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1. 

Many problems can be solved approximately through the minimization of Rayleigh’s
quotient, which is equivalent to an ordinary differential equation (ODE) and associated
boundary conditions that govern the eigenvalue (say, a free-vibration frequency or
buckling load) and the ‘‘mode shape’’ associated therewith. In addition to this, there are
many other problems for which one-term approximations are both helpful and sufficiently
accurate; see, for example, the non-linear examples in reference [1]. To illustrate the
methods discussed in this note, however, it is sufficient to consider only that class of
problems which can be treated with Rayleigh’s quotient. These two methods are Rayleigh’s
quotient with a free parameter and the method of Stodola and Vianello. Since they are
not mutually exclusive, one can sometimes apply both methods simultaneously to obtain
outstanding results.

2. ’     

The idea of introducing a free parameter into the usual Rayleigh quotient approach is
quite straightforward. One starts with a two-term approximation for the mode shape.
However, since the amplitude of the mode shape is arbitrary, it is possible to divide the
two-term approximation by either of the undetermined coefficients. This leaves a single
unknown coefficient, say a (referred to below as a ‘‘free parameter’’) in the approximate
mode shape. Rayleigh’s quotient then becomes a ratio of two quadratic polynomials in
a, which can be minimized with respect to a. The minimum value of this ratio with respect
to a is an improved result versus the value with a=0. The usual means of treating
Rayleigh’s quotient in most textbook treatments has no free parameter. However, some
texts do treat the free parameter method in their problems. For example, reference [2], in
problem 12–10 on p. 410, calls for a Rayleigh’s quotient with free parameter for a beam
on flexible supports. Similarly, reference [3] does the same for problem 7·3, p. 298, for a
shaft in torsion. Although not addressed herein, it is noted that this technique also has
applications for discrete problems. Finally, it is shown herein how this method can be used
to overcome one of the apparent shortcomings of one-term approximations via Rayleigh’s
quotient—that of using comparison functions for problems which have frequency-depen-
dent boundary conditions.

3.      

Modern references to the method of Stodola and Vianello are not common; see, for
example, reference [4, 5]. There is a short historical summary in reference [6]. Apparently,
this method was applied to technical eigenvalue problems involving continuous systems
independently around the turn of the century by Vianello in 1898 and Stodola in 1903.
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If the governing ODE can be solved explicitly for the highest spatial derivative of the
unknown mode shape in terms of the mode shape itself and/or some or all of its lower
derivatives, then the method of Stodola and Vianello can be applied. The method is
executed by substituting an admissible function in place of the mode shape on the right
side of this equation. If one can integrate the equation in closed form, the result is a
comparison function and a lower bound approximation of the fundamental frequency. If
the same procedure is carried out by substitution of a comparison function into the right
side, the result will then be an improved comparison function. Obviously, then, the method
can be used to develop a sequence of comparison functions, each one of which will be closer
to the exact solution than the one before. The method is not limited to eigenvalue
problems; indeed, a non-linear equation is treated in reference [1]. For non-linear
problems, and even for certain linear ones, the functions can become quite complicated
after only a few iterations. Nevertheless, only one or two iterations are normally necessary
to obtain results of engineering accuracy, and the whole process is easily automated by
means of symbolic manipulation software, such as Mathematica. For linear equations,
each step is no more complicated than solving for the static deflection. It should be noted
that, while the usual application of the method provides a lower bound of the eigenvalue
at every iteration, the use of the mode shape in Rayleigh’s quotient gives an upper bound
on the eigenvalue that is much more accurate than the lower bound.

4. 

In this section a variety of problems will be solved by both methods presented above
and, in some cases, by a combination of the two methods. The intent is not to solve
problems that have not been solved before but to present approximate solutions to certain
non-trivial but well understood problems to give an idea of the power of the methods.

4.1. Rayleigh’s quotient with a free parameter

4.1.1. Cantilevered beam. As a first illustration of the method, let us consider a uniform
cantilevered beam. Recall that the ODE f2= b4f describes the mode shape of a vibrating
beam, where b4 =v2ml4/EI is an unknown constant that depends on the natural
frequency v and ( )' denotes the derivative with respect to the axial co-ordinate x of
the beam made dimensionless by the length l. For the cantilevered case we have
f(0)=f'(0)=f0(1)=f1(1)=0.

