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Abstract-A mixed finite element is investigated ee a means for achieving accurate modal re- 
duction of rotor blades in finite-element software. A rationale for mived finite elements is developed 
by investigating the modal reduction accuracy of a series of blade analysis methods that introduces, 
in a step-by-step fashion, the key features of the mixed element. During this investigation, the 
shortcomings of classical, displacement-based finite elements are examined qualitatively and through 
calculations of articulated blade response. The formal derivation of the mixed element starting from 
a mixed variational principle is then summarized, and finally, numerical examples are presented 
to demonstrate the element’s modal reduction accuracy. @ 2001 Elsevier Science Ltd. All rights 
reserved. 
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1. INTRODUCTION 

The application of the finite-element method to rotorcraft analysis over the past two decades has 

removed the topological restrictions on the models that can be analyzed using older, so-called 

“first generation” rotorcraft codes. Unfortunately, this improvement has come at a high cost: 

the models are appreciably larger and more costly to analyze. It is widely recognized that a 

key aspect to improving the efficiency of comprehensive rotorcraft analysis software is reducing 

the size of the computational model in a way that retains the model’s essential physics. The 

most common means for achieving this is the modal redzlction process, which reduces the size of 

the model through a basis transformation of the model’s degrees of freedom. Usually, the basis 

transformation is a reduced set of the model’s eigenmodes computed about some convenient 

state. Observe that this process, which involves collapsing a complex finite-element model to 

a smaller number of modal coordinates, is different from formulating the model’s equations in 
modal space ab initio, as is done in first-generation rotorcraft codes. Unfortunately, modal 
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reduction is far from foolproof. For linear systems, the number of modes needed is a function 

only of the excitation, but in practice, determining the correct number can be complicated. It 

is usually accomplished by comparing the model’s eigenvalues with the excitation’s frequency 

content, supplemented by trial-and-error. For nonlinear systems, the process is often far more 

involved because the system’s nonlinearity couples the eigenmodes whenever the system moves 

away from the state about which the basis is calculated. The set of modes needed to accurately 

model a nonlinear system is therefore a complex function of the excitation amplitude, as well as 

the frequency content, and many modes-sometimes an unfeasibly large number-may be needed 

to achieve reasonable accuracy if the system is highly nonlinear. 

The application of modal reduction to rotor blades is problematic owing to the centrifigal 

stiflening e$ect, which is the geometric stiffness generated by the axial forces that arise from the 

blade’s spin. Indeed, the effect of this geometric stiffness, say on the natural frequencies of the 

rotating blade, is typically far greater than that of the bending stiffness. Thus, it is crucial that 

a blade analysis scheme be able to represent this phenomenon accurately. However, the accuracy 

with which blade eigenmodes approximate centrifugal stiffening-hence, blade response--hinges 

critically on how the blade equations are formulated. Several formulations have been proposed 

in the rotorcraft literature and elsewhere to deal with this problem. The oldest and most widely 

used approach involves parameterizing the axial displacement using the non-Lagrangian arial 

elongation variable instead of the axial displacement variable, and was proposed independently 

by Smith [l] and by Kane et al. [2]. The effectiveness of the approach has been well documented, 

but the non-Lagrangian nature of the variable complicates the finite-element assembly process, 

a feature which has spurred the search for alternative approaches. Shaw and Pierre (31 have 

proposed a nonlinear mode concept, which is intriguing because it potentially can be applied to 

any mechanical nonlinearity, but although it has often been shown to be effective, its implemen- 

tation is quite involved. Mixed finite elements, hereafter abbreviated as “mixed elements”, have 

been proposed for rotor blade analysis by Hodges [4] and by Bauchau and Guernsey [5]. In [5], 

the modal reduction accuracy of mixed elements was studied, but disappointing results were 

obtained, especially for torsional response, even when the mixed elements were supplemented by 

perturbation modes [6]. 

Although mixed elements displayed poor modal reduction accuracy in an earlier study, it 

may be shown that the method is algorithmically similar to the axial elongation variable, which 

reportedly has excellent modal reduction accuracy. It therefore seemed appropriate to give mixed 

elements a second look, which is the subject of this paper. In what follows, a rationale for the use 

of mixed elements is developed starting from the well-known Hodges-Dowel1 equations of a rotor 

blade specialized to axial and flap motions. The derivation of a mixed element is then described, 

and the element’s effectiveness in modal reduction is illustrated with an articulated blade model. 

Finally, the study’s conclusions are presented. 

2. RATIONALE FOR MIXED ELEMENTS 

2.1. Preliminaries: Hodges-Dowel1 Flap-Axial Blade Equations 

The starting point for developing a rationale for mixed elements is the Hodges-Dowel1 blade 

equations [7] specialized to coupled axial-flap motions: 

V,’ = -rnfi’x - fz, (2.1) 

mti = (Vzw’)’ - (EI,w”)” + fi, (2.2) 

where V, is the axial force, m is the mass per unit length, z is the axial coordinate, R is the rotor 

angular speed, w is the flap displacement, EI, is the cross-section flap flexural rigidity, and fZ 

and fi are applied forces per unit length. Following the usual conventions in the rotorcraft 

literature, a prime (‘) denotes partial differentiation with respect to the axial coordinate, and a 
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dot (.) denotes partial differentiation with respect to time. If the blade is clamped at the spin 

axis, the boundary conditions are 

wIz=o = w’lz=o = 0. (2.3) 

These equations are particularly useful for examining blade analysis methods because they are 
simple enough to permit easy inspection, yet they embody the coupling between axial and flap 
degrees of freedom, which is the key problem in applying modal reduction to rotor blade equations. 

In what follows, several mathematical formulations for rotor blade analysis are presented, 
culminating with a mixed element. The formulations are evaluated based on their treatment of 
axial motions, and the key features of the mixed element are introduced in a step-by-step fashion. 

2.2. Method 1: The Axial Displacement Variable 

This method represents all variables in terms of displacement fields, and then applies polyno- 
mial discretizations of the fields over subregions of the model, which are simply finite elements. 
The following expression for axial force is used, which is consistent with the Hodges-Dowel1 
ordering scheme 

V&A(u’++‘2), (2.4) 

where EA is the axial stiffness of the blade cross section. Substituting equation (2.4) into the 
Hodges-Dowel1 equations gives 

(2.5) 

where ~nii is formally negligible, but is included here for consistency with other treatments in the 
literature. The boundary conditions for a blade clamped at the spin axis are 

&o = w/,=0 = W’~,~O = 0. (2.7) 

Equations (2.5) and (2.6) allow for full discretization of the blade model in the axial direction, 
thereby permitting the full power of the finite-element method to be brought to bear on the 
analysis. Unfortunately, a high price for this flexibility stems from the difficulty of approximating 
the axial force, which is critical for accurately representing the blade bending stiffness. The source 
of the difficulty is that the constituent parts of the axial strain, cZ = V,/EA = u’ + (1/2)w12, 
are opposite and nearly equal whenever the flap displacement becomes significant; i.e., u’ N 
-(1/2)?J2, and therefore, ]c2] < )u’] and ]e,] << w’~. In other words, E, is the small difference of 
much larger quantities, and computing it accurately requires far more accuracy in both u’ and VJ’~ 
than can be obtained by representing either of these using a small number of eigenmodes. 

