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EFFECT OF THRUST ON
BENDING-TORSION FLUTTER OF WINGS

Dewey H. Hodges,∗ Mayuresh J. Patil,† and Seungmook Chae‡
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

The effect of thrust on the flutter of a high-aspect-ratio wing is investigated. The wing is repre-
sented by a beam using a nonlinear mixed finite element method. Aerodynamic forces are calculated
using a finite-state, two-dimensional unsteady aerodynamic model. The effect of thrust is modeled
as a follower force of prescribed magnitude. Without the thrust force, the wing is shown to be-
come unstable for freestream airspeeds greater than the flutter speed. On the other hand, in the
absence of aerodynamic forces, the wing becomes unstable for values of the thrust in excess of a
critical magnitude of the force. When both effects are present, the airspeed at which the instability
occurs depends on the thrust magnitude. For validation, an analytical solution for the in vacuo case
(accounting only for the effect of thrust) was developed and shown to closely match results from
the numerical method. Parametric studies show that the predicted stability boundaries are very
sensitive to the ratio of bending stiffness to torsional stiffness. Indeed, the effect of thrust can be
either stabilizing or destabilizing, depending on the value of this parameter. An assessment whether
or not the magnitude of thrust needed to influence the flutter speed is practical is made for one
configuration.

Introduction
Flutter of flexible structures due to aerodynamic effects is

an old and practical problem, and many papers and books
have been written about various aspects of it. See for exam-
ple, Refs. 1–3. It is also well known that follower forces can
induce flutter. The well-known Beck problem,4 a cantilever
beam excited by an axially compressive follower force, is a
commonly analyzed problem in the literature. Indeed, there
are now quite a few papers and a few books devoted to the
stability of flexible structures loaded by follower forces. See,
for example, Refs. 5–7 for cantilever beams and Refs. 8–10
regarding the stability of a free-free beam subjected to a
follower force.

Considering that engine thrust can be represented as a
follower force, it is possible that thrust could lead to insta-
bility of the wing. Even if the thrust force were not high
enough to induce instability on its own, it is quite likely that
thrust could interact with other destabilizing mechanisms,
for example, aeroelastic flutter. Even for propeller-driven
aircraft, thrust could be important although, in the case of
prop-whirl flutter, the thrust follows the propeller tip-path
plane rather than the nacelle. For stiff propellers, however,
it would nearly follow the nacelle. The effect of thrust on
the flutter speed may be important, especially in the case of
aircraft with very flexible wings. If thrust were to lead to a
lowering of the aeroelastic flutter speed, one would certainly
want to know about that in order to make appropriate ad-
justments in the design. Even if thrust were to increase the
flutter speed, this could lead to an overly conservative de-
sign. In either case, the inclusion of thrust effects in flutter
analysis should lead to a more complete analysis.

In spite of the huge body of literature on the aeroelasticity
of lifting surfaces, there is very limited literature concerning
the effects of the thrust of a wing-mounted engine on aeroe-
lastic flutter. Indeed, in contrast to the significant number
of papers that deal with various aspects of Beck’s problem
(cantilevered beam loaded by an axial follower force), the
problem of a cantilevered beam excited by a transverse fol-
lower force has not received much attention in the literature.
This type of system was first considered in a stability analy-
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sis by Como.11 By assuming a rigid body with specified mass
and moments of inertia attached to the tip and neglecting
the distributed mass of the beam, he obtained an analytical
value for critical load. Wohlhart12 extended Como’s work to
include the distributed mass and allowed the position of the
added mass, moments of inertia, and the follower force (all
at the same point) to vary. This excellent paper presents an
extensive parametric study, taking into account all relevant
parameters.