The dimensionless Rayleigh quotient for a vibrating beam is

R=
f1

0 f02 dx
f1

0 f2 dx
, (1)

which provides an upper bound for b4. The simplest admissible function for this problem
is f= x2, which yields from Rayleigh’s quotient an approximate natural frequency of
v=z20zEI/ml4 =4·4721 . . . zEI/ml4, compared with the exact value of
v=3·51601526850015118 . . . zEI/ml4 .

Now, let us consider adding a free parameter, so that f= x2 + ax3, for example.
Rayleigh’s quotient in this case turns out to be a rational function of a given by

R=
(4+12a+12a2)

015+
a
3

+
a2

71
. (2)
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This function can be minimized with respect to a yielding

min(R)=12(51−8z39), (3)

providing the approximation v=3·53273 . . . zEI/ml4, which is much closer to the exact
solution.

The same sort of improvement can be found when the starting point is a comparison
function. For example, consider the simplest possible polynomial comparison function
with one free parameter:

f=
x2

6
(6a+20x−14ax−20x2 +11ax2 +6x3 −3ax3). (4)

which yields, for Rayleigh’s quotient,

R=594 0 100−30a+11a2

3260+326a+23a21 , (5)

the minimum of which is

min(R)=
30
163

(1435−4z116935). (6)

This leads to an approximate natural frequency of v=3·516035 . . . zEI/ml4 in agreement
to five places with the exact solution.

4.1.2. Beam simply supported at left end with a roller and discrete mass at the right end.

One of the challenges to using simple one-term approximations is what to do when,
because of the boundary conditions, the unknown represented by the quotient itself (the
natural frequency) appears in a comparison function. Consider a beam with simply
supported boundary conditions at the left end such that f(0)=f0(0)=0. At the right end,
impose the condition that the slope remains zero while the part of the mechanism that
imposes this conditions, which moves with the beam end, has mass mml. The boundary
conditions at the right end are thus f'(1)=f1(1)+ mb4f(1)=0. For this problem, the
Rayleigh quotient has the form

R=
f1

0 f02 dx
f1

0 f2 dx+ mf2(1)
, (7)

which, again, provides an upper bound for b4. Notice, however, that the value of b4 appears
in one of the boundary conditions, and will thus appear in any comparison function.
Therefore, it would appear on both the left and right sides of the expression for Rayleigh’s
quotient (on the left side as part of the Rayleigh quotient itself), thus introducing an
uncertainty into how to use it.

The simplest polynomial admissible function for this problem, satisfying only
f(0)=f'(1)=0, is f=2x− x2. This yields from Rayleigh’s quotient an approximate
natural frequency of v=z60/(8+15m)zEI/ml4 which, for m=1 yields
v=1·6151457 . . . zEI/ml4, compared with the exact value of 1·4198994 . . .zEI/ml4. For
m=10 the frequency is v=0·616236 . . . zEI/ml4 compared with the exact solution
v=0·534878 . . . zEI/ml4.
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With a free parameter, the simplest admissible function (with the same boundary
conditions satisfied as before) becomes f= x(2+3a− x− ax2) and results in a
dimensionless Rayleigh quotient of

R=8400 1+3a+3a2

112+427a+408a2 +210m+840am+840a2m1 . (8)

When minimized with respect to a, the numerical values for m=1 and m=10, respectively,
yield approximate frequencies v=1·42050 . . . zEI/ml4 and v=0·5348827 . . . zEI/ml4.
These agree with the exact solution to within four to five places.

Still better results are obtained with the simplest polynomial admissible func-
tion that satisfies both geometric boundary conditions and the zero bending
moment at x=0, augmented with a free parameter. That function is
f= x/30(48− a−24x2 +3ax2 +6x3 −2ax3). Rayleigh’s quotient is

R=45360 384−6a+ a2

285 696+567 000m−3489a+19a21 . (9)

Minimization with respect to a yields numerical values for v which, for m=1 and m=10,
respectively, are v=1·41992098 . . . zEI/ml4 and v=0·534878387 . . . zEI/ml4. These
agree with the exact solution to six places—amazing accuracy for such a simple one-term
approximation.

Note that this last result is identical to that which would be obtained were the simplest
polynomial comparison function used, in which the frequency appears explicitly. This way,
it also appears explicitly in the Rayleigh quotient; this last answer is obtained when the
expression for Rayleigh’s quotient (i.e., the right side) is minimized with respect to the
frequency as a parameter (see the treatment of the rotating beam below for a similar result).