The problem encountered with the displacement approach will now be illustrated using several 
computational examples. The blade model used is shown in Figure 1. Consider first, an eigen- 
analysis of the spinning blade. For this analysis, in vacua conditions are assumed, along with 
zero swashplate angles, and the blades’ modes are computed about steady-state spin. Then, the 
static response of the blade, in modal space, is computed for tip flap loads of 2539.6 pounds and 
5079.2 pounds, which correspond to coning angles of 4’ and P, respectively. These are typical of 
the mean coning angles in rotorcraft under flight conditions (see [8]). The modal basis contains 
the first two flap modes, while the number of axial modes were varied to study the convergence 
of the first two flap frequencies. The flap frequencies are plotted against the number of axial 
modes in Figure 2. Note that 30 axial modes completely fill the axial displacement subspace of 
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Figure 1. Articulated blade model. 
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Figure 2. Articulated blade flap frequencies: displacement elements. 

Table 1. Articulated blade modes.’ 

Mode ID Frequency (/rev) 

First lag 0.27 

First flan 1.03 

Second flap I 2.63 

Second Ian 4.09 

First torsion 4.66 

Second torsion 1 14.59 

First axial I 22.12 

Second axial 66.41 

the model. It may be seen that while reasonable results are obtained for the first flap frequency 
with just a few axial modes, the accuracy of the second flap frequency is much poorer, and does 
not become acceptable until almost the entire axial subspace is filled. 

To further illustrate the problems of the axial displacement variable, consider the periodic 
solution of the model shown in Figure 1. The in vucuo eigenmodes of thii model are given 
in Table 1, and the modal bases used in the calculations are given in Table 2. Note that 
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‘kble 2. Description of modal bases. 

Modal Number of Modes 

Basis Lag FOP Torsion Axial 

11, lf, It, la 1 1 1 1 

21, 2f, 2t, 2a 2 2 2 2 

in contrast to the theory presented earlier, the’,model is constrained so that all motions-not 
just flap and axial-are permitted. Periodic solutions for the degrees of freedom at the tip node 
are shown in Figure 3. It may be seen that the agreement between between the modal and 
finite-element solutions is quite poor for the flap, lag, and axial displacements, as was expected. 
But surprisingly, the agreement between the &&-element and modal solutions is quite good for 
the pitch rotation. The reasons for the good modal approximations are the high torsional stiff- 
ness of the blade, combined with the low degree of bending-torsion coupling in stiff, articulated 
blades of the type analyzed here. Since the pitch response of the blade is the main, contributor 
to the aerodynamic angle of attack, the good modal approximation for pitch implies that the 
poor results for the bending and axial motions must come from errors made in computing those 
motions, rather than from erroneous aerodynamic loading. Therefore, the approach taken here 
in focusing on bending-axial response to evaluate blade formulations is fully justified. 
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Figure 3. Articulated blade tip deflections: displacement elements. 

2.3. Method 2: The Axial Force Variable 

One approach to modifying the analysis formulation to facilitate modal reduction involves 
parameterizing the axial motion using the axial force rather than the axial displacement. The 
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axial displacement may be written in terms of the axial force using equation (2.4): 

or 

With this reparameterisation, 

v, 1,2 -- hEA zw 

u=I”(&--fd2) ds. 

the axial force is now expressed 

(2.8) 

(2.9) 

as a single variable, and the 
numerical conditioning problems associated with the axial displacement variable are absent. 

The need for an additional improvement to the analysis procedure becomes evident upon 
applying the axial force variable to the Hodges-Dowel1 equations. Substituting equation (2.9) 
into equations (2.5) and (2.6) gives 

m - w’2ij’ ds = V, + mC12x + fx, 

mti = (Vxw’)’ - (E&w”)” + fi. 

(2.10) 

(2.11) 

Simpliing equations (2.10) and (2.11) by removing the negligible terms arising from mii leads, 
once again, to the Hodges-Dowel1 equations (equations (2.1) and (2.2)). An examination of 
those equations reveals a quadratic nonlinearity, (Kw’)‘, which is significant enough to adversely 
impact modal reduction. Indeed, it was found that a mixed element formulated analogously to 
equation (2.11) had only modestly improved modal reduction capabilities in comparison with 
the displacement element. This problem may be removed by expressing the variables as sums of 
steady-state values and dynamic perturbations: 

v, = Vi, + AK, 

w=Aw. 

For simplicity, let the external forces be associated with the perturbations, viz., 

(2.12) 

(2.13) 

fx = Afx, (2.14) 

fi = Afz. (2.15) 

Substituting these representations into equations (2.10) and (2.11) and placing linear terms on 
the left-hand side gives 

AV; = Afx, 

mAti - (V,,Aw’)’ - (AV,w;) + (E&Aw”)” = (AV,Aw’)’ + Afz. 

(2.16) 

(2.17) 

Inasmuch as the axial force in a rotor blade varies little from its steady-state value, the only 
nonlinear term appearing in these equations, (AV,Aw’)‘, will be quite small. 

Although the axial force variable has not been applied to rotor blades in the form described 
here, its likely effectiveness in modal reduction may be inferred from the success of a similar 
concept, the axial elongation variable, which is defined as 

?.Le = J x V”ds 
o EA * 

(2.18) 

Clearly, the underlying motivations of the axial force and axial elongation variables, insofar ss 
they treat axial forces, are identical and their implementations are quite similar. The effectiveness 
of the axial elongation variable at modal reduction has been well documented [l]. Although the 
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axial elongation variable is the preferred parameterization in rotorcraft practice, the axial force 
variable is preferred in this paper because it is consistent with the literature on mixed elements. 

