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Abstract

An accurate stress/strain recovery procedure for laminated, composite plates that can be implemented in standard

finite element programs is developed. The formulation is based on an asymptotic analysis and starts from a three-

dimensional, anisotropic elasticity problem that takes all possible deformation into account. After a change of variable,

which introduces intrinsic two-dimensional description for the deformation of the reference plane, the variational as-

ymptotic method is then used to rigorously split this three-dimensional problem into two reduced-dimensional prob-

lems: a nonlinear, two-dimensional analysis of the reference surface of the deformed plate (an equivalent single-layer

plate model), and a linear, one-dimensional analysis of the normal-line element through the thickness. The latter is

solved by a one-dimensional finite element method and provides a constitutive law between the generalized, two-

dimensional strains and stress resultants for the plate analysis, and a set of recovering relations to approximately ex-

press the three-dimensional displacement, strain and stress fields in terms of two-dimensional variables determined from

solving the equations of the plate analysis. The strain energy functional that is asymptotically correct through the

second-order in the small parameters is then cast into the form of Reissner�s theory. Although it is not in general

possible to construct an asymptotically correct Reissner-like composite plate theory, an optimization procedure is used

to drive the present theory as close as possible to being asymptotically correct, while maintaining the simplicity and

beauty of the Reissner-like formulation. A computer program based on the present procedure, called variational as-

ymptotic plate and shell analysis, has been developed. Its utility is demonstrated by inserting the recovery procedure

into the plate element of a general-purpose finite element code. Numerical results obtained for a variety of laminated,

composite plates show that three-dimensional field variables recovered from the present theory agree very well with

those from exact solutions.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although composite materials have found increasing

applications in aerospace engineering due to their su-

perior engineering properties and enhanced manufac-

turing technology, their application is not so extensive as

one could expect. One reason is that treatment of com-

posite materials greatly complicates structural analysis.

The old tools used for design of structures made of

isotropic materials are no longer suitable for analyzing

composite structures. Although many new models have

appeared in the literature, design engineers have been

reluctant to accept them with confidence. This is partly

because many new models are constructed for specific

problems without generalization in mind and partly

because some models are too complicated and compu-

tationally inefficient to be used for design purposes.

Simple yet efficient and generalized methods of analysis

are still needed to shorten the design period and reduce

the cost of composite structures.

Many engineering structures made with composite

materials are flat panels having one dimension much

smaller than the other two and can be modeled as plates.* Corresponding author.
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Plate models are generally derived from three-dimen-

sional (3-D) elasticity theory, making use of an as-

sumption that the plate is thin in some sense. The

simplest composite plate theory is the classical lamina-

tion theory, which is based on the Kirchhoff hypothesis.

It is well known, however, that composite plates do not

have to be very thick in order for this theory to yield

extremely poor results compared to the actual 3-D

solution.

Although it is plausible to take into account the

smallness of the thickness of such structures, construc-

tion of an accurate two-dimensional (2-D) model for a 3-

D body still introduces a lot of challenges. There have

been many attempts to rationally improve upon the

classical model, almost all of which have serious short-

comings. One will appreciate this by reading several

recent review papers [1–3]. Most of the models that have

appeared in the literature [4–7] are based on ad hoc ki-

nematic assumptions that cannot be reasonably justified

for composite structures, such as an a priori distribution

of displacement through the thickness.

From a mathematical point of view, the approxi-

mation in this dimensional reduction process stems from

elimination of the thickness coordinate from the inde-

pendent variables of the governing partial differential

equations of equilibrium. This sort of approximation is

inevitable if one wants to take advantage of the small-

ness of the thickness to simplify the analysis. However,

other approximations that are not absolutely necessary

should be avoided. For example, for small-strain anal-

ysis of plates and shells, it is reasonable to assume that

the thickness, h, is small compared to the wavelength of

deformation of the reference surface, l. However, it is

not at all reasonable to assume a priori some ad hoc

displacement field, although that is the way most plate

theories are constructed.

In this paper we will proceed in a very different

manner. We first cast the original 3-D elasticity problem

in a form that introduces intrinsic variables for the plate.