Restricting the location of the force and rigid body to the
free end, Feldt and Herrmann13 investigated the flutter in-
stability of a wing subjected to the transverse follower force
in the presence of airflow. Therein it was reported that an
increase in tip mass always stabilizes the system, but ac-
cording to Ref. 12 this is not always true if one considers
only the thrust-induced flutter. They considered only one
value of the ratio of bending stiffness to torsional stiffness in
their study, a value for which thrust is destabilizing. More-
over, the thrust-induced flutter results presented by Ref. 13
do not agree with those of Ref. 12.

It is the objective of the present study to determine
whether or not the thrust of wing-mounted engines might
have any effect on the aeroelastic flutter of wings. In order
to carry out this objective, we first develop the analytical
solution for instability due to thrust alone, without consider-
ation of aerodynamic effects. This solution is then used for
validating the finite element methodology for determining
the influence of thrust on the aeroelastic stability. A mixed
finite element method is then used to compute the insta-
bility boundary of the system under the influence of both
effects. A parametric study focusing on the influence of the
ratio of bending to torsional stiffness is also conducted. Fi-
nally, the thrust required to maintain the trim condition of
a complete airplane model is estimated at various speeds
and is used to determine the range of thrust values that can
be considered as realistic.

Analysis of Thrust-Induced Flutter
Consider a cantilevered beam with elastic axis along the

x1 direction, and with cross-sectional coordinates x2 and x3

as shown in Fig. 1. The beam has torsional stiffness GJ
and bending stiffnesses EI2 and EI3 with EI3 >> EI2.
Denote the displacements as ui with i = 1, 2, and 3 along
xi directions, and denote the section rotation due to torsion
as θ1. For the purpose of analysis, we introduce two sets of
dextral triads of unit vectors, one fixed in an inertial frame
of reference, ai with i = 1, 2, and 3, along xi, and the other
fixed in the cross-sectional frame of the deformed beam, Bi

with i = 1, 2, and 3. A load P is applied at the tip of
the beam and is directed along unit vector B2(�, t) where
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Fig. 1 Schematic of Wing Showing Coordinate Systems
and Follower Force

B2(�, t) = −u′2(�, t)a1 + a2 + θ1(�, t)a3 and where ( )′ is the
partial derivative with respect to x1. Thus, the virtual work
done by this force through a virtual displacement is

δW = PB2(�, t) · [δu1(�, t)a1 + δu2(�, t)a2 + δu3(�, t)a3]

= P
(
−u′2δu1 + δu2 + θ1δu3

)∣∣∣∣
�

0

(1)
In keeping with the nonconservative nature of the follower
force, there is no potential energy expression, the variation
of which, will yield this expression for the virtual work. We
will subsequently ignore the longitudinal displacement u1.

For a beam subject to a bending moment M3 that is
constant in time but varying in x1, and in which deflections
due to that moment are ignored (since EI3 >> EI2), the
strain energy can be written as

U =

∫ �

0

[
GJ

2
θ′1

2
+

EI2
2

u′′3
2

+ M3

(
u′′2 + θ1u

′′
3

)]
dx1 (2)

For static deformation of the beam, one may consider only
the first-order terms in δU − δW , such that

∫ �

0

(
M3δu

′′
2 − Pδu′2

)
dx1 = 0 (3)

Thus,
M3 = P (�− x1) (4)

as expected. To obtain a weak form that governs static
behavior, one may set the second-order terms in δU − δW
equal to zero, so that

δU−δW =

∫ �

0

[
EI2u

′′
3δu
′′
3 + GJθ′1δθ

′
1

+ P (�− x1)
(
θ1δu

′′
3 + u′′3δθ1

)]
dx1

− Pθ1δu3

∣∣�
0

= 0

(5)

Integrating by parts, one can eliminate the trailing term so
that

δU − δW =

∫ �

0

{
EI2u

′′
3δu
′′
3 + GJθ′1δθ

′
1

+ P [(�− x1) θ1]
′′ δu3

+ P (�− x1)u
′′
3δθ1

}
dx1 = 0

(6)

It can be shown that there is no value of P that will result
in buckling. Thus, one must add the kinetic energy and

consider the stability of small vibrations about the static
equilibrium state.

