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This paper focuses on two nonclassical effects in the behavior of thin-walled composite heams: elastic hending- 
shear coupling and restrained torsional warping. These nonclassical effects are clarified and analyzed in some 
simple examples involving cantilevered beams. First, elastic bending-transverse shear coupling is shown to he 
important in the analysis of beams designed for extension-twist coupling. It is found that the lateral dellections 
ran be off by more than a factor of two if this coupling is ignored. This eaupling stems from plies with off.axis 
fihers in the beam. The presence of these plies affects significantly the modeling approach (i.c., determination 
of the constitutive equations) in that transverse shcar must appear in the kinematics so that its coupling with 
bending will he exhihitcd in the elastic constants. This linding is in accord with "exact" beam theories which 
develop the beam displacement and crass sectional orientation in terms of six kinematical variables instead of 
the three or four found in some previously published works on composite blade modeling. A second nonclassical 
effect, torsional warping rigidity, is shown to be important far certain box beams having a thin-walled, closed 
crass section. The importance of including these nonclassical phenomena in a complete theory is discussed in 
l i ~ h t  of the magnitude of their effects for various values of configuration parameters. 

Introduction 

A erospace vehicle structures are largely composed of thin- 
walled elements stiffened by beam-like members and are 

increasingly being madc of composite materials. There are ccr- 
tain modeling assumptions that are typically associated with 
so-called classical analyses of isotropic beams which will not 
suffice for beams made of compositc matcrials. The usual clas- 
sical analyses must be reviscd to include certain nonclassical 
effects. Two of these nonclassical effects, bending-shcar cou- 
pling and torsional warping rigidity, are the subjects of thc 
present paper. Here "shear" refers to transverse shcar in the 
sense of Timoshenko theory. Whilc shcaring strains and tor- 
sional wamine rieiditv are treated in some classical analvses. . - - .  . . 
the influence of such effects is usually small for isotropic beams. 
lExceotions to this include isotrooic beams with oocn cross 

1 sections, which arc not considered herein, for which warping 
rigidity is known to be important.) Forcomposites, on the other 
hand, these effects may not be small. The analysis which fol- 
lows is intended as a contribution towards undcrstdnding the- 
oretical foundations for analysis of compositc beams with thin- 
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walled closed cross sections and their physical behavior. Wc 
intend furthermore to determine the cxtent to which bcnding- 
shear coupling and torsional warping rigidity arc essential ele- 
ments of such an understanding. 

The subjcct of compositc rotor blade modeling was reviewed 
in Ref. I .  There exist quite general approaches to the dcter- 
mination of sectional constants ranging from powerful finite 
element methods such as Rcf. 2 to simple analytical methods 
such as Rcf. 3. Referencc 2 shows that thcre are two classcs 
of warping involved in the calculation of sectional elastic con- 
stants. .The particular solution (also called the St. Venant so- 
lution) ignores all end effects that arise from rcstraining the 
warping. This solution allows the determination of a 6 X 6 
matrix of elastic constants for the blade cross section. Thus, 
shear deformation must be included in the blade deformation 
model in order for these constants to contributc to the strain 
energy. 

The homogeneous (or boundary layer) solutions, however, 
allow the end effects to be treated to a varying degree of ac- 
curacy depending on how many of thc restrained warping 
"modes" are retained. Each of these modes has a characteristic 
length which determines how rapidly its effects decay with thc 
distance from the ends. In order to make usc of these solutions 
in the determination of sectional elastic constants, additional 
kinematical variables, which serve as amplitudes for thcir modes, 
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must be incorporated into the deformation model. These ad- 
ditional variables can be the derivatives of existine ones. Sub- - 
sequent work in Ref. 4 shows that, among the out-of-plane 
restrained modes, the torsional warping mode is the most sig- 
nificant. 

For an arbitrary composite beam the in-plane and out-of- 
plane St. Venant solutions can be quite significant. When we 
restrict the discussion to thin-walled beams, however, the St. 
Venant warping solutions do not significantly affect the stiff- 
ness constants (Ref. 5). Thus, a useful contribution to the 
understanding of composite blade modeling would be to cx- 
amine a simple thin-walled blade theow includine at least the 
full 6 X 6 matrix of elastic constants wide also examining the 
effects of additional constants associated with the out-of-olane 
torsional warping. 

