflicients for isotropic beams derived from Berdichevsky and Starosel’skii (1983) do not
agree with those of the elasticity solution. However, this does not mean that we cannot extract some in-
formation from this work that is useful for comparison. For example, it has been verified that the as-
ymptotically correct strain energy up to the second order expressed in Eq. (32) is the same as that which is
obtained in Berdichevsky and Starosel’skii (1983) for beams made with isotropic materials. Also, all the
stiffnesses related only to extension and torsion should agree because these terms are not affected by the
change of variables chosen therein. As for the other reference, the 1-D strain measures for the beam theory
of Borri et al. (1992) are of the traditional kinematical meaning and thus stiffnesses could be compared were
they available. Unfortunately for us, most of the results reported in that work are contour plots of 3-D
stresses and thus not in a form that facilitates quantitative comparisons. It should be noted that validation
of the present theory with 3-D FEM has been dealt with extensively by Yu et al. (2001) and will not be
repeated here.

To illustrate how initial curvatures and twist affect the 6 x 6 stiffness matrix, we first investigate an
isotropic beam with square cross-section. The cross-section has dimensions 0.5 in. x 0.5 in. meshed with
8 x 8 8-noded quadrilateral elements (a total of 675 degrees of freedom), and the material properties are
taken to be E = 2.6 x 107 psi and v = 0.3. The results of VABS and those kindly provided by Mantegazza
(2001), based on the code of Borri et al. (1992), are shown in Tables 3-5. The prismatic results agree with
known exact solutions very well. It can be concluded from Table 3 that when there is nonzero initial twist,
there will be shear-bending coupling, S>s and S36, and there will also be extension-torsion coupling Si4.
These values are proportional to the magnitude of k;. These observations agree with the result of Berdi-
chevsky and Starosel’skii (1983) that the extension-twist coupling for naturally twisted beams should be
[S55 + S66 - 2(1 + V)S44]k1.

For a beam with initial curvature k, # 0, one can observe from Table 4 that there will be shear-torsion
coupling Sy, and extension-bending coupling S;5s. These values are proportional to the magnitude of k.

Table 3

Stiffness of isotropic square cross-section with initial twist
S Prismatic ki = 0.05 k =0.10

Borri et al. (1992) VABS Borri et al. (1992) VABS

MY 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107
Si4 0 0.212 x 10* 0.212 x 10* 0.423 x 10* 0.424 x 10*
S»n 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
Srs 0 —0.136 x 10* —0.136 x 10* -0.271 x 10* —-0.271 x 10*
S33 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
S36 0 —0.136 x 10* —0.136 x 10* —-0.271 x 10* —0.271 x 10*
Sua 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10°
Sss 0.135 x 10° 0.135 x 10¢ 0.135 x 10° 0.135 x 10° 0.135 x 10°

Se6 0.135 x 10° 0.135 x 10¢ 0.135 x 10° 0.135 x 10° 0.135 x 10°
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Table 4

Stiffness of isotropic square cross-section with initial curvature
S Prismatic k, = 0.05 ky = 0.10

Borri et al. (1992) VABS Borri et al. (1992) VABS

Shi 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107
Sis 0 —0.934 x 10* —0.880 x 10* —0.187 x 10° —0.176 x 10°
S» 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
Sha 0 0.218 x 10* —0.226 x 10* 0.436 x 10* —0.452 x 10*
Si3 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
Sus 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10°
Sss 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10°
NS 0.135 x 10¢ 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10°

Table 5

Stiffness of isotropic square cross-section with initial twist and curvature
S Prismatic ki = 0.05, k3 = 0.05 ki =0.10, k&3 = 0.10

Borri et al. (1992) VABS Borri et al. (1992) VABS

Si1 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107 0.650 x 107
Si3 0 0.253 x 103 0.253 x 103 0.101 x 10* 0.101 x 10*
Si4 0 0.212 x 10* 0.212 x 10* 0.424 x 10* 0.424 x 10*
Sie 0 —0.934 x 10* —0.880 x 10* —0.187 x 10° —0.176 x 10°
S» 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
Srs 0 —0.136 x 10* —-0.136 x 10* —-0.271 x 10* —-0.271 x 10*
S33 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107 0.207 x 107
Sa4 0 0.218 x 10* —0.226 x 10* 0.436 x 10* —0.451 x 10*
S36 0 —-0.136 x 10* —-0.136 x 10* —0.272 x 10* —-0.272 x 10*
Sua 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10° 0.879 x 10°
Sss 0.135 x 10¢ 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10°
Ses 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10° 0.135 x 10°