The kinetic energy of the vibrating beam with mass per
unit length of m, radius of gyration of σ and mass offset e,
is simply

K =
1

2

∫ �

0

(
mu̇2

2 + mu̇2
3 + mσ2θ̇2

1 + 2meθ̇1u̇3

)
dx1 (7)

where ˙( ) is the partial derivative with respect to time.
We now undertake a straightforward application of Hamil-

ton’s principle

∫ t2

t1

(
δU − δW − δK

)
dt = 0 (8)

where t1 and t2 are fixed times. Integrating by parts in time,
setting δu3 and δθ1 equal to zero at the ends of the time
interval, removing the time integration, introducing a set
of nondimensional variables, and assuming that the motion
variables are proportional to est, one obtains a weak form
that governs the flutter of a beam subjected to a transverse
follower force given by

∫ 1

0

{√
λw′′δw′′ +

√
1

λ
θ′δθ′

+ s2
[
wδw + e (w δθ + θ δw) + σ2θ δθ

]

+ p(1− x)w′′δθ + p[(1− x)θ]′′δw

}
dx = 0

(9)

where

( )′ =
d( )

dx
x1 = x�

u3 = �wesψ θ1 = θesψ

ψ =

√√
GJ EI2
m�4

t λ =
EI2
GJ

p =
P�2√
GJ EI2

s2 =
m�4s2

√
GJ EI2

σ =
σ

�
e =

e

�

(10)

This weak form can be solved approximately by assuming
a set of cantilever beam free-vibration modes for bending
and torsion. Specifying values for λ, e, and σ, one can
solve for the real and imaginary parts of s as functions of
p. Depending on the values chosen for λ, e, and σ, flutter
will occur either along with the coalescence of two bending
modes or with the coalescence of a bending mode and a
torsional mode.

Incorporation of Aeroelastic Effects
The analysis methodology explained in the earlier sec-

tion solves the problem of instabilities induced by a follower
force. One of the goals of the present work is to investi-
gate the instabilities due to the action of both the thrust
and the unsteady aerodynamic forces. Such an analysis is
quite complex and needs to be done using a numerical so-
lution methodology. The present work uses mixed finite
element modeling for the structure and finite-state aerody-
namic modeling for the unsteady aerodynamics, the details
of which are given in Ref. 14 and are not repeated here. The
structural model is based on the mixed variational formu-
lation for the dynamic of beams developed by Hodges.15 By
discretizing the problem and using simple shape functions,
the mixed variational formulation leads to an efficient finite
element based solution procedure. Various kinds of forces
can be applied to the structure, including follower forces and
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Table 1 HALE wing data

Half span: 16 m
Chord: 1 m

Mass per unit length: 0.75 kg/m
Moment of Inertia (50% chord): 0.1 kg-m

Spanwise elastic axis: 50% chord
Center of gravity of wing: 50% chord

Bending rigidity (spanwise): 2×104N-m2

Bending rigidity (edgewise): 4×106N-m2

Torsional rigidity varies with λ
Air density 0.0889 kg/m3

Table 2 Data from Ref. 13

Half span: 4 ft
Chord: 1 ft

Mass per unit length: 0.0132 slug/ft
Moment of inertia (elastic axis): 0.0005346 slug-ft