4.2. The Stodola and Vianello method

4.2.1. Hanging cord. First, let us consider the free vibration of a uniform, inextensible cord
of length l, hanging vertically under the influence of its own weight. The governing
equation and boundary conditions are derived in [7] as

[(1− x)f']'+v2f=0, (10)

where f is the mode shape for the lateral deflection of the cord, v2 = l2l/g, where v is
the dimensionless natural frequency, l is the dimensional natural frequency, and g is the
acceleration of gravity. The geometric boundary condition is that f(0)=0, and the natural
boundary condition is simply that the solution is bounded at x=1. The solution is found
in reference [7] as

f=J0(2vz1− x), (11)

where J0 is the Bessel function of the first kind of order zero. The exact value of the
eigenvalue is found to be v=J−1

0 (0)/2=1·202412 . . .
We look for a one-term approximation of the mode shape, f, such that f(1)=1. The

dimensionless Rayleigh’s quotient for this problem is

R=
f1

0(1− x)f'2 dx
f1

0f
2 dx

, (12)
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which serves as an upper bound for v2. The simplest admissible function is f= x,
for which v=zR=z3

2 =1·22474 . . .
In accordance with the method of Stodola and Vianello, one sets

[(1− x)f']'=−v2f (13)

and integrates twice to obtain

f=v2 g
x

0

1
1− j g

1

j

f(h) dh dj, (14)

Note that use of this equation in the iterative sense described above is equivalent to setting

[(1− x)f'i+1]'=−v2fi , (15)

subject to fi+1(0)=0 and fi+1(1)=1, where f1(x) is any admissible function. This is
equivalent to finding the unknown static transverse deflection of the cord, fi+1, given a
known static load=−v2fi . Using the simplest polynomial admissible function f1 = x on
the right side of equation (15) yields a comparison function f2 which, when normalized
(by dividing by 3

4) so that f2(1)=1, is

f2 =
x
3

(2+ x). (16)

As can easily be shown, this comparison function yields v=zR=z55
38 =1·20307 . . . ,

which is an upper bound to the eigenvalue. Alternatively, one may obtain a lower bound
by taking the inverse of the square root of the normalization factor at each step. For
this step, the lower bound is 2z3/3=1·1547 . . .

Using f2 on the right side of equation (15) yields a new comparison function f3 which,
when normalized so that f3(1)=1, is

f3 =
x
19

(12+6x+ x2). (17)

For f3, v=zR=z3311/2290=1·20244 . . . The lower bound obtained is
z27

19 =1·192079 . . . It is obvious that both upper and lower bounds are converging to the
exact solution, but the upper bound is more accurate. A plot of the relative error for both
bounds is shown in Figure 1 indicating that both approximately follow a straight line on
a semi-log plot. Thus, the relative error for the Rayleigh quotient associated with fi is quite

Figure 1. Log10 of the relative error of the upper and lower bounds versus iteration number for hanging cord
problem. Q, Upper bound; W, lower bound.
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close to 10−(0·33+1·45i), while the lower bound relative error is near 100·057−0·71i, the straight
lines shown in Figure 1. Note that for the eighth iteration the upper bound provides
12-place accuracy! One can make the relative error as small as desired by executing an
appropriate number of iterations. It is emphasized here, however, that these are all
one-term approximations, all polynomials, and quite easy to obtain using Mathematica or
other symbolic manipulation software. (As upper bounds are generally more accurate, only
they will be shown for subsequent results.)

4.2.2. Cantilevered beam. Similarly, one can take the formula for a freely vibrating
cantilevered beam and construct a scheme to improve the comparison functions iteratively.
Recall from above that the ODE f2= b4f describes the mode shape of a vibrating beam.
For the cantilever case we have f(0)=f'(0)=f0(1)=f1(1)=0. The analog of equation
(15) is then

f2i+1 = b4fi , (18)

where fi+1(1)=1 is imposed. Note that the imposition of fi+1(1)=1 has the effect of
removing the constant b from the approximate mode shapes. As with the cord, the
computational effort with each iteration of the method is equivalent to solving for the static
deflection under a known load.

The dimensionless Rayleigh’s quotient for a vibrating beam is

R=
f1

0 f02 dx
f1

0 f2 dx
, (19)

which provides an upper bound for b4. The simplest admissible function is f= x2,
which yields from Rayleigh’s quotient an approximate natural frequency of v

=z20zEI/ml4 =4·4721 . . . zEI/ml4, compared with the exact value of
3·51601526 . . . zEI/ml4.

Now, substituting f1 = x2 into equation (18) and imposing the boundary conditions and
f2(1)=1, one finds that

f2 =
x2

26
(45−20x+ x4). (20)

This comparison function yields a Rayleigh quotient approximation of the natural
frequency of v=z47 320/3827zEI/ml4 =3·516358 . . . zEI/ml4, which is much closer
to the exact solution.