The simplest theory required to examine the importance of 
bending-shear coupling and restrained out-of-planc torsional 
warping is that of Ref. 3, a linear composite beam theory, 
which scrves as the starting point for this study. Results from 
this theory were shown to agree well with NASTRAN finite 
element results for the static deformation of a model rotor blade 
(Ref. 6). Very good correlation between the theory and cx- 
oeriments was also obtained for both box beams (Ref. 7) and 
circular tubes (Ref. 8). In Ref. 7 Rehfield's theory  if, 3) 
was able to oredict strain distrtbution in the beam cross section. 
Also, the correlation between Rchfield's theory and the cx- 
oeriment in Ref. 8 was verv eood. 

In this paper, we proceed-by first summarizing the basic 
equations of Rehfield's theory, in which distortion in the plane 
of the cross section, local shell bending and twisting moments, 
the hoop stress resultant, and initial twist and curvature arc not 
considered. The significance of the nonclassical effects is eval- 
uated by means of simple examdes involving cantilevered beams. 
The importance of bending-shear coupling k assessed for beams 
designed for extension-twist coupling. Finally, the importance 
of restrained torsional warping in composite beams is asscssed 
for a family of thin-walled box beams. The differences relativc 
to isotropic cases are highlighted. 

Synopsis of the General Theory 
The starting point of our considerations is the linear theory 

for thin-walled, composite beams developed in Ref. 3. After 
the kinematics of thc theow are summarized. we will then 
outline development of the equilibrium equations and the force- 
deformation relationships from the principle of virtual work. 

Kinematics 

A thin-walled beam with closed, single-cell cross section is 
shown in Fig. I .  Thc coordinate direction x is along a straight, 
but as vet unsoecified, rcference axis while v and z are the 
transveise cootdinales of the cross scction measured from thc 
reference axis. The circumferential coordinates is taken alone 
the middle surface of the wall. The beam undergoes stretching 
bending, twisting, and transverse shearing. Introducing a frame 
which c~n~nc~dcvwith the c r o s s s e c t ~ o n ~ ~ i ~ ~ e  undcli~rn;cd ~ C ~ I I I ,  
one can dcc(~n~p~lsc the displnccmcnt ftclJ 111' thc bean1 into a 
ngi(l-hudy tran\l~tion an11 r6t;ltion of thc frarnc, and a warping 
of the crocs suction relat~vc to th;~t  translntcd and rotated (i;imc. 
Considering only small displacements and rotations and ig- 
noring distortion of the cross section in its own plane, one can 
immediately represent the transverse displacement components 
in the form 

Here V = V(x) and W = W(x) arc transverse components of 
the displacement at the point where the reference axis passes 
through a given cross section, and + = +(x) is the twist angle. 

Fig. 1 Schematic of thin-walled beam configuration. 

In order to obtain an expression for the axial deflection a, 
some assumotions must be made concernine the tranverse shear - 
strains. As in the usual theory of torsion for thin-walled bcams 
made of isotrouic materials. thc shear strain is assumed to be 
independent of s. Therefore, let y,, = y,.(x) and y,, = yrl(x) 
be the transverse shear strains of any cross section. They are 
assumed to be uniform for each cross section so that there is 
no warp due to transverse shear; that is, a pure transverse shear 
strain results in a plane cross scction. Furthermore, let y = 
y(x) be the shear strain due to twisting. Thcrcfore, from the 
strain transformation law and elementary geometrical consid- 
erations, the membrane shear strain in the beam wall is given 
by 

Introducing the position vector r from the reference axis of the 
beam to an arbitrary point in the wall of thc beam and a unit 
vector n normal to the wall at the arbitrary point and directed 
toward the interior of the cross section, one can express the 
shear strain in terms of the deformation as 

where u, is the tangential component of displacement given by 

Following Ref. 3, one can find the form of the axial displace- 
ment component, u, by ignoring any effects of tapcr along the 
spanwise direction and by enforcing the continuity condition 
around thc circumference of the cross section. The result is 

where U = U(x) is the axial component of the displacement 
of the point where the reference axis passes through a given 
cross section, p, = P,,(x) and P, = P.(x) are the cross section 
rotations, positive in a right-handed sense about the axes y and 
z, respectively,* 

*In other words, U. V, and Ware components of the rigid-body dis- 
placement of the point in lhc cross sectional frame where lhc rcference 
axis passer through it; +, P,,  and PI are components of ihc rigid-body 
rotation of the cross sectional frame. 
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a = rrz - w.. 