Spanwise elastic axis: 39% chord
Center of gravity of wing: 42% chord

Bending rigidity: 1638.88 lb-ft2

Torsional rigidity: 154.17 lb-ft2

Air density: 0.0011205 slugs/ft3

unsteady aerodynamic forces. The follower force is included
in a manner similar to the previous section. The aerody-
namic forces are derived from the finite-state aerodynamic
model of Peters et al.,16 which gives the unsteady aerody-
namic forces on an oscillating airfoil. A two-dimensional
(2-D) aerodynamic model is used, because the focus here is
on wings with high aspect ratio. A 3-D theory may provide
higher flutter speeds, making the present results conserva-
tive. However, since all the results obtained in the paper
use the same 2-D aerodynamic model, the model should be
provide adequate predictions of incremental changes of the
stability boundary with respect to changes in system pa-
rameters. To obtain accurate flutter predictions for wings
with low aspect ratio, it would of course be necessary to use
a 3-D theory. By coupling the structural and aerodynamic
models, one obtains a complete aeroelastic analysis method-
ology. The full finite element equations are linearized about
the static equilibrium solution, and an eigenvalue analysis is
used to determine the stability of the small motions about
static equilibrium.

Results
Results are presented that give insight into the effect

of thrust on the flutter characteristics of high-aspect-ratio
wings used in high altitude, long endurance (HALE) air-
craft. The test case is a flexible high-aspect-ratio wing, and
Table 1 gives the properties used in the present work. The
engine is located near the tip of the wing. Thus, the test case
represents an extreme case in which the effects of thrust are
maximized. First, the accuracy of the finite-element analysis
is checked against the analytical solution for the thrust-only
case. The results are then presented which include both the
aerodynamic effects and the thrust follower force. Next, a
parametric study investigating the effect of λ on the flut-
ter boundary is presented. Finally, to put the results in
perspective, the thrust required at various trim speeds has
been calculated assuming a NACA 0009 airfoil. The thrust
required for trim helps in identifying realistic values of the
thrust on the wing and thus approximating the percentage
change in flutter speed.

Comparison of Analytical and FE Solutions

Before presenting any finite element results that contain
aeroelastic effects, the accuracy of the methodology is first
validated against the approximate analytical solution for
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flutter due to thrust only and against the work of Ref. 12.
For comparison, the follower force is applied at the tip of
the wing for λ = 2. The approximate analytical solution
converges with only a few modes. The converged analytical
solution, based on 5 bending modes and 3 torsional modes,
shows that the critical thrust is 337.2 N. The finite element
result using eight elements is 335.1 N, a relative error of
0.6%. This shows that the finite element solution is suffi-
ciently accurate with only eight elements. Moreover, both
values agree very well with the analytical solution of Ref. 12.

Next, results from the present analysis are compared with
those presented in Ref. 13 for a low-aspect-ratio wing. The
data for this test case are given in Table 2. For all cases
examined in the absence of aerodynamics, while the present
analytical solution, the present finite element solution, and
the solution by Ref. 12 all agree quite well, Ref. 13 does not
show any flutter instabilities due to thrust only.

The aeroelasticity part of the present finite element
methodology was validated in an earlier paper.14 Unfortu-
nately, as shown in Fig. 2, the results from Ref. 13 do not
agree with the present predictions. As discussed above,
Ref. 13 does not predict a pure thrust-induced instability
while the present analysis does, in agreement with that of
Ref. 12. Even the pure aeroelastic flutter results do not
match. Here it should be noted that the ordinate and ab-
scissa are the same as the nondimensional parameters used
in Ref. 13, which are expressed in terms of those defined in
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Eq. 10 and, in addition

µ =
m

ρ∞πb2

v =
V

bωθ1

(11)

where ρ∞ is the air density, b is the semi-chord, V is the air
speed, and ωθ1 is the first uncoupled torsional frequency.

The symbols on Fig. 2, and its more detailed blowup in
Fig. 3, represent the finite element solution, the analyti-
cal solution, and the solution by Ref. 12. It is seen that the
thrust required for flutter at negligibly small airspeed (cross-
ing of the flutter boundary curve with the thrust axis) is
quite different from that at zero airspeed. The discrepancy
is due to two effects. Firstly, the unsteady aerodynamic
model predicts forces even at zero airspeed. The forces
known as “apparent mass” effects lead to change in the
effective mass of the structure and thus change in the dy-
namics and stability characteristics. The symbol denoting
the finite element solution does not include the aerodynamic
model (air density in the aerodynamic model is set to zero),
so that there are no “apparent mass” terms. That makes
this model distinct from one that includes the aerodynamic
effects evaluated at a negligibly small airspeed. Secondly,
it should be noted that the effect of external damping on
the instability of nonconservative systems is quite complex.
Even a negligibly small amount of damping has been shown
to change the critical force required for instability.17 In the
present case, the small airspeed can provide a small damping
to change the critical thrust level.