Although the axial force variable should greatly facilitate modal reduction of the blade equa- 

tions, this improvement comes at the expense of introducing a modeling problem: the axial de- 
flection must be computed by integrating the axial force outward from the spin axis, as implied 
by equation (2.9). Thii means that the information needed to compute an element’s kinematics 
will not be available until all elements closer to the spin axis have been processed. Conversely, 
the element’s forces cannot be assembled into the model until all outboard elements have been 
processed. For example, equation (2.9) implies that the axial displacement of the root of the nth 
element outboard from the spin axis in a single load path blade must be computed as follows: 

n-l 2 

7L= cJ K ( - 1 /2 - 

i=l 0 EA 
--‘uI > 

2 
& 

’ i 
(2.19) 

where the subscript i signifies the z ‘th element outboard from the spin axis. In order to satisfy this 

equation, the standard finite-element assembly process based on linear transformations of system 
degrees of freedom at nodes contiguous to the element must be replaced by a more complex 

process. 
A more serious consequence of computing the axial response using equation (2.19) is that that 

quantity is uniquely defined only when a single load path is present; in other words, it is applicable 
only to blade models with a tme topology. Special procedures are required to handle multiple load 
paths, which occur in bearingless rotors, but which also can arise in blades of any configuration 
when they are modeled using two- or three-dimensional elements. This problem should come 
as no surprise, because it is well known (see [9]) that analysis methodologies that employ forces 
as unknowns require special-ften awkward-adjustments when treating redundant models. A 
discussion of a related subject, the analytical problems caused by a quasi-coordinate such as the 
axial elongation ue, has been given by Hodges et al. [lo]. Although the axial displacement variable 
is not well suited to modal reduction, it requires no special adjustments for redundant models, 
and in general, it is much easier to apply to complex topologies than solution methodologies that 
employ forces-or in the case of the axial elongation variable, force-like quantities-as variables. 

2.4. Method 3: Axial Force and Axial Displacement Variables-A Mixed Element 

It has been shown that parameterizing axial motions using the Lagrangian axial displacement 

gives unrestricted modeling freedom at the expense of ill-conditioned and highly nonlinear axial- 
bending coupling, while using the axial force as a variable makes modeling more awkward, but 
simplifies axial-bending coupling. We will now seek to obtain the advantages of both methods- 
without their limitations-by using both axial displacements and axial forces as variables. That 
may be accomplished by augmenting the Hodges-Dowel1 equations with an equation that relates 
the axial force and the axial displacement. Three equations result: 

K 1 
EA = u’ + $, (2.20) 

mii = V,l + mf12(a: + u) + fz, (2.21) 

mti = (Vzw’)’ + fi. (2.22) 

Since axial forces and displacements are variables in these equations, it is dubbed a m&d element. 
The advantages of the mixed-element equations are more readily appreciated when they are 

expressed in variational form. That process involves applying finite-element interpolations to 
the three independent variables: V, = [Hv,]{qv,}, u = [H,]{q,}, and w = [H,](q,}. In 
what follows, all variables are assumed to have been discretized, but-when possible-they are 
displayed as continuous for improved readability. The finite-element interpolations are substituted 
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into equations (2.20)-(2.22), h’ h w rc are then are multiplied by Sk’,, Su, and bw, respectively. The 
results of these operations are then summed and integrated over the length of the element giving 

@qdT i%-} + {hdT {%} + {dqw}T {Fw}) da: = 0, 

where 

(2.24) 

(2.25) 

(2.26) 

For future reference, note that it is often convenient. to express the discretized form of U’ as 
follows: 

u’ = W:l {qu;) = [&I bd, (2.27) 

for some set of unknowns {qU,}, which is of size IV, - 1. 

The usefulness of the mixed element for modal reduction may be inferred from arguments 
similar to those used in discussing the axial force variable. First, consider the {6qU} variation. 
Setting the coefficient of that variation to zero gives, after removing the small contributions 
from u, and ii, 

J ’ [HJT [VI - mR2(x + u) - fi] dx = 0, (2.28) 
0 

which is analogous to the first of the Hodges-Dowel1 equations, and which largely determines V,. 
Thus, in contrast to the axial displacement variable method, the axial force, which is a key 
quantity, is determined directly from what is essentially an equilibrium equation. Using V, in 
the {Squ} variation gives 

1’ [&IT [mti - (Viw’) - fz] dx = 0, 
0 

(2.29) 

which is analogous to the second of the Hodges-Dowel1 equations, and which largely determines w. 
Finally, the (dq,} variation leads to 

Joi[HvJT (&u’-;wf2) dx=o, (2.30) 

which is analogous to equation (2.9), and which largely determines u. Observe that we& en- 
forcement of the governing equations is crucial in allowing the axial force to be computed as a 
separate variable. Also, weak enforcement of the force-displacement equation (equation (2.30)) 
permits the implicit determination of u from that equation and eliminates the need to constrain 
the model’s topology in order to be able to calculate u by integrating outward from the spin axis 
as in equation (2.9). 

The axial force variable was a key motivation for the mixed element, but a stronger relationship 
between the two methods can be proven: if the axial force variable method is applicable, it can 
be made mathematically equivalent to the mixed element. Substituting for u in equation (2.30) 
and rearranging terms gives 

’ [HvJT [&I dx {w} = Jd’ [Hv.J’ (& - ;wt2) dx. (2.31) 
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Convergence considerations dictate that (see [ll]) 

N,-l=Nv,, (2.32) 

and recalling that {qut} is of length N, - 1, it may be concluded that the coefficient of {qu,) in 

equation (2.31) is a square matrix. Since that matrix should also be nonsingular in a properly 
formulated element, equation (2.31) can be solved for {qut} as follows: 

(2.33) 

Now look back at, equation (2.8), which was used for the axial force variable method. It, is evident 
that if that equation is weakly enforced, and if U, V,, and w are interpolated as in the mixed 
element, then it, will yield an expression for {q,,!}, hence U, that is identical to equation (2.8). 
Finally, substituting for u in the axial force variable and mixed-element methods will show that 
both yield identical expressions for V, and w. 

3. DEVELOPMENT OF A MIXED ELEMENT 
FOR ROTOR BLADES 

The mixed element developed thus far suffers two shortcomings: it is valid only for flap-axial 
motions, and it has been justified in a rather ad hoc fashion. In this section, a general purpose 
mixed element for rotor blades with coupled flap-lag-axial-torsional motions is derived from a 
variational principle. The element has been implemented in an experimental version of the 
Second Comprehensive Generation Helicopter Analysis System (2GCHAS) [12]. 

In esserice, the finite element, already used in SGCHAS for rotor blade analysis, the so-called 
“nonlinear beam element?, was converted into a mixed element. In contrast to other mixed 
elements that have been used for rotor blades (see [4,5]), the mixed treatment, is limited to the 
axial direction. This limitation reduces the number of degrees of freedom that are needed and 
simplifies both the derivation and the programming of the element. Only the structural terms 
of the PGCHAS element, are impacted by the conversion to a mixed element,, and therefore, only 
those terms are derived here. But for the sake of completeness, the element’s inertia terms are 
derived in the Appendix. 

The conversion process proved to be quite fast and straightforward, as the reader may infer by 
comparing the theory of the mixed element, with the theory of the original BGCHAS element, and 
noting the strong parallelism between the two. The ease of conversion is stressed here because it, 
should be duplicated for any displacement-based finite-element code, and not just 2GCHAS, and 
underscores the utility of mixed elements. The derivation presented here employs the notations 
and conventions of the PGCHAS, and the reader should consult (121 for the necessary background 
paterial. 