The exact solution for an initially curved beam subjected to bending in the curvature plane can be found
in Timoshenko and Goodier (1970). Although in Timoshenko and Goodier (1970) only a deep beam is
treated and done so as a plane-stress problem, one could reasonably approximate the exact solution for
beams with a square cross-section were no other loads added. Here we consider such a beam with curvature
ky = 0.5 and loaded with a pure bending moment M, = 1. In Fig. 3 is shown a comparison of results for this
beam produced by VABS with this exact solution for the axial stress in the x3;-direction at x, = 0. The solid
line is the exact solution, the symbols are the results produced by VABS, and the dashed line is the result for
the straight bar. Fig. 4 compares results for the radial stress, which is zero for a straight bar. The fact that
VABS can yield such great accuracy in comparison to the exact solution with such a coarse mesh (8 x 8
parabolic elements) exemplifies the efficacy of our beam model to reproduce 3-D results.

If the beam is initially twisted (nonzero &) and curved (nonzero k3), we will get other effects beside those
obtained for each case separately as in Tables 3 and 4. From Table 5, we will also get a nonzero value of
extension-shear coupling due to the combination of initial curvature and twist that is proportional to
ki + ks.

It is significant to note that VABS results correlate very well with those of Borri et al. (1992), a quite
different approach from the present work. The only discrepancy pertains to the very small shear-torsion
couplings which, although they have similar absolute values, possess different signs. The reason for this
discrepancy is unknown.
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To exemplify the effects of initial curvature and twist on the stiffnesses of composite beams, a CUS box-
beam made of the same material as in Table 1 with v;, = 0.3 and v,, = 0.34 is considered. The layup in every
wall is [15°], and the mesh is the same as for the previous box-beam. The results are presented in Table 6.
(The prismatic result calculated by NABSA is listed for use below.) This box-beam exhibits extension-twist
(S14) and shear-bending (S5 and Sys) couplings, even if it is prismatic. When the beam becomes initially
twisted, the values of the stiffnesses are affected significantly. However, no new couplings are introduced.
Indeed, we already know that initial twist k; only introduces bending-shear and extension-twist couplings,

Table 6

Stiffness for box-beam configuration CUS with initial twist
S NABSA VABS ki = 0.05 ky =0.10
Siy 0.1437 x 10’ 0.1437 x 10’ 0.1317 x 107 0.9453 x 106
Si4 0.1074 x 10° 0.1074 x 10° 0.9302 x 10° 0.4036 x 10°
S» 0.9024 x 10° 0.5042 x 10° 0.5421 x 10° 0.5750 x 10°
Srs —0.5200 x 10° —0.2905 x 10° —0.2948 x 10° —-0.2931 x 10°
S33 0.3940 x 10° 0.2058 x 10° 0.2515 x 10° 0.3036 x 10°
S36 —0.5635 x 10° —0.2941 x 10° —0.3115 x 10° —0.3300 x 10°
Sus 0.1679 x 10° 0.1679 x 10° 0.1451 x 10° 0.6347 x 10*
Sss 0.6621 x 10° 0.5298 x 10° 0.545 x 10° 0.5564 x 10°
Se6 0.1725 x 10° 0.1340 x 10° 0.1383 x 10° 0.1436 x 10°
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Table 7

Stiffness for box-beam configuration CUS with initial curvature
S Prismatic k= 0.01 k, = 0.05
S 0.1437 x 107 0.1486 x 107 0.2060 x 107
S 0.0 —0.4884 x 10° —0.1248 x 10°
Si4 0.1074 x 10° 0.1150 x 10° 0.2052 x 10°
Sis 0.0 0.2721 x 10° 0.9590 x 10?
S» 0.5042 x 10° 0.4924 x 10° 0.2500 x 10°
So4 0.0 —0.7661 x 10* —0.1960 x 10°
S>s —0.2905 x 10° —0.2869 x 10° —0.2020 x 10°
Si3 0.2058 x 10° 0.19914 x 10° 0.7436 x 10*
S36 —0.2941 x 10° —0.28827 x 10° —0.1656 x 10°
Sua 0.1679 x 10° 0.1799 x 10° 0.3216 x 10?
Sius 0.0 0.4331 x 10* 0.1527 x 10°
Sss 0.5298 x 10° 0.5240 x 10° 0.3845 x 10?
Se6 0.1340 x 10° 0.1326 x 10° 0.1018 x 10°