Change in Flutter Speed with Thrust

The finite element methodology is now used to investigate
the effect of thrust on the flutter speed of a cantilevered
wing. The thrust is applied at 15 m from the root (i.e., 1
m from the tip of the wing). The flutter boundary is plot-
ted by first selecting a level of thrust, followed by solving
the nonlinear steady-state. Once the steady-state solution is
obtained, the problem is dynamically linearized about the
steady state to get a set of linear equations of motion in
terms of the perturbation quantities. The flutter analysis
is then conducted to obtain the flutter speed. This presup-
poses that the airspeed has a weak effect on the steady-state
solution, which is correct in all cases we examined.

Figure 4 shows the flutter boundary for λ = 10. All re-
sults of the flutter boundary presented from here on are
plotted in terms of the nondimensional force p (as defined
in Eq. 10), and the standard reduced airspeed v (as defined
in Eq. 11). It is seen that there is a continuous decrease
in the flutter speed with increase in thrust. From another
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perspective, one can say that there is a continuous decrease
in the magnitude of thrust required for instability with in-
crease in airspeed. This can be qualitatively explained as
the addition of the destabilizing effects of the two forces
(aerodynamic and follower force) leading to instability at
lower levels of the forces. The symbol denoting the finite
element solution points out the critical thrust without aero-
dynamic effects. Again, at zero airspeed there is a jump in
flutter force, i.e., a small offset from zero airspeed leads to
a sudden decrease of the flutter force. As explained earlier,
this is due to the fact that when aerodynamic forces are in-
cluded, even at zero airspeed, there is a slight shift in the
dynamic properties due to the apparent mass of the air and
the effect of negligibly small aerodynamic damping.

Excellent agreement was obtained between the finite ele-
ment and approximate analytical solutions for a wide range
of parametric values. The one exception to this is indicated
in Fig. 5, which shows the flutter boundary for λ = 1. The
dashed line is a small unstable regime predicted by the finite
element method that, for reasons unknown, is not predicted
by the approximate analytical solution. Figure 6 shows
the frequency and damping (imaginary and real part of the
eigenvalues) of the system without aerodynamics. It is clear
that the unstable region is due to the coalescence of the first
torsion mode with the third bending mode. The frequency
of this mode is much higher than the few modes retained in
the approximate analytical solution. However, even when a
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larger number of modes is retained the approximate analyt-
ical solution is unable to capture it. Moreover, attempts to
link this regime with edgewise flexibility effects also failed.
It is clear, however, that a very small amount of structural
damping will eliminate this instability, and so it is not of
practical importance. Thus, only the low-frequency flutter
modes will be considered henceforth.

An important observation can be made from Figs. 4 and
5. Unlike the λ = 10 case, the critical airspeed for λ = 1
does not monotonically decrease with an increase in thrust.
Rather, there is a reversal. For low levels of thrust, the
flutter speed increases, but, as the thrust level is increased
further one sees a change in mode of instability from a
dominant aeroelastic mode to a dominant follower force in-
stability. Afterwards there is a decrease in the flutter speed
with thrust, culminating in the zero speed flutter at the
pure follower force instability. To ascertain what is going
on here, one needs to vary λ more systematically. The ef-
fect of several values of λ on the flutter boundary is shown
in Fig. 7. It is seen that the interactions between the thrust
and aeroelastic destabilization mechanisms are quite differ-
ent for lower values of λ (e.g., 1, 1.5, and 2) as compared
to the higher values (e.g., 10 and 15). Figure 7 shows these
trends changing from one type to the other around λ = 5.
With a careful look at the flutter boundary for λ = 5, one
can see that there is still a range where thrust level increases
with airspeed, but it does not show a sudden transition of
the flutter frequency as in the cases where λ < 5.