3.2. Element Geometry and Kinematics 

3.2.1. Element geometry 

The geometry of the undeformed element is shown in Figure 4. The element, is assumed to 
move in a noninertial reference frame denoted E, whose motion relative to the inertial frame I 
is prescribed. The E frame absorbs the large rigid-body motions of the rotorcraft, while the 
smaller motions of the deforming blade relative to the frame are analyzed using a “moderate 
deformation” blade theory familiar to rotorcraft analysts. The geometry and motion of the 
element are defined with the aid of a coordinate system within the E frame with basis vectors 
(bf , bf , bf }. The beam element reference axis is assumed to be initially straight, and parallel 
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Figure 4. Geometry of undeformed element. 

to the unit vector bf. A structural reference frame S is located on the reference axis a distance z 
from the origin of the E frame. Its orientation differs from E by a rotation about bf by the 

built-in twist angle 19t, rotating the E frame coordinates y and e into alignment with S frame 
cross-sectional coordinates 7 and C (see Figure 4). Thus, the position and orientation of S with 
respect to E are 

{cq = lwuJT, 

[TSE] = i coi& si,OS, 1 (3.34) . 
0 -sin& cos& 

3.2.2. Element kinematics 

In this section, the displacement of a generic material point A within the undeformed beam is 
developed; in the deformed beam, it is denoted by A’. In order to carry out this development, 
consider first the motion of E in I. Then, the 3-D displacement field of the beam is represented 
in terms of 1-D variables and cross-sectional position coordinates. An intermediate frame S’ is 
introduced and used to relate the motion of A’ to I. 

The deformed beam cross-sectional frame S’, which becomes coincident with S when the beam 
is in its undeformed state, is specified in the following way. The material points in the undeformed 
beam which lie along the reference line move when the beam deforms, deforming into a curved line 
which is not, in general, the same length as the original reference line because of the possibility 
of stretching. Similarly, the material points in the plane perpendicular to the reference line are 
denoted as the reference cross-section. This plane of points, determined by the q and C coordinate 
directions, also moves when the beam deforms. The points remain contiguous in the deformed 
beam so that they make up a surface which is very close to a plane. 

In accordance with Euler-Bernoulli beam theory, it is assumed that the frame S’ rigidly trans- 
ports the 77 and C coordinate directions at any particular value of z to a new orientation, perpen- 
dicular to the reference line of the deformed beam at the same material point (which is associated 
with the same value of CC in the undeformed beam). Any deviation of the surface of points from 
a plane is, in accordance with Euler-Bernoulli theory, small. The orientation of S’ in E can be 
expressed in terms of a set of 1-D variables which govern the position of and the rotation of S’ 
about the deformed beam reference line. 

As expected, three rotations are sufficient to express the direction cosines of S’ in E, denoted 
by [TSIE]. A set of body 3: 3-2-l orientation angles [13] is used. The direction cosine matrix 
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[TSIE] may be expressed in terms of these angles as 

where sr = sin 81, cl = cos 81, etc., resulting in 

c3c2 c233 -s2 

-s3cl + sls2c3 clc3 + SlS233 SIC2 * 1 (3.35) 

31.93 + clc3s2 -c3sl + cl3332 Cloz 

The orientation of S’ with respect to E is now expressible as 

{L$}+qj}. (3.36) 

Upon expressing the direction cosines in equation (3.35) in terms of the 1-D variables v’, w’, 
and 4, and retaining terms to 0(c2), the transformation matrix [TSIE] becomes (see [lo]) 

1 
v 12 wl2 

---- 
2 2 

[ 1 TSIE =. - (v’c1 + W’SI) (3.37) 

v’sr -w’cr 

The position of the generic point A’ on the deformed beam cross-section is then defined as 

rA’I = rEI + =A’E 

= rE1 + (CC + zl)bf + vhf + wbf + !l?K=bf’ + qbt’ + <b$. 
(3.38) 

This equation can be written in column matrix form if each vector is expressed in terms of its 
measure numbers in the E basis, viz., 

{&‘I} = {r:‘} + {ri’“} 
(3.39) 

Here u, v, and w are the displacement measures of the beam reference line due to elastic deforma- 
tions in the E frame, zbf is the vector from the origin of the element frame E to the origin of the 
structural frame S (see Figure 5), and q and C are the cross-sectional position coordinates. The 
last term is the position of A’ within the deformed beam cross-sectional frame S’. (F&call that 
these coordinates have been convected, and thus, they correspond to the original cross-sectional 
coordinates of A in the undeformed beam.) Finally, an out-of-plane warping is assumed to be of 
the form IC~(Z)@(~, 0, where 9 is the St. Venant torsional warping function and K%(Z) represents 
the amplitude of the warping [14]. Subsequently, ac, is defined as the elastic part of twist per 
unit length or just “elastic twist”. 
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Deformed Cross 

Figure 5. Undeformed and deformed element cross-section. 

3.3. Stress-Strain Relationship 

The stress-strain relationship for a linearly elastic anisotropic solid is characterized by 21 
constants which form a fourth-order tensor. The 21 material constants can be obtained in the 
local Cartesian system along unit vectors bf , associated with the curvilinear coordinates z, 17, 
and C. These material constants can be formed into a 6 x 6 symmetric matrix, the elements of 
which may vary as functions of z, 17, and C. This matrix linearly relates the stress components 

oxx7 oqq, 0~~1 a,rc, ozc> and oztl, with the strain components ^/;c+, curls, rcc, rQc, T*C, and yzs, 
where the order of the components corresponds to that of anisotropic elasticity. 

For slender, isotropic beams, the Bernoulli hypothesis approximately holds, according to 
asymptotic analyses [15]. This hypothesis is that the transverse normal stresses cVt) and occ, 
along with the distortion shear stress aVc, are much smaller than the other three stress compo- 
nents. Thus, one solves for the three strain components 7Vsr rVc, and rcc in terms of the others. 
Substituting the results into the original equations for ozz, all), and ozc, one obtains a “reduced” 
3-D stress-strain law which can be written as 

This reduced 3-D stress-strain law is the basis of most elementary beam theories. Some published 
treatments confuse this with setting the strain components yVo, Y~C, and ~CC equal to zero. These 
are not zero, but may be calculated from the above reduction process. 

Note that, in the special case of the beam having laminated construction with the C direction 
perpendicular to the plane of the laminate, this numbering scheme corresponds to that of common 
treatments of lamination theory. Note that, for the case of an isotropic material, 

&II = E, 

Q55 = &se = G, (3.41) 

Q15 = &IS = Q56 = 0. 