which already exist in the stiffness matrix of the same beam when it is regarded as prismatic. However, when
the same composite box-beam is initially curved, the stiffness model will be significantly modified from the
prismatic one. For the purpose of demonstrating that our theory and the associated code have the ability to
model such structures, the result for the composite box-beam with initial curvature is shown in Table 7.

6.3. Locating the shear center

For the isotropic case the shear center is defined as the point through which a transverse force will only
cause transverse displacement without twist (Fung, 1993). This definition is not appropriate for composite
beams. Instead, it is the point on the cross-section for which an applied transverse force directly induces no
twist, although bending caused by the transverse force could induce twist because of bending-twist cou-
pling. The locus of shear centers for cross-sections along the beam axis is called the elastic axis of the beam.
The elastic axis is a natural reference line in describing elastic deformation of the beam since it can lead to
simpler resulting governing equations. To locate this axis, one has to find the shear center as accurately as
possible, especially for thin-walled beams with open cross-sections. There the torsional stiffness is much
smaller than the bending stiffness, and even a very small error in locating the shear center may result in
undesirable twisting, with respect to which the design has to be made robust. Using the thin-walled as-
sumption, it is not difficult to locate the shear center for homogeneous beams made from isotropic ma-
terials. But for thick-walled or composite beams, it is very difficult or even impossible to find a closed-form
solution for such a point. However, if one has an accurate 6 x 6 stiffness matrix, finding the shear center
becomes trivial. Suppose one puts the beam constitutive law into the form

Y11 Py Pp Py Py Ps P F
2y, P, Ppn Ps Py Ps Py 2
2y \ _ | Ps P Py Py Pis Py £ (63)
K1 Py Py Py Py Pis Py M,

K2 Pis Ps Ps Pyis Pss P | | M

K3 P Py P Py Pss Pos | | M

To obtain the shear center, it is sufficient to assume that there are two transverse forces acting on a cross-
section, F, and F; (see Fig. 5). The twisting moment introduced by the transverse forces is thus

M, = Fye;, — Fres (64)
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Fig. 5. An arbitrary cross-section with shear center off the beam axis.

where e, and e; are Cartesian coordinates of the shear center from the reference line. We need to find e, and
e3 to locate a position where an application of the transverse forces on the cross-section results in twist
k) = 0. This can be written in terms of loading and stiffness as

(P — P44€3)ﬁ2 + (P +P44€2)ﬁ3 =0 (65)
Since this equation is valid for any arbitrary B, and F, the location of shear center can be easily obtained as
Py
€ = —P—
44
66
n (66)
, =22
Py
| , |
| |
— X3
h——.
b
0] X2
e
s £

Fig. 6. Sketch of a channel section.
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As the first example, we investigate the shear center of a channel section (see Fig. 6). Using a thin-walled
assumption, the elasticity solution for the shear center turns out to be

e 1 1 (hY 1
c=s——=|7) t—=— 67
i nle) 0
A plot of the shear location normalized by the thin-walled solution for various values of the ratio b/h is
shown in Fig. 7. The mesh varies depending on the aspect ratio. For b/h = 10, the channel section is
meshed by 472 8-noded quadralateral elements for a total of 4983 degrees of freedom. It is obvious that
when the aspect ratio is very large, the shear center location calculated from the VABS 6 x 6 stiffness matrix
converges to the result of thin-walled theory.