and Jl is the torsional warping function given by 

which satisfies the condition that $,.Jlds = 0.  Here A is the 
enclosed area of the cross section, c = $ l . d ~  is the circumfer- 
ence, and r represents the cross section shape. The axial strain 
is then obtained as 

and the shear strain is 

where U,, is the axial strain, and y,, and y ,  are the shear strains 
at the beam reference axis. while 6 .. 0.. .. and 0. .. are the . . . . , . . . . . ,,. 
twlst and bcndingcurvaturcs, rcspcct~vcly. 6 , ,is thc additional 
kinematical varixhle associated with torsion~l warnine. With 
both shear deformation and torsional warping pre'seG in the 
theory it is possible to examine the roles of these nonclassical 
effects. 

Farce-Deformation Analysis by Principle of Virtual Work 
For thin-walled beams, local shell bending and twisting mo- 

ment resultants can be ignored, and thus, the beam reacts ex- 
ternal forces by membrane action in the wall. Introducing axial 
and shear stress resultants, N,,  and N,,, respectively, and as- 
suming that there is no internal pressure so that the hoop stress 
resultant, N,, can be ignored, one can write the principle of 
virtual work as 

where SW is the virtual work of the external forces. Application 
of the calculus of variations with the usual assumptions re- 
garding continuity results in the following equations of equi- 
librium: 

N,." + 4.. = 0 

Q,., + Y, = 0 

Q:., + 4, = 0 

Mr.. - Q,,..,, + m.. - Y,,.,.. = 0 

M ,,, - Q , + m , = O  

M,,, + Q,. + m, = 0 (11) 

where the generalized internal forces are defined as 
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where N is the axial force, Q, and QI are the shear forces, M, 
is the torsional moment, M, and M, are the bending moments, 
and Q,,. is the generalized warping related force (or bimoment). 
Here q,, q,, and y, are applied, distributed forces, rn,, !nY, and 
tn, are applied, distributed moments, and q,,, is an applied hi- 
moment. The generalized internal forces and the resulting cqui- 
librium equations are identical to those in Ref. 3. 

Composite thin-walled construction, herein, is characterized 
by the membrane stiffness matrix K which relates the non-zero 
stress resultants to the mcmbranc strains. The constitutive re- 
lations are (see also Ref. I)  

The stiffness K l l  corresponds to uniaxial extension, K2, cor- 
responds to shear, and K12 is a coupling modulus. They are 
related to the usual laminate stiffness matrix A (Ref. 9) as 
follows: 

A ?2 K, ,  = A,, - - 
A22 

A:, K2, = A,, - - 
A22 

For N plies, the laminate stiffnesses-are determined by simply 
adding the plane stress stiffncsses, Q,, for each ply. Thus, 

where h, is the thickness of the kth ply. The ply stiffnesses 
depend upon the material and fiber orientation. 

The deformational variables or generalized strains are easily 
identified from the strain expressions. Arrayed in a column 
matrix u they are 

Similarly the generalized internal forces can be put in a column 
matrix form as 

l'hc relationship hctwce~l thc bcam and its reicrcncc axis (the 
~(x~rdlnatc dimction x) has not yct bccn spzcillcd: howcvrr. it 
is convenient to choose it in such a way ihat 

4,. ~ , , y d s  = 0 

This choice defines the reference axis as the tension axis found 
in Ref. 3. This is the axis for which the application of aresultant 
tensile force will not produce any bending. It is also possible 
to define the y and z axes as principal flexural axes which 
uncouple bending about these orthogonal axes in cross section. 
The necessary condition for this is that 



. 
Since the force and the deformation are linearly relatcd, a 
symmetric 7 x 7 stiffness matrix, C, can then be defined such 
that 

By virtue of the procedure and choice of axes defined above, 
the elements of C consist of 25 independent stiffness constants 

2 

C I I  = jr KI I ds; C22 = {,, K22 (2) d . ~  

dy dy dr 
CI2 = jr K12 ds ds; C2, = KZ2 - - ds 

r ds ds 

dz 

2A 
C14 = - jr K12 ds; C, = - 

C 

dY 
CZS = 4,. K12 ds zds; CC = - 

dY j,. K12 ds yds 

dz dz 
C34 = F ir K22 ;i; ds; Cs = K12 - zds 

r ds 

dz 
c36 = - 4,. K12 ZY~S.' c# = (F)' jr K22d~ 

2A 2A 
C,, = - jr K12zds; C,6 = - 7 jr K12yds 

C 

Cii = jr Kl1JI2ds; Cs6 = - j,. Kllyzds = 0 

Now that we have the stiffness matrix, it is possible to ex- 
amine special cases that illustrate some nonclassical effects. In 
order to apply forces and calculate beam deformations, how- 
ever, it is necessary to invert Eq. (20) to obtain the flexibility 
relationship 

where S = C-I. This inversion is only carried out for certain 
simplified cases below. 