Now, substituting f2 into equation (18) and imposing the boundary conditions and
f3(1)=1, one finds that

f3 =
x2

10 576
(18 585−8520x+630x4 −120x5 + x8), (21)

which yields a Rayleigh quotient approximation of v=z806 181 180/65 212 537
zEI/ml4 =3·51601548 . . . zEI/ml4, which is in agreement with the exact solution to
seven places! A plot of the relative error versus iteration number for the cantilever beam
is shown in Figure 2. The relative error lies very close to the straight line on the semi-log
plot, given by 102·57−3·24i. In other words, approximately 13-place accuracy is found on the
fifth iteration! As before, these are all one-term approximations, all polynomials, and all
quite easy to obtain using symbolic manipulation software.

4.2.3. Cantilevered beam with discontinuous properties. Consider a cantilevered beam
with bending stiffness EI=EI1 and mass per unit length m=m1 in the segment 0E xE x*
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Figure 2. Log10 of the relative error of the upper bound versus the iteration number for the cantilevered beam
problem.

and bending stiffness EI=EI2 and mass per unit length m=m2 in the segment x*Q xE 1,
where x is the length co-ordinate normalized by the total length l of the beam. For simple
harmonic motion, the equation of motion reduces to the ODE governing the mode shape
f, given by

(EIf0)0=mv2l4f. (22)

Rayleigh’s quotient for a vibrating discontinuous beam with properties as described
above is

R=
f1

0EIf02 dx
l4f1

0mf2 dx
. (23)

For the case EI2 =2EI1, m2 =2m1, and x*= 1
2, and for the simplest admissible function

f= x2, one obtains an approximate frequency of free vibration of v=zR=8z5/21
zEI1/m1l4 =3·9036 . . . zEI1/m1l4, which is in error by over 50% relative to the exact
solution of v=2·55234722 . . . zEI1/m1l4.

Equation (22) can be set up as an iterative scheme:

(EIf0i+1)0=mv2l4fi , (24)

where the simplest admissible function f1 = x2 can be used to start the procedure. One
must impose the same boundary conditions as given above for the uniform cantilevered
beam plus continuity conditions on displacement, slope, bending moment and shear force
at the discontinuity point x= x*. In principle, this procedure could be carried out for any
number of segments, since each iteration is no more difficult than solving a static
equilibrium deflection for a given load. Again, for the case EI2 =2EI1, m2 =2m1, and
x*= 1

2, one obtains

f2 =
4x2

3129
(1395−600x+16x4), xE x*; (25)

f2 =
1

3129
(−395+1860x+2880x2 −1280x3 +64x6), xq x*. (26)

The Rayleigh quotient for a vibrating discontinuous beam with properties as
described above yields an approximate frequency of free vibration of v=zR

=8z90 436 710/888 361 469zEI1/m1l4 =2·552510 . . . zEI1/m1l4, which agrees to four
places with the exact solution.
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The comparison function f2 can now be used to continue the procedure. For the same
case, EI2 =2EI1, m2 =2m1, and x*= 1

2, one obtains

f3 =
4x2

38 677 129
(17 447 535−7 705 200x+312 480x4 −57 600x5 +256x8), xE x*,

(27)

f3 =
1

38 677 129
(−4 839 315+22 919 100x+36 066 240x2 −15 914 880x3

−1 327 200x4 +1 249 920x5 +645 120x6 −122 880x7 +1024x10), xq x*. (28)

Rayleigh’s quotient for f3 yields an approximate frequency of free vibration of
v=zR=24z41 127 420 573 060 870/3 636 423 294 69 684 203zEI1/m1l4 =2·55234726
. . . zEI1/m1l4, which agrees with the exact solution to about eight places. The same trend
as before, approximately linear on a semi-log plot, is thus exhibited.

4.2.4. Continuous beam with simple supports at the left end and mid-span. The ODE
that governs the mode shape and the expression for Rayleigh’s quotient are the
same as those for the cantilevered beam. The boundary conditions are
f(0)=f0(0)=f0(1)=f1(1)=0. In addition to this, the displacement vanishes at x= 1

2,
resulting in f(1

2)=0. Finally, slope and bending moment are continuous at x= 1
2. The

first approximation, using the simplest admissible function f= x(1
2 − x) is off by 20%,

but with the next iteration one obtains a relative error nearly five orders of magnitude
lower! Solution by the Stodola–Vianello method yields excellent convergence to the exact
solution of v=9·07112547 . . . zEI/ml4. The third iteration gives eight-place accuracy,
while the fifth iteration yields 14-place accuracy! The convergence trend is shown in
Figure 3 and lies fairly close to the straight-line approximation 102·17−3·24i, also shown.