6.4. Effect of stiffness model on 1-D results

If one can find a one-to-one correspondence between the resulting stiffness matrices for different models,
it can be confidently claimed that they are equivalent to each other as far as the cross-sectional constants
are concerned. However, only looking at the stiffness matrix will not provide much insight. Moreover,
sometimes comparing only the values of beam stiffness matrix can be very deceiving if two models are
derived from different methodologies. One such example is the problem considered in Table 6. The true
basis for comparison should be to find how two different models maintain the strain energy in the simplified
1-D model as close to 3-D energy as possible. There are at least two ways to carry out this comparison. One
is to extract the 1-D information from more complex models (2-D or 3-D models) based on the definition of
1-D variables of the beam models. For the seemingly quite different stiffness matrices in Table 6, one
natural way to assess the difference is to compare a 1-D result (like a tip defection under a transverse tip
force) using various stiffness models with results from complex model. Here an ABAQUS shell model is
used. The 1-D information is obtained by using the 1-D generalized stiffness model as input to a finite-
element code based on the geometrically exact mixed formulation of beam theory presented in Hodges
(1990a). The plots are shown in Fig. 8. The dashed line shows results from the NABSA model and the solid



W. Yu et al. | International Journal of Solids and Structures 39 (2002) 5101-5121 5119

3.5

--- NABSA e ABAQUS
— VABS

Normalized tip deflection

1.5

Fig. 8. Comparison of NABSA, VABS, and 3-D FEM results.

line shows the results from the VABS model. The mesh of the cross-section is the same as that for the
previously studied box-beam of Table 1. The symbols depict results from ABAQUS. Fig. 9 shows the
undeformed shape and deformed shape finite-element model using 2016 8-noded shell elements of the type
S8R type with a total of 36,960 degrees of freedom when the aspect ratio L/a is approximately 5. These
three sets of results are very close. The VABS curve appears to be closer to the ABAQUS results when the
beam is slender, and the NABSA results do a bit better in the limit of the beam becoming fat (i.e., ceasing to

Viewport: 1 ODB: ftmp_mnt/home/gypsy2igt7341e/3dfemishell2.odb

Fig. 9. ABAQUS model for the composite box-beam.
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be a beam). However, it should be noted that the saving of computational effort of VABS and NABSA
compared to ABAQUS is orders of magnitude. Moreover, a detailed 3-D analysis for this structure when
L/a is large where a is the width of the box-beam and L is the length of the beam using ABAQUS easily
overpowers an advanced workstation. In any case, it is clear that both models capture the essential behavior
and that there is very little difference among the 1-D results predicted by VABS, NABSA, and ABAQUS.

7. Concluding remarks

A generalized cross-sectional modeling approach for anisotropic beams has been presented in this paper.
A 6 x 6 cross-sectional stiffness matrix is obtained along with the interior solution of the warping for
initially twisted and curved composite beams. This analysis is based on the powerful mathematical tool, the
VAM, which is used to asymptotically decouple the originally complex 3-D elasticity problem into a
(typically) linear 2-D cross-sectional analysis and a nonlinear 1-D beam problem. VABS is an efficient,
general and yet reliable composite beam model that can be readily incorporated in a comprehensive ro-
torcraft analysis. VABS has been extended to include the present theory and is able to take into consid-
eration anisotropic, nonhomogeneous materials and to represent general cross-sectional geometries,
requiring neither the costly use of 3-D finite-element discretization nor the loss of accuracy inherent in
simplified representations of the cross-section. It is also possible to use the formulation herein to recover the
3-D stress and strain fields. (Work on validating 3-D results by comparison with 3-D finite-eclement results
and experimental data has been reported by Yu et al. (2001), and additional results will be reported in
future papers.) The main contributions of the present paper are as follows:

1. Given an asymptotically correct theory in terms of the classical beam 1-D strain measures and their spa-
tial derivatives, there is a corresponding and unique Timoshenko-like model. This model can be obtained
without the optimization procedure reported in previous work (Popescu and Hodges, 1999b) and with-
out the use of the so-called intrinsic warping constraint (Borri and Merlini, 1986).

2. While the corresponding Timoshenko-like model is determined uniquely, it does not capture all the
O(h*/1?) corrections, e.g. Vlasov’s terms, which should not be included in a Timoshenko-like model.

3. The means to capture all the elastic couplings caused by initial curvature, twist and anisotropic materials
effects has been developed. Such couplings as extension- and bending-shear couplings (see Tables 3 and
5) will no doubt have influence on static and dynamic behavior of initially curved and twisted composite
beams that either are short or are vibrating in modes with wavelengths that are short relative to the beam
length, where in either case one still must have A3 < [°.
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