This can be done in such a way as to be applicable for

arbitrarily large displacement and global rotation, sub-

ject only to the strain being small [8,9]. Then, a sys-

tematic approach can be employed to reduce the

dimensionality in terms of the smallness of h=l. The

present work uses the variational asymptotic method

(VAM) [10] to split the original nonlinear 3-D elasticity

problem into a linear, one-dimensional (1-D), normal-

line analysis, and a nonlinear, 2-D, plate analysis. The

normal-line analysis produces the 2-D constitutive law

to be used in the 2-D plate analysis, along with recov-

ering relations that yield the 3-D displacement, strain

and stress fields using results obtained from the solution

of the 2-D problem. The resulting 2-D plate theory is a

geometrically exact, equivalent single-layer theory in

which the only generalized strains are three in-plane

membrane strains, three out-of-plane curvature strains

and two transverse shear strains. Such 2-D theories are

termed herein as ‘‘Reissner-like’’. However, this paper

does not focus on the resulting 2-D theory, but instead

on the through-the-thickness analysis. For this reason,

there is no need to review here the extensive collection of

published papers on 2-D plate theories. A detailed ex-

position of the 2-D theory implied by the dimensional

reduction herein, and how it relates to existing 2-D

theories can be found in [9].

The present work builds on previous work in [11–13].

This paper goes beyond [11] in three main ways:

(1) The total energy is included in the present formula-

tion while only the strain energy was dealt with in

[11].

(2) Transverse shear strain measures are introduced

from the very beginning to obtain a Reissner-like

model in [11]. On the other hand, in the present

work the asymptotically correct refined energy is

first obtained and then fit into a Reissner-like plate

model.

(3) A troublesome interaction term was dropped for

convenience in [11], which causes the method intro-

duced there to only give accurate results for homo-

geneous plates. Herein an optimization procedure

is adopted here to derive the desired Reissner-like

plate model as close to being asymptotically correct

as possible.

The present approach differs the work of [12,13] at

least in the following three aspects:

(1) The theory introduced in [12,13] is restricted to be

linear, while the present formulation is in an intrinsic

form which is good for geometrically exact non-

linear analysis.

(2) A general form of the warping field is assumed a pri-

ori in [12,13], and the higher-order warping is used

as a parameter to solve for unknown parameters in

the assumed functions. However, in the present

work the warping field is solved by the usual proce-

dures of the calculus of variations.

(3) The theory of [12,13] requires symbolic manipula-

tion software such as Mathematicae to obtain use-

ful results, and it thus cannot be used in commercial

finite element codes. On the other hand, the present

approach is a completely different solution proce-

dure, one which can be implemented in a 1-D finite

element code (variational asymptotic plate and shell

analysis, VAPAS) and can be easily inserted into the

plate finite element formulations of standard finite

element codes.

The authors note that the present paper is a com-

panion paper to the purely analytical approach pre-

sented in [14]. Herein we use the finite element method to
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solve the normal-line analysis and connect the developed

code, VAPAS, with DYMORE [15] to demonstrate its

utility in standard finite element codes and provide an

efficient and accurate analysis of composite plates.

2. 3-D formulation

A point in the plate can be described by its Cartesian

coordinates xi (see Fig. 1), where xa are two orthogonal

lines in the reference plane and x3 is the normal coor-

dinate. (Here and throughout the paper, Greek indices

assume values 1 and 2 while Latin indices assume 1, 2,

and 3. Repeated indices are summed over their range

except where explicitly indicated.) Letting bi denote the

unit vector along xi for the undeformed plate, one can

then describe the position of any material point in the

undeformed configuration by its position vector r̂r from a

fixed point O, such that

r̂rðx1; x2; x3Þ ¼ rðx1; x2Þ þ x3b3 ð1Þ

where r is the position vector from O to the point located

by xa on the reference plane. When the reference surface

of the undeformed plate coincides with its middle sur-

face, it naturally follows that

hr̂rðx1; x2; x3Þi ¼ rðx1; x2Þ ð2Þ

where the angle-brackets denote the definite integral

through the thickness of the plate and will be used

throughout the rest of the development.