Shear Deformation with Bending-Shear Coupling 
The first nonclassical effect cxamined is that of shear de- 

formation and its coupling with bending. To illustrate this cou- 
pling, the terms in thc stiffness matrix arc cvaluated for a 
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circular cross section and a choice of material and fiber ori- 
entation so that the extension-twist coupling C,, is non-zero. 
A simple case is that of a slender cantilevered beam with a 
circular cross section as shown in Fia. 2. For examole. consider - 
\uch a hcan~ wit11 diamctcr of 2 in and wllh a circ;~nfcrentlall~ 
uniform stiffnes\ (CUS) la,ur, made of lMhlK6376 Crsohlte/ . . .  
Epoxy. The material properties used in determining the ilastic 
constants are E, ,  = 23.1 x lo6 psi, E2, = 1.4 x lo6 psi, 
v12 = 0.338, andG12 = 0.73 X 106psi. From theseproperties 
and Eq. (21), the 6 X 6 matrix of elastic constants can be 
(lclcrm~ncd: the rcsults are presented in  Tahle I. A hlade with 
these pn>pcnies 1s ondcr dcvclop~~~cnt at NASA I.anrlcv Kc- - .  
search Center (Ref. 6). 

As can be seen in Table I ,  for this type of design there are 
other nonzero coupling terms (i.e., off-diagonal terms) in ad- 
dition to C,,, which are C2, and C3,. These terms couple the 
displacements in the two orthogonal directions by coupling the 
transverse shear strain along each axis with the bending strain 
about that axis. The extension, twist, and warping terms are 

IM6 / R6376 and T300 / 5208 
Graphite / Epoxy 

[elT; t = 0.0055" (single ply) 
[0,8,-8,90]~; t = 0.022" (balanced layup) 

[e,e-90,e,(e-9o)~,ei~; t = 0.033" (CUS) 

Fig. 2 Schematic of circular tube cross section, 

Table 1 Stinnesses for a composite circular crass section 
Material IM6lR6376 GraphitelEpoxy [20, -70, 20,(-70),, 201, 

Plv thickness 0.0055 in.: D = 2 in. 

Stiffmesses Calculated Values 

C... Ib 0.1972 X 10' ... 
C,4, Ib-in 0.6680 x 106 
Czz, lh 0.2317 x lo6 
C,., Ib-in -0.3340 x lo6  
c,,, lb 0.2317 X 106 
C,,, Ib-in -0.3340 x lo6 
C,, Ih-in' 0.4634 X 106 
C.., Ib-in2 0.9862 x 10' 
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decoupled from these effects; thus, one can consider just the 
remaining 4 x 4 matrix of stiffness constants so that 

Clearly, now, if one does not consider transverse shear defor- 
mation in the model development, as in Refs. 10 and 11 for 
example, there is no possibility of correctly accounting for the 
bending-shear coupling terms in Eq. (23). These terms will 
soften the model, and the question naturally arises whether 
these coupling effects can he important. 

To see the effect more explicitly, consider the inverse of Eq. 
(23) 

where 

Clearly, if one ignores the coupling effect, the transverse shear 
and bending flexihility coefficients are simply the reciprocals 
of the transverse shear and bending stiffnesses, respectively, 
i .e . ,  

(coupling ignored) 

The fact that the correct flexibility coefficients are larger than 
the ones in which coupling is ignored is now plain. 