With the above 3-D stress-strain law, one can write the strain energy per unit length (or 1-D 
strain energy function), 

(3.42) 

where ((0)) refers to an integral of (0) over the cross-section, which forms the basis for beam 
theory. In order to determine the 1-D function a, the strain field must be expressed in such a 
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way that this cross-sectional integral can be evaluated. Note that the strain energy of the element 
is simply 

s 

e 
U= QdX. (3.43) 

0 

3.4. 1-D Strain Energy Function 

From axiomatic, Euler-Bernoulli rod theory, the strain energy density of the beam element 

I 
T 

EoA EODO Eok, -EoAet,, 

EoDo GoJ EoDs -Eo& 
.%Aetc EODB EoI,, E&C 

-&Aet, -EoD2 EoA,c EoIc I 

(i.e., strain energy per unit length) may be written in the following form: 

9 (3.44) 

where e,, PC~, K,,, and KC are generalized beam strains and curvatures defined by 

(3.45) 

Ex = 5’ - 1, 

K= = b;’ 
( > 

’ . b;’ - e;, 

&Eg = - b;’ 
( > 

‘.bt’, 

/cc = 
( > 
b;’ ‘.b;‘. 

Equation (3.44) is adequate for the stiff, articulated blade considered in this paper, but note that 
for bearingless blades, it must be augmented by an additional nonlinear strain term that gives 
rise to the so-called “trapeze effect (see [IS]). 

For elements composed of isotropic materials, the cross-sectional constants in equation (3.45) 
may be computed as follows. Substitute the displacement obtained from the element’s kinematical 
relations (equations (3.37) and (3.39)) into small strain, moderate rotation strain-displacement 
relations that can adequately capture rotor blade kinematics (see .[17]). Next, substitute the 
strains into equation (3.10) to compute the stresses, and then integrate the stresses over the 
cross-section to obtain forces and moments. This process gives 

A = i (Qld > k; = f (4 + 4) 7 

et., = & (Qlld 7 % = & (Q116) > 
4 = $, (Q11v2), It, = k (Qd") , 
*vc = -& (QllrlC) 7 Bl = &(QII(~~~+C~)~), 

B2 = & (Qm (v2 + C”)) 3 B3 = i (Qd (v2 + C”)) , 

Do = & (Qd & (Q11 (@‘I,, - v*,c)) 7 D1 = i ( (v2 + C”) QI,) 

+ & ( (v2 + C”) &II W,, - @kc)), 

D2 = $ (&led + $el bQu (Cq,, - v*,cN 3 D3 =& (Qd)+-& (C&u (6*,q - @,c)) , 

J=&( 95s @‘,c + d2 + 2Qs6 (*‘,r, - c) (9,~ + ?I) + &se (@,s - C12) 

+&B:” (Qu CC@,, VW [&lb P,, + v> + &IS (*a - C>l) 9 
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where Qls = QIS(Q,C + d + Qd*,, - <). For an element composed of anisotropic materials, 
three-dimensional effects such as inplane warping become significant, and elementary beam theory 
is inadequate for computing the cross-sectional constants. However, even in this more complex 
case, a formal, asymptotic analysis shows that the form of equation (3.44) remains correct, and 
then the 4x4 matrix in equation (3.44) can be calculated using a code such as VABS [18], which 
may be applied to arbitrary cross-sectional geometry and material properties. In general, these 
properties depend on the cross-sectional geometry, the material anisotropy, and the local initial 
twist. 

It is well known that the displacement-based element behaves poorly in modal reduction, and 
that this problem may be remedied by formulating the axial strain in terms of the axial force 
rather than the axial displacement. This may be accomplished by differentiating the strain energy 
with respect to the axial strain to obtain an expression for the axial force, and then using that 
expression to solve for the axial strain in terms of the axial force and the other generalized strains, 

viz., - - DOK~ - Aetcrc, + Aet,,nC . (3.46) 

Substituting equation (3.46) into equation (3.44) gives an expression for the strain energy 
in terms of the axial force V,. It is important, however, that the axial strain somehow be 
reintroduced explicitly into the strain energy to exhibit its coupling with the finite-element axial 
degrees of freedom, but this must be done in a way that allows all the variables to be treated 
as independent, despite the redundancy between c5 and V,. This goal may be accomplished by 
appending equation (3.46) to the strain energy via a Lagrange multiplier, whereupon the strain 

energy becomes 

- DOK, - AetCK, + Aetsq , (3.47) 

where X is a Lagrange multiplier, (y*} is the reparameterized column matrix of generalized 

strains: 
1 K 
;;i: E. ( 

- - DotcEz - AetCn, + Aetsq 
> 

WI = KX 

I 

> 

% 

“C 

and [Kc] is the coefficient matrix in equation (3.44): 

(3.48) 

I 
EoA EoDo 

iKd = zf: zi3 
-E. A;,, -Eo& 

By taking the variation of ip with respect to V,, 
therefore, the strain energy may be written as 

Edet, -&Aet, 
EoD3 -EoDz 
Eoh, 1 EoIqc * 

(3.49) 

E&C Eo4 J 
X may be identified as the axial force, and 

where cZ is expressed in terms of the primal displacement variables U, v, w, and 4. 
If the strain energy is used as shown in equation (5), it will be found that the coefficients of the 

equations pertaining to V, will differ greatly from the other coefficients for typical rotor blades, 
and this raises the specter of ill-conditioning of the system equations. The coefficients of the 
element’s equations may be made more uniform in magnitude by replacing V, with a strain-like 
quantity defined as follows: _I 

VX 

=EoA (3.51) 
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whereupon the strain energy becomes 

@ = f {-Y*}~ [Ko] {y*} + c[EoA(~, - S) + EoDorcz + EoAetpq - EoAet,+q] . (3.52) 

3.5. Contributions from Strain Energy Function 

In this section, the contributions to the equations of motion from strain energy are formulated. 
For this, the strain energy must be expressed in terms of the displacement and force variables of 
the analysis. The generalized internal loads are then obtained from the first variation of the strain 
energy function, and the contribution to the Jacobian is obtained from the second variation. Like 
the previous rendition of this element, which employed only displacement variables, the variables 
in the “strain” column matrix all have dimensions of strain; but the last of these variables, Z, 
is actually the axial force scaled by a factor. Differentiating the strain energy with respect to 
this variable does not produce a “force”, but instead yields an implicit relation for the axial 

strain, a phenomenon which is characteristic of the Reissner-Hellinger variational principle. The 
ordering scheme is applied to the energy prior to undertaking these operations, thus guaranteeing 
the appropriate preservation of symmetry. Although formally negligible, the terms of cubic and 
higher degree in the 1-D strains are retained to improve modeling of bearingless rotors. These 
terms are simplified in that a, in those terms can be taken as I$‘. This results in a simple 
expression for both the internal loads and the Jacobian. 