Change in Flutter Speed with λ

To understand the difference in the behavior of the wing
at the different λ’s, one needs to look at the modes involved
in the instability mechanisms. Figure 8 shows the evolution
of the pure follower force instability for λ = 2. For lower
λ the lowest follower-force instability exhibits a bending-
bending frequency coalescence. Figure 9 shows a similar plot
for λ = 10, which on the other hand, exhibits an instabil-
ity due to a torsion-bending frequency coalescence. Modal
analysis of pure aeroelastic instabilities show that, in both
cases, the pure aeroelastic instabilities come from first tor-
sional modes. The results can be explained qualitatively as
follows: Near the aeroelastic flutter speed, the instability for
λ = 2 is less affected by the thrust (than the one for λ = 10)
because different modes are involved in the aeroelastic in-
stability and the follower force instability. For λ = 10 the
torsion-bending instability from pure follower force interacts
with the pure aeroelastic torsion instability involving the
same modes, thereby decreasing the flutter speed as thrust
level increases.
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Trim Solution and Actual Flutter Range

Finally, some points need to be made regarding the lev-
els of thrust on an actual aircraft so as to put the results
presented in the earlier sections in the correct perspective.
Required thrust to maintain trimmed flight is calculated by
assuming a NACA 0009 as the wing airfoil and considering
both smooth and “standard” roughness values at the same
Reynolds number. The value of roughness affects the drag
coefficient significantly.18 The ratio of total airplane weight
to twice the wing weight is taken to be either 3 or 6. This is
useful in calculating the weight of the aircraft, and thus in
estimating the lift and then the drag using the roughness.
Here γ is defined as the ratio of fuselage drag over total
drag. It should be noted that the flutter calculation does
not make use of γ, i.e., the nonlinear drag effects were ne-
glected. γ is used to calculate the total drag (and thus the
thrust required) using the wing drag. The wing drag is cal-
culated using the lift to drag ratio for the given smoothness.
The lift equal to the total weight is in turn in calculated
using the airplane to wing weight ratio. The flutter bound-
ary is shown in Fig. 10 for γ = 0.8. Also plotted are the
velocity-thrust curves for various smoothness and airplane
weight factors. The aeroelastic flutter speed without thrust
is 32.21 m/s. The flutter speed including the thrust effects
for standard roughness and high fuselage mass is 35.8 m/s.
Thus, incorporation of thrust can change the predicted flut-
ter speed by 11%. The plots show practical levels of thrust
and the corresponding flutter speed for various conditions.
In an actual aircraft one would use the thrust levels known
for trim flight to estimate the changes in flutter speed.

Conclusion
There has been a large amount of published work dealing

with the stability analysis of a tangential follower force, but
there has been very little study on the influence of a lateral
follower force on aeroelastic flutter. An analytical solution
for the in vacuo case was developed and shown to closely
match results from the numerical method. A parametric
study of thrust effects on aeroelastic flutter was performed.
Whether or not thrust is stabilizing depends strongly on
λ, the ratio of bending stiffness to torsional stiffness. For
λ ≤ 5, it was shown that thrust up to a certain value can
increase flutter speed. But for λ ≥ 10, thrust always de-
creases flutter speed. Moreover, the shape of flutter curve
is greatly affected by λ.

The present work does not consider several aspects of the
system that may be important to obtain accurate results
for realistic cases. These may include, but are not limited
to engine mass and inertia, engine gyroscopic effects, and
location of the engine at different points along the wing.
However, based on the present work, which is indeed pre-
liminary, the flutter speed was shown to vary as much as
11% for the cases of a high-aspect-ratio wing. Therefore,
in general it would appear prudent to include this effect in
general-purpose flutter analyses.