In order to see the magnitude of the effect we can calculate 
the deflection of a beam under uniform distributed load in the 
z direction so that q, = qf where q: is a constant. From the 
equilibrium equations, Eqs. (I I), and the zero shear force and 
bending moment boundary conditions at the tip, the shear force 
and bending moment become 
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Therefore, from Eqs. (24) the curvature about the y-axis can 
be written easily in terms of beam flexibility terms and applied 
loads as 

1 P,,,x = S5~MS = - S55 - q:(L - x ) ~  
2 (28) 

Integration of Eq. 28 and application of the boundary condition 
p, = 0 at the root yields the section rotation about the y-axis 

Now, from the first of Eq. (6) 

In light of Eqs. (27) and (241, y.,, can be written in terms of 
beam flexibility terms and applied loads as 

Substitution of Eq. (31) into Eq. (30) results in 

sss q: w,.< = S,iqf(L -x) - - [(L -x))  -L3] (32) 6 

Finally, with the boundary condition that W vanishes at the 
root, integration of Eq. (32) gives an expression for W 

where 5 = and where S33 and S5, are the correct (including 
coupling) shear and bending flexibilities, respectively. It can 
be recognized that the flexibility terms correspond to the en- 
gineering flexihility constants found in Ref. 6; s,, corresponds 
to the flapwise bending flexibility, and S3, corresponds to the 
transverse shear flexihility (due to Timoshenko). 

To examine a simpler expression, consider only the tip de- 
flection 

The second term in parenthesis corresponds to the direct trans- 
verse shear flexihility effect. This term has relative importance 
only when the ratio % becomes significant compared to 

SssL 
unity; for a beam of given cross sectional geometry and ma- 
terial, this ratio becomes larger as the beam becomes shorter. 
It mav or mav not be imoortant for a oarticular value of slen- 
derness, depending on the ratio of extension and shear moduli. 
Holvever. rhe irnoortarlce o f  the elastic couoli~m-derertnir1i11~ . .. 
the correct values of S,] and S5s-l~as notl~ing to do with sle11- 
derrress of the beam! Rather, it depends on the magnitude of 
the coupling C:, relative to C2,C,,. In order to assess this 
effect, clearly one must determine a complete set of elastic 
constants (C,, i ,  j = 1 ,  2.  . . . 6 at least). The approach of 
Refs. 10 and I I will not suffice when the beam is designed 
for extension-twist coupling. 

For a beam whose elastic constants are given in Table 1, 
Fig. 3 shows the tip deflection determined with two approxi- 
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C 
0 

g W(no shear flexibility)/W(correct) 
8 - 

Fig. 3 Efict of beam slenderness on the relative importance of bend- 
ing-shear coupling and transverse shear flexibility for tip deflection. 

mations: (1) without transverse shear flexibility and (2) without 
bending-shear coupling. Both are normalized by the correct tip 
deflection from Eq. (34). Neglecting only the direct transverse 
shear flexibility is seen to be inconsequential for slender beams 
since, as the length to diameter ratio increases, the normalized 
displacement tends toward unity. On the other hand, if only 
the bending-shear coupling is neglected, we see about a 50 
percent reduction in the displacement which is independent of 
the slenderness! 

Also shown in Fig. 3 is the lateral displacement Vnormalized 
by W. Unless the beam is extremely slender, the presence of 
bending-shear coupling is seen to induce non-neglible lateral 
displacements. In light of the importance of the lead-lag de- 
flection and flap-lag elastic coupling in rotor blade stability 
problems (e.g., see Ref. 12). this would appear to be another 
reason to include bending-shear coupling. 

Fig. 4 shows the magnitude of coupling C$5 normalized with 
C2,C5,. (For circular cross sections with constant stiffness around 
the cross section, this becomes = A = A%- = 

CnCx CnCe K , , K n  
p.) Here we use the material T30015208 GraphiteIEpoxy with 
the following properties: E , ,  = 21.3 X lo6 psi, E,, = 1.6 
x lo6 psi, v,, = 0.28, and G , ,  = 0.9 x lo6 psi. It is seen 
that the balanced construction does not exhibit any coupling. 
On the other hand, a single ply gives maximum coupling around 

0 30 60 90 

Orientation Angle 

Fig. 4 Variation of normalized bending-shear coupling parameter 

with respect to ply angle. 
cz,cs 

0 = 23 deg. Any model which ignores that amount of bending- 
shear coupling will be off by at least a factor of 2 in predicting 
the deflections. As 0 increases beyond 23 deg the amount of 
coupling decreases. The CUS construction gives a symmetric 
distribution about 0 = 45 deg at which no coupling exists. 
The maxima are reached around 23 deg and 67 deg. After its 
maxima, the amount of coupling decays more rapidly than in 
the single ply case. 