3.5.1. Generalized internal forces 

In order to define the generalized internal forces, first note that the 1-D generalized strain 
measures have the convenient property that derivatives of the 1-D strain energy function with 
respect to these measures gives the 1-D stress resultants which correspond to axial section force V,, 

twisting moment Mz, and bending moments Mv and MC. The derivative with respect to the 
“strain” 5 gives a quantity dubbed (Y, which has the dimensions of force, but may be regarded 
more properly as the residual of the inverse constitutive relation for the axial strain, and the 
subsequent application of a weighting function (i.e., SE) to this quantity will constitute the weak 
enforcement of the relation. The internal forces are, therefore, 

Mz=$= EoDos + 
EoD; 

( + GoJ - 
I 

+ PO& - Ed&~) 6q + (--Eo& + E&et,) q, 

Mv = g = EoAet,5+ (EoD3 - EoDoetc) tccz 

+ (Ed,, - EoAe$) 6q + (Eo&c + AEoet<et,) q, 

MC = e = -EoAet,C+ (-EODZ + E,-,Doet,,) IC= 

+ (EoQ - EoAef,,) 6~ + (Eo~~c + &Aetcetv) ICY, 

da 
(YS- 

as 
= EoA(E= - S) + EODOK~ + EoAtz&~, - EoAetsq. 

(3.53) 

These quantities correspond to the axial force, twisting moment, and bending moments in the 
deformed beam basis. They can be arranged in a column matrix {F} so that 

(3.54) 
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where the subskI%’ i ‘= 1,2,3;4,5 refers ‘to the set e2, ~ci;, K~, q, and 5. Note that y’ is now 

defined as 7 = {G, IC%, IE~, K~,Z}~. 
With anticipation of forming the Jacobian, a symmetric matrix [K] is defined so that 

(3.55) 

Thus, [K] is given by 

- 0 0). 0 EoA 

0 G&J “E 0 0” D 

PI= 0 EoDs - Eo;oet< 

EODB - EoDoet, -EoDP + EoDoet,, EoDo 

Ed, - EoAe% Eok + AEoet, et,, EoAet, . (3.56) 

0 -EoDz + EoDoet, Eo& + AEoetpt, EoIc - EoAe,’ -EoAet,, 

_EoA EoDo EoAet, -JWk,, -EoA _ 

Both {F} and [K] are used below to obtain the generalized internal forces and the associated 

Jacobian. 
To proceed with thii development, it is necessary to cqrry out the variation of the strain energy 

with the 1-D strain measures written in terms of the variables of the analysis u, V, w, 4, z and 
their derivatives. First, the strain measures are written in terms of the displacement variables. 
Applying the ordering scheme and retaining terms to 0(c2), one obtains 

.’ 

cz = J(1 + 21’)s + v’s + wa - 1, 

IE, = 4’ + V”W’, 
(3.57) 

49 = &i - w”C1, 

“C = v”Ci + w”Sr. 1 : 

‘.. 

The variation is now most easily done using index notation and the chain rule. Introducing the 
column matrix 

( 

{z} = { u v w $5 u’ 21’ w’ c$’ u” v” w” tpf’ z) 
T 

) / (3.58) 

with indices which vary from 1-13, and letting all repeated indices be summed over their range, 
one can express the first variation of Q ss 

(3.59) 

where [R] and (F} are given by 

000 0 --- (1 4 + v’ w’ 
e, + 1 e, + 1 Ez + 1 

o’ 0 0 0 

I~OW’ 0 

PI 
000 0 0 0 VN 

= 0 0 0 Kc 0 0 0 0 Sl 0 -cl 

0 0 ,o -Kq 0 0 0 0 0 Cl Sl 

-000 0 0 0 0 000 0 

0’0 

0 0 

0 .o ,’ #’ 
00 

0 l_ (3.60) 
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It is now easily seen that the column matrix of.generalized~fqr~ corresponding to ,{z} as defined 
above is 

{f = [RIT{F}. ., < .’ (3.61) 

The column matrix {f} can be written explicitly as 

0 I’ 

0 

M,,q ” Mp,, 

EoAr(1 + u’) 
e,+l 

EoAzv’ 

ex + 1 

The contribution of the 

3.5.2. Jacobian 

int 

EoAcw’ 
E + v”M, 

z 

Mz 
0 

w~‘u.‘M, + Mccl + M,,sl 
Mcsl - M,,q 

0 

EoA (G - Z) + EoDolc,,+ Ey4eknc, - EoAet,,Kc 

vernal forces is then expressible as 
I 

J a{~}~ f dx. 
0 

(3.62) 

(3.63) 

The contribution of these terms to the perturbation equations is obtained from forming the 
Jacobian. This is like taking one more variation, resulting in 

AJCP = 6s a"?k 
Rki Kkl Rlj + z Fk Azj. 

i j 
Thus, the contribution can be written in matrix form as 

where [KI] is given by 

[Kl 
and [K2] is 

Wzl = 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 

0.0 0 
0 0 0 

0 0 0 
0 6 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 L 

0 0 0 
0 0 0 

0 0 0 

-(M,,K,, +M& 0 0 
0 0 0 
0 0 EoAe 
0 0 0 
0 0 0 
0 0 0 

M,,cI -Mpl 0 0 
M,SI +MCCI 0 0 

0 0 0 
0 0 0 

(3.65) 

(3.66) 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

EoAZ 0 0 
0 0 0 
0 0 0 
ME 0 0 
0 0 0 
0 00 
0 00 

0 
0 
0 

M,cl - MCSI 
0 
0 

MZ 
0 
0 
0 
0 
0 
0 

0 0 0 
0 0 0 

M,,sl :Mcq : : 
0 0 0 
0 ‘0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0' 0 0 
0 $0 0 
0 10 0 

Thus, the strain energy contribution to the Jacobian is given explicitly in terms Of [Kl 
Only the nonzero elements of [KJ should be calculated. 

(3.67) 

+ [Kzl. 
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4. MODAL REDUCTION WITH MIXED ELEMENTS 

If mixed elements are employed, it may seem straightforward to recover the finite-element 
displacements from modal coordinates by employing the usual modal reduction relation 

id = Pl{Qh (4.68) 

where [a] is the modal matrix, cr is a vector of modal coordinates, and {q} are the finite-element 
degrees of freedom, in which {q} includes the axial force degrees of freedom. However; using this 
approach implicitly retains a linear relation between the axial forces and displacements, which is 
not generally correct. This problem may be dealt with by retaining the axial forces as independent 
degrees of freedom. To accomplish this, each eigenvector is written 8s follows: 

(4.69) 

where {r#~i} is the ith modal vector, {&} is the displacement part of the eigenmode, and {+f} 
is the force part of the eigenmode. When modal reduction is performed, {&} is split into two 
vectors containing the force and displacement parts separately: 

(4.70) 

Thii approach permits sufficient decoupling of the axial displacements and forces to enable the 
accurate calculation of each. It has the drawback of requiring that additional generalized coor- 
dinates be added to the analysis, but in practice, only one or two of these are needed. 

5. COMPUTATIONAL EXAMPLES OF MODAL REDUCTION 
WITH MIXED ELEMENTS 

The modal reduction accuracy of mixed elements will now be studied using the examples 
examined earlier during the discussion of the axial displacement variable. 