References
1Goland, M., “The Flutter of a Uniform Cantilever Wing,” Jour-

nal of Applied Mechanics, Vol. 12, No. 4, December 1945, pp. A197
– A208.

2Fung, Y. C., An Introduction to the Theory of Aeroelasticity,
Wiley, New York, 1955.

3Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelastic-
ity, Addison-Wesley Publishing Co., Reading, Massachusetts, 1955.

4Beck, M., “Die Knicklast des einseitig eingespannten, tangential
gedrückten Stabes,” ZAMP , Vol. 3, 1952, pp. 225 – 288.

5Bolotin, V. V., Nonconservative Problems of the Theory of
Elastic Stability, Pergamon Press, New York, 1963.

6Leipholz, H. H. E., Stability of Elastic Systems, Sijthoff &
Noordhoff, Alphen aan den Rijn, Netherlands, 1980.

7Chen, L.-W. and Ku, D.-M., “Eigenvalue Sensitivity in the Sta-
bility Analysis of Beck’s Column with a Concentrated Mass at the
Free End,” Journal of Sound and Vibration, Vol. 153, No. 3, March
1992, pp. 403 – 411.

8Park, Y. P., “Dynamic Stability of a Free Timoshenko Beam Un-
der a Controlled Follower Force,” Journal of Sound and Vibration,
Vol. 113, No. 3, March 1987, pp. 407 – 415.

9Higuchi, K., “An Experimental Model of a Flexible Free-Free
Column in Dynamic Instability due to an End Thrust,” In Proceed-
ings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, Hilton Head, South
Carolina, Apr. 18 – 20, 1994, pp. 2402 – 2408.

10Kim, J.-H. and Choo, Y.-S., “Dynamic Stability of a Free-free
Timoshenko beam subjected to a Pulsating follower force,” Journal
of Sound and Vibration, Vol. 216, No. 4, Oct. 1998, pp. 623 – 636.

11Como, M., “Lateral Buckling of a Cantilever Subjected to a
Transverse Follower Force,” International Journal of Solids and
Structures, Vol. 2, 1966, pp. 515 – 523.

12Wohlhart, Karl, “Dynamische Kippstabilität eines Platten-
streifens unter Folgelast,” Z. Flugwiss., Vol. 19, No. 7, 1971, pp.
291 – 298.

13Feldt, Walter T. and Herrmann, George, “Bending-Torsional
Flutter of a Cantilevered Wing Containing a Tip Mass and Subjected
to a Transverse Follower Force,” Journal of the Franklin Institute,
Vol. 297, No. 6, 1974, pp. 467 – 478.

14Patil, M. J., Hodges, D. H., and Cesnik, C. E. S., “Nonlinear
Aeroelastic Analysis of Complete Aircraft in Subsonic Flow,” Journal
of Aircraft, Vol. 37, No. 5, Sept.-Oct. 2000, pp. 753 – 760.

15Hodges, D. H., “A Mixed Variational Formulation Based on
Exact Intrinsic Equations for Dynamics of Moving Beams,” Interna-
tional Journal of Solids and Structures, Vol. 26, No. 11, 1990, pp.
1253 – 1273.

16Peters, D. A., Karunamoorthy, S., and Cao, W.-M., “Finite
State Induced Flow Models; Part I: Two-Dimensional Thin Airfoil,”
Journal of Aircraft, Vol. 32, No. 2, Mar.-Apr. 1995, pp. 313 – 322.

17Herrmann, G. and Jong, Ing-Chang, “On the Destabilizing Ef-
fect of Damping in Nonconservative Elastic Systems,” Journal of
Applied Mechanics, Vol. 32, No. 3, September 1965, pp. 592 – 597.

18Anderson, John D., Introduction to Flight, McGraw-Hill Book
Company, New York, 2nd Edition, 1985, p. 549.