4.2.5. Rotating cantilevered beam. Accurate estimates of the natural frequencies of
rotating beams can be challenging to obtain, especially for rapidly spinning beams [8]. The
main obstacle involves rapidly varying displacement near the root of the beam. It is
expected that polynomial approximations will have difficulty. It is interesting to see how
well the present one-term approximation can do. The ODE for the mode shape is

(EIf0)0−(Tf')'−mv2f=0, (29)

Figure 3. Log10 of the relative error of the upper bound versus the iteration number for the continuous beam
problem.
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where T=V2l2f1
xmj dh, V is the angular speed of the frame to which the beam is attached

at its root, and v is the natural frequency of free vibration. For a uniform beam this
reduces to T=mV2l2(1− x2)/2. Rayleigh’s quotient for such a beam is given by

R=
f1

0(EIf02 +Tf'2) dx
l4f1

0mf2 dx
. (30)

Using the simplest possible admissible function, f= x2, one obtains v=zR

=z20zEI/ml4 +4V2/3 as the natural frequency from Rayleigh’s quotient. The first term
is the natural frequency of the same beam, but non-rotating; and the second term reflects
the effect of rotation. The exact solution, found in reference [9], is a complicated function
of mV2l4/EI. Naturally, it is the same as for the non-rotating cantilevered beam for V=0,
given by v=3·516015268 . . . zEI/ml4. For mV2l4/EI=100 the result is
v=11·2023 . . . zEI/ml4.

It is now possible to use

(EIf0i+1)0=(Tf'i )'+mv2fi (31)

as an iterative procedure, with f1 = x2, to obtain a comparison function and a more
accurate approximation for the natural frequency:

f2 =
x2

26v2 −33V2 (45v2 −45V2 −20v2x+15V2x2 +v2x4 −3V2x4). (32)

Unfortunately, one does not know v; that is to be found from the Rayleigh quotient. There
are at least three ways in which one could calculate the natural frequency at this point:
(1) find the value of v2 that minimizes the Rayleigh quotient; (2) set the Rayleigh quotient
equal to v2 and solve the resulting equation for v2; (3) substitute the value from (1) back
into the Rayleigh quotient to obtain the minimum value of the Rayleigh quotient.

The first method does not actually use the minimum value of the Rayleigh quotient; as
expected, its results are very poor, and it is clear that one should never view the value of
v2 that minimizes the quotient as a good approximation of the frequency. The second
method yields much better results than the first, but results from both the first and second
methods are inferior to those of the third. Note that the third method is equivalent to
substituting v2 = aV2 and minimizing the Rayleigh quotient with respect to a. Note that
here, however, unlike the situation above with the pinned roller – discrete mass boundary
condition, the free parameter is a natural consequence of applying the Stodola–Vianello
method. Although easily obtained, the result is a complicated function of V. The
approximate natural frequency agrees with the exact solution to about six places for V=0
and deteriorates as V increases; the agreement is about three places at mV2l4/EI=100.
Additional iterations can be carried out, but are not reported here. The deterioration in
accuracy with increasing V is expected [8], but engineering accuracy is still obtained.

5.  

Two methods for obtaining excellent results based on one-term approximations via
Rayleigh’s quotient are described, along with their applications. A combination of these
methods can be used to obtain accurate results for a wide class of problems as well. After
a few iterations, depending on the starting function, the Stodola–Vianello method
sometimes leads to overly complicated formulae, so that symbolic manipulation software
may become bogged down. At this point, the addition of a free parameter may be helpful
to provide a more accurate answer. Similarly, an existing admissible or comparison
function with a free parameter can often be easily improved by using one iteration of the
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Stodola–Vianello method. Recall that the usual application of the Stodola–Vianello
method gives a lower bound of the eigenvalue at every iteration. However, as shown herein,
use of the resulting improved functions in Rayleigh’s quotient gives an upper bound on
the frequency with an accuracy better than that of the lower bound obtained directly by
the method itself. Finally, sometimes the unknown eigenvalue shows up in the approximate
mode shape; results obtained herein indicate that it needs to be considered as a free
parameter in order to obtain the most accurate results. Since both of these methods, and
their combination, are straightforward to apply, authors of textbook descriptions of
Rayleigh’s quotient are urged to include a treatment of them.
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