The first -ample is the flap frequencies of the articulated blade. Plots of the first two flap 
frequencies versus the number of axial modes are shown in Figure 6. In contrast to the corre- 
sponding results seen in Figure 2 for the displacement element, only a single axial mode-but 
actually, two generalized coordinates-are required to match the finite-element results accurately. 

*o*w : ._.......... I ..__._.. ._._..........._.___.__................................................. . . . . . . .._......._._.._. 

70.00 t-’ WC__ ~~c~c~_ccc c_-__ cccccc *.-SC c 

Second Flap, FE and Modal 
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~ 
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Figure 6. Articulated blade flap frequencies: mixed elements. 
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Figure 7. Articulated blade tip deflections: mixed elements. 
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Figure 8. Articulated blade root load& mixed elements. 

Periodic solutions for finite-element and modal bases compared in Figure 7 for blade tip dis- 
placements, and in Figure 8 for blade root loads. It may be seen that there is a dramatic 
improvement in how the modal solutions approximate blade tip displacements when compared 
with the corresponding results for the displacement elements (Figure 3). The axial displacement 
is not approximated quite as well as the other displacements, probably because of the nonlin- 
earity of the axial foreshortening effect. However, the primary interest in the axial displacement 
is its impact on lag moments through the Coriolis effect, but as may be seen in Figure 8, the 
modal approximations of the root lag moments is quite good, which suggests that the modal 
approximation of the axial displacement is satisfactory for practical purposes. 
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Figure 8. (cont.). 

6. CONCLUSIONS 

The modal reduction accuracy of several blade analyses is examined by applying the analyses 
to the Hodges-Dowel1 blade equations, specialized to coupled flap-axial motions. It is shown that 
representing the axial motions using the axial displacement variable simplifies model discretiza- 
tion, but suffers from poor modal reduction accuracy owing to numerical ill conditioning and 
nonlinearities in the formulation. Qualititative arguments, buttressed by reports of the successof 
the axial elongation variable, suggest that use of the axial force as a variable should significantly 
improve modal reduction accuracy, but any improvement would come at the expense of reduced 
modeling flexibility. A mixed element is presented as an alternative that seeks to combine the 
advantages of the other two methods by using both displacements and forces to represent axial 
motions. The derivation of the complete, mixed element is then described, and the modifications 
to the usual modal combination algorithm to account for the axial force degrees of freedom are 
presented. Finally, the good modal reduction accuracy of the mixed element is demonstrated by 
applying it to the analysis of an articulated blade model. 

APPENDIX: MIXED ELEMENT INERTIA TERMS 

The inertia terms of the mixed element are derived in this Appendix. These terms are obtained 

by forming the integral of the virtual work due to inertial loads from the time integral of the 
variation of the kinetic energy, and then integrating by parts. First, expressions are written 
for the velocity of an arbitrary point on the beam reference line and the angular velocity of 
the deformed beam cross-section, assuming that the warping of the section is ignored for the 
purpose of determination of the kinetic energy. Next, the kinetic energy is written based on 
the geometrically exact formulation of [4], using the cross-sectional integrals defined therein. 
Finally, the contribution to the final equations of motion from inertial and gravitational forces 
is determined by a series of operations which include variation with respect to all unknown 
coordinate functions, integration by parts in the time domain, and application of the ordering 
scheme. The ordering scheme need not be’ invoked until the last step. 

A.l. Kinematics 

For the purpose of writing the kinetic energy in compact form, the column matrix (TJ~“} is 
written as 

{V;” } = { ?JE’} + { ti’“} + [US] { r$E} , (A.71) 

where {v,“‘] is the column matrix, the elements of which are measure numbers of vEz, {WE’) is 
the column matrix, the elements of which are measure numbers of wEz, and (neglecting warping 
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effects) 

{rp}= { x;“}. (A.72) 

The column matrix {we:‘} contains the measure numbers of the angular velocity of the deformed 

beam cross-sectional frame u”’ in the deformed beam basis. An approximation consistent with 

the ordering scheme is given by 

1 
S’I 

{I[ ws/ = 0 -81 0 Cl 
0 

w’ Cl Sl I( i -g 
V 6, 
‘, + pq {w[‘}. (A.73) 

Finally, consider the virtual rotation of S’ in I. Since the motion of E is prescribed in I, this 

is the same as the virtual rotation of S’ in E, denoted by 88s’E. From [lo], this vector can be 
written as 

-&fE 
= @Ebfr, 

I 
(A.74) 

where, within the accuracy of the ordering scheme, the column matrix containing these elements 
can be written as 

(A.75) 

A.2. Kinetic Energy Expression 

The kinetic energy can now be written ss 

where (e} is given by 

{e} = e:, . 

{ 1 em< 

(A.77) 

em,, = (PI), emc = (PC>, VI b th e sectional inertia matrix given by 

VI= rsiC ;< 41, (A.78) 

and i, = (pC2), ic = (m2), and i,,c = -(p<q). Thii is a geometrically exact expression for the 
kinetic energy, provided that all vector quantities are written exactly. (Note that the radii of 
gyration can be obtained from km,, = m and k,,,c = m.) The result for the virtual 
work of body forces is of the form 

(A.79) 

where the subscript b refers to these as body force terms, and the subscripts 0, 1, and 2 refer 
to the zeroth, first, and second moment terms, respectively. Below, the first term (the zeroth 
moment term of K) is written exactly. The second term (the first moment) and the third term 
(the second moment) are approximated and have been carried out via computer-aided symbolic 
manipulation based on the above approximation of (w$‘}. 
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A.3. Exact Term 

When 6K is substituted into Hamilton’s principle, the first term must be integrated from fixed 
times tr and ts. After doing this, integrating by parts in time, and setting 6(ri’E} equal to zero 
at t = tl and t = t2, one obtains the contribution of this term to the virtual work of the inertial 
forces 

SW, = -~em6{@}r 
x { {a#“} -I” {?-SE} +2 [Z] {$‘“} + [[Z, [@I + [$]I {@}} dz. (A.80) 

Tbis can be written as four terms, three on the left-hand side of the equations of motion (the signs 
are changed on these terms to reflect the change from right to left), and one on the right-hand 
side. The left-hand-side contributions are to the mass matrix 

the gyroscopic matrix (which is nondissipative) 

and the stiffness matrix 

where the associated rotation matrices are 

-7% I I[ 1 -7% = 
wE wE [ 

- (w; + w$) WlW2 ww3 

WlW2 - (wf + wi) w2w3 

WlW3 w2@3 - (wf + wz”) 1 
and 

0 

’ WE -z I = 1 Lj3 43 0 -till 32 1 . 