Torsional Warping Rigidity 
We now turn to another nonclassical effect, the influence of 

torsional warping rigidity. In order to proceed, we first need 
to calculate the solution of the coupled warping-torsion-exten- 
sion equation. Then, the effect of the warping stiffness on the 
behavior of a cantilevered box beam will be examined. 

Determination of Twist Distribution 
Consider a beam subjected to a discrete twisting moment, 

M:, at the free end with no axial force, implying that N = 0. 
Set m, = q, = q, ,  = 0. Taking the twisting moment equilib- 
riumequation, the fourth of Eqs. (1 I), and writing themoments 
in terms of kinematical quantities by using the stiffness matrix, 
one obtains 

M.: = C T ~ , ~  - c77+,.ztr (35) 

Here the effective torsional stiffness (for zero axial force) is 
given by 

where p = A%- 
KI I Kzz' 

The boundary conditions arise naturally from the principle 
of virtual work. Atx = 0 the rotation and warping displacement 
are restrained so that + = +,, = 0, and at x = L the warping 
is free so that +,, = 0. The classical solution is the particular 
solution of Eq. (35) or 

where 5 = f .  With restrained warping, the general solution 

has the form 

where the homogeneous solution +,,,can be expressed in terms 
of exponentials 

+,,, = cOIe-At + ~ i 2 ) ~ " F  + COI (39) 

Here h is a decay length parameter given by 

A large value of A indicates rapid decay of the solution as the 
distance from the end increases. Evaluation of the constants 
from the boundary conditions yields 
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Assuming that e k <  I (which is tru; for practical situations), 
Eq. (41) reduces to 

It can easily be seen that the tip rotation is 

Thus, the classical tip rotation is reduced by a factor related 
to the decay length. If A >> 1, then the effect is insignificant; 
but if A is, for instance, less than 25, the tip rotation can be 
significantly reduced. 

Influence of Warping Stiffness for Box Beams 
Now that the solution is known in terms of A, we shall 

determine the value of A for the cross section under consid- 
eration. For the sake of simplicity, suppose that material prop- 
erties do not change over the cross section. To obtain the 
effective torsional stiffness, C,, given in Eq. (36), we use C l l ,  
Ct4, and Cq4which results in 

For the rectangular cross section (Fig. 5) being used 

where 2b is the height of the cross section, 2a is the width, 
and a = bla. For the rectangular cross section the warping 
stiffness becomes 

Thus, AZ is then found for the rectangular cross section as 

where u = -is a slenderness parameter. The solution for the 
Za 

twist, given in Eq. (42), is identical to that obtained in classical 
theories for isotropic beams; only the value of the parameter 
h i s  different. Indeed, for isotropic materials one finds that Eq. 
47 reduces to 

G 48u2 
A 2  = - - (isotropic case) 

E (1 - (48) 

which agrees with the result obtained by Von Karman and 
Christensen (Ref. 13).** 

**A slightly different result was determined by Benscoter (Ref. 14). 

The grealest difference between the theories of Refs. 7 and 8 occurs when 
the cross section is square (a = I ) ,  which is the value of a for which the 
warping displacement and stress vanish at every paint in the cross section. 
A limited numerical study in Ref. 15 suggests that the differences between 
these two theories are not very great. 
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It should be observed that A2, can be conveniently regarded 
as a product of "material" and "geometric" parts as long as 
stiffnesses are uniform around the cross section. Thus, Eq. (47) 
can be written as 

The geometric part, A,, i s  the same for both orthotropic and 
isotropic beams. However, the material part, A,,,, is different. 
Figure 6 shows how A,,, changes with fiber orientation. The 
material used in Fig. 6 is T30015208 GraphitelEpoxy. In Fig. 
7 the variation of A, is shown with respect to slenderness pa- 
rameter and the breadth of the cross section. For a given box 
beam, the boundary layer parameter can be found by multi- 
plication of the numbers coming from Figs. 6 and 7. 

Because A is relatively large for slender, thin-walled box 
beams made of isotropic materials, it is well known that the 
effects of warping are not very important in such beams. For 
example, a thin-walled beam with the geometry depicted in 

E F i g . 5 , w i t h - = 2 . 5 , a  = 0 . 2 5 , a n d u =  10,hasX=58.42.  
G 

Here, warping makes a difference of only 1.7 percent in the 
tip rotation due to twist. 