-4 Ljl 0 

(A&l) 

(A.82) 

(A.83) 

(A.84) 

(A-85) 

All the remaining’terms contribute to the residual on the right-hand side of the equations. This 
contribution is 

Gravity can be treated with the inertial forces just by replacing {og’> with (#} - {gE} where 
(gE) is the column matrix which contains the measure numbers of the gravity vector in E basis. 



Mixed Finite-Element Method 1199 

A.4.. First Moment Term 

The second term in the kinetic energy contains the contributions from the offset of the beam 
reference axis and the sectional mass centroid. If sectional analysis codes are used, the reference 
line ca31 be input as the mass centroid which removes all these terms from the equations. 

Taking the variation and integrating over time, one obtains 

The variation of the angular velocity can be written in terms of the virtual rotation {@*} 
according to [4] as 

6 {L@} = {Z9$“} + [L@] {&“} . (A.88) 

Also, the variation of [TSfE] can be expressed in terms of the virtual rotation as 

s YE] = - [-Z] YE]. (A.89) 

With these substitutions, the contribution to the equations of motion can be shown to be in these 
two terms: 

6K=-~m({xl~:E}T[~ [TdE] { {af}+{rp} 

+2 [w%] {&E} + [[Z] [Z] + [G@] {r$“}} 

+s {r=,“}T KEIT [[@I [L@] + [@]I {e}) dz + * * * , 

(A.90) 

This expression is geometrically exact. However, in the present theory [PIE], {w$‘}, and 

{@:E} are approximated as in equations (3.37), (A.73), and (A.75), respectively. The offset 
quantities are assumed to be O(e2). Thus, the terms multiplied by the OS&S need only be 
retained to O(E). 

The above operations result in the contribution of the first moment terms to the virtual work 
of the inertial force terms on the right-hand side. These can be simplified by introducing 

em* = cle,, - a+, em, = aem, + cle,,, 

so that the generalized body force contributions from the first moment terms are 

(A.91) 

f5Wb~=~6u[emw(w~2+w32+2u~rj+~2)-emz(w2w3-~~-4j)l dx 

- /d’dw [em, (w2w3 + L& + 4) - ems (w12 + ~2~ + 2~14 + ““)I a!x 

- (6d{ J 0 
em, [A3 - (w12 + ~2~) w - (Al - xw22 - XW~~) W’ 

+v (w2w3 + Ljl) + x (wlW3 - Lj2) + 2Wr6 + ti] 

+e,, [-A2 + (wi2 + ~3~) v + (Al - xw22 - XW~~) d 

+w (-w2w3 + Ljl) - x (WlW2 + Lj3) + 2ulti - fi] } dx 

J 

e 
+ 

0 
6w’e,, [AI - x (ws2 + ws2)] CIZ 

J 

e 
+ 

0 
hiem, [Al - x (wz2 + ~3~)] dx. 

(A.92) 
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Note that in this expression there are no linear terms. 
The first moment term yields a total of 17 terms in the perturbed equations of motion, the 

signs of which are changed to reflect their being on the left-hand side of the equations of motion. 
In virtual work form, the four “mass matrix” terms are 

J 

e 
-A&‘&i = - bv me,,,, AC$ dx 

0 

J 

e 
+ 6w me,,,,, A$ dx 

0 
e 

- 
J 

64 me,, Aii dx 
0 

e 
+ 

J 
W me,, Atidx+... . 

0 

(A.93) 

The four “gyroscopic matrix” terms are 

-A6Wbl = -21&vrnemV (W +d) Aidx 

J 

e 
-2 

0 
6wme,= (w1 + 4) A$dx 

J 

e 
+2wi 154 me,, Ati dx 

0 
e 

+2w 
J 

@me,,,,Atidx+... . 
0 

The nine terms contributing to the Jacobian are 

-Adwbl =[dvm[e,V(wzws-J1-6)+e~s(w~2+w~2+2w~$+$2)]A~dx 

- 1’ 6w m [em” (w12 + w?~ + 2w1$ + qi2) + e,, (~2~3 + til + J)] A$dx 

+ 
J 

’ Qrn [em, (w2wa + ;Ii) + e,. (wi2 + ws2)] Avdx 
0 

- 
J 

e 
W m [em, (w12 + ~2~) + e,, (wp, w3 - CA)] Aw dx 

0 

+ 
J 

e Sq5 m {em, [-A2 - XW~WZ + w12v+ W~~V - W~W~W 
0 

+w& - xG3 + 2wr3 - ij + (Al - ~(3~~ - XW~~) v’] 

+e,, [-A3 - XW~W~ - ~2~321 + ~31~~ + WHEW 

-vLjl + xi.22 - 2wiv - 2ii + (Al - xw22 - xw32) w’] } Ac$ dx 

J 

e 
- c5w’mem, [Al - x (wz2 + ws2)] A4dx 

0 

J 

e 
+ 6v’ me,, [Al - x (wz2 + ws2)] A4dx 

0 

J 

e 
- cS@rnh, [AI - x (wz2 + ws2)] Aw’ dx 

e 
+ 

J 
,“,memz [AI -x(wz2 +ws2)] Av’dx+... . 

0 

(A.94) 

(A.95) 
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A.5. Second Moment Term 

The third term in the kinetic energy contains the contributions from the sectional inertia 

matrix [I]. Taking the variation of this term and integrating over time yields 

(A-96) 

Substituting equation (A&3), integrating by parts, and setting {%$iE’} equal to zero at t = tl 

and t = t2, one obtains the contribution of these terms to the equations of motion 

6K=-l{gEjT [ [I] {w$‘} + [WF] [I] {wp}] dz + - - * . (A.97) 

The sectional mass moments of inertia can be regarded ss 0(mR2c?); thus, the terms multiplied 
by them need only be retained to O(1). To this order, there are only two second moment terms. 
The first is a linear term in the mass matrix, the sign of which is changed to reflect its being on 
the lefehand side, 

I 
e 

4Wb2 = s(b(i,+i<)&z+... . 
0 

(A-98) 

The second is the residual, in which there is only a nonlinear torsional moment term, given by 

6wb2 = I o’ 64 {(iq - iC) [(cl2 - 312) u2 w3 - (w22 - w32) 31 cl] 

-iqc [4cr sr w2 w3 + (cl2 - s12) (~2~ - Wan)] - (iv + ic) &} dz + -- - . 

Note that there are no linear terms in this expression. (The one linear term which would have 
been present is in the msss matrix and not repeated in the residual.) The Jacobian of this 
expression only contains the one term 

I 
e 

-Adwt,z = sqt { [(Cl2 - S12) (iv - ic) - 491 Cl i,c] (w22 - wg> 

+4 [($ - S12) i,c + Sl Cl (itj - ic)] w2 w3) AW= 

(A.lOO) 

This part of the formulation can be extended, if necessary, to the case in which the sectional 
mass moments of inertia are 0(mR2c2). The contribution of these neglected terms, however, is 
believed to be negligible for most rotor blades. 
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