On the other hand, A can be much smaller for certain com- 
posite beams, giving the "boundary layer" effect more sig- 
nificance. Indeed, for a thin-walled box beam with the same 
geometry as depicted in Fig. 5 ,  with a = 0.25, u = 10, and 
0 = 15 deg, except made of T30015208 GraphiteIEpoxy under 
"normal" conditions, we obtain A = 22.35. In this case, 
warping makes a difference in the tip rotation due to twist of 
approximately 4.5 percent. Consider another box beam section 
with a = 0.1, u = 10, and 0 = 0 deg, made of AS 3501-6 
GraphitelEpoxy with hygrothermal effects. The material prop- 
erties used in the calculation are Ell  = 19.3 X lo6 psi, 
E2, = 0.33 X lo6 psi, v12 = 0.41, and GI2 = 0.25 X lo6 
psi. Thus, A = 8.76, and warping makes a difference in the 
tip rotation due to twist of approximately 11.4 percent. The 
classical and nonclassical twist angle predictions and the bound- 
ary layer effects for these cases can be seen in Fig. 8; here, 
thenormalized twist angle is defined as $$,. The boundary layer 
zone is determined as the distance where the amplitude of the 
twist rate +,f is within 5 percent of the classical twist rate 
(unity). 

T 300 / 5208 and AS 3501-6 
Graphite / Epoxy 
[BIT; t = 0.0055" 

Fig. 5 Schematic of box beam cross section. 
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Fig. 6 Variation of material part of the boundary layer parameter 
A, with respect to ply angle. 

The percentage reduction in twist angle at the tip increases 
for beams for smaller values of a. We hereby conclude from 
this that restrained torsional warning can affect certain elobal , - - 
deformation results. Extremely small values of such parameters 
as the slenderness LI2a. the thickness ratio a. the material ratio 
KZ2IK,,, and ply angle'8 being chosen to gi"e a small h,, can 
result in a value for A that influences the tip rotation in a 
significant way. Thus, this effcct should be wcighcd carefully 
before being excluded from composite rotor blade analyses. 

Concluding Remarks 
Two main conclusions have been drawn in the present work: 

1. In structural models designed for extension-twist coupling 
(the circumferentially uniform stiffness case), an important de- 
gree of bending-shear coupling is present which causes the 
structure to he significantly more flexible in bending than it 
would be if the coupling were ignored. In light of possible uses 
of extension-twist coupling in future designs, effects such as 
coupling between bending and shear deformation must be pres- 

PI - 
0 10 20  30 40 SO 

Slenderness Ratio 

Fig. 7 Variation of geometric part of the boundary layer parameter 
As with respect to ply angle. 

1.01 No Warping Rigidily 1 

Normalized Axial Coordinate 

Fig. 8 Variation of normalized twist angle with respect to the axial 
coordinate for various values of A. 

ent in any general-purpose analysis. It is further observed that, 
without the presence of shear deformation in the kinematics, 
the proper form of the coupling terms in the flexibility matrix 
cannot be obtained. The influence of this coupling is far more 
significant in the case analyzed than the direct (Timoshenko) 
cffcct of transverse shear flexibility and is independent of the 
slenderness of the beam. This coupling also induces an elastic 
"flap-lag" type coupling thc influence of which on rotor blade 
stability is well known. Finally, even the direct shear flexibility 
term may not be negligible for the composite case in general, 
because there are materials for which the shear modulus may 
be much.smaller than the extension modulus (i.e.. K,, << . . a< 

K3t). 
2. Torsional warping is found to be significant enough to 

warrant its inclusion in composite beam analyses in certain 
circumstances. A boundary laycr parameter caused by the re- 
strained warping at the ends is identified. Although this pa- 
rameter is relatively large for slender, thin-walled beams made 
of isotropic materials, it can be much smaller for composite 
beams. A smaller boundary layer parameter yields longer dccay 
length, along which the end effects prevail and stiffen the 
structure. Thus, the smaller this parameter the larger the e m r  
in the twist angle predictions. In some rather unusual cases, 
the error in thc twist angle predictions at the tip can rcacb more 
than 10 percent. Therefore, inclusion in the cross sectional 
stiffness matrix of the torsional warping rigidity, which stems 
from the inclusion of an additional variable to the kinematical 
field, would be important for certain laminated structures. 
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