When the plate deforms, the particle that had position

vector r̂r in the undeformed state now has position vectorbRR in the deformed plate. The latter can be uniquely de-

termined by the deformation of the 3-D body. Similarly,

another triad Bi is introduced for the deformed config-

uration. Note that the Bi unit vectors are not necessarily

tangent to the coordinates of the deformed plate. The

relation between Bi and bi can be specified by an arbi-

trarily large rotation specified in terms of the matrix of

direction cosines Cðx1; x2Þ so that

Bi ¼ Cijbj Cij ¼ Bi � bj ð3Þ

subject to the requirement that Bi is coincident with bi

when the structure is undeformed. Now the position

vector bRR can be represented as

bRRðx1; x2; x3Þ ¼ Rðx1; x2Þ þ x3B3ðx1; x2Þ
þ wiðx1; x2; x3ÞBiðx1; x2Þ ð4Þ

where wi is the warping of the normal-line element.

These quantities are not assumed, as in most plate the-

ories. Rather, they are treated as unknown 3-D func-

tions and will be solved for later. Eq. (4) is six times

redundant because of the way warping introduced. Six

constraints are needed to make the formulation unique.

The redundancy can be removed by choosing appro-

priate definitions of R and Bi. Similar to the way r is

defined in Eq. (2), one can define R to be the average

position through the thickness. From this it follows that

the warping functions must satisfy the three constraints

hwiðx1; x2; x3Þi ¼ 0 ð5Þ

Another two constraints can be specified by taking B3 as

the normal to the reference surface of the deformed

plate. It should be noted that this choice has nothing to

do with the famous Kirchhoff hypothesis. Indeed, it is

only for convenience in the derivation. In the Kirchhoff

assumption, no local deformation of the transverse

normal is allowed. On the other hand, according to the

present scheme we allow all possible deformation, clas-

sifying all deformation other than that of classical plate

theory as warping, which is assumed to be small and to

be solved by the VAM. This assumption is valid if the

strain is small and the local rotation (i.e., the rotation of

the normal line due to warping) is of the order of the

strain or smaller [16].

Based on the concept of decomposition of rotation

tensor [8,16], the Jauman–Biot–Cauchy strain compo-

nents for small local rotation are given by

Cij ¼ 1
2
ðFij þ FjiÞ � dij ð6Þ

where Fij is the mixed-basis component of the defor-

mation gradient tensor such that

Fij ¼ Bi �Gkg
k � bj ð7Þ

Here Gk ¼ obRR=oxi is the covariant basis vector of the

deformed configuration and gk the contravariant base

vector of the undeformed configuration and gk ¼ gk ¼
bk . One can obtain Gk with the help of the definition of

so-called generalized 2-D strains [11] given byFig. 1. Schematic of plate deformation.
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R;a ¼ Ba þ eabBb ð8Þ

and

Bi;a ¼ ð�KabBb 	 B3 þ Ka3B3Þ 	 Bi ð9Þ

where eab and Kab are the 2-D generalized strains and

ð Þ;a ¼ oð Þ=oxa. There are no transverse shear strains

appearing in Eq. (8) because we constrain B3 to be

normal to the reference surface of the deformed plate.

As mentioned previously, this serves the purpose of

obtaining an asymptotically correct energy up to the

second-order. However, the transverse shear deforma-

tion is allowed, and its effects are included in the

warping field. One is free to set e12 ¼ e21, i.e.

B1 � R;2 ¼ B2 � R;1 ð10Þ

which can serve as another constraint to specify the

deformed configuration.

With the assumption that the strain is small com-

pared to unity, which has the effect of removing all the

terms that are products of the warping and the gener-

alized strains, one can express the 3-D strain field as

C ¼ Chw þ C��þ Cl1w;1 þ Cl2w;2 ð11Þ

where

C ¼ bC11 2C12 C22 2C13 2C23 C33 cT ð12Þ

w ¼ bw1 w2 w3 cT ð13Þ

� ¼ b e11 2e12 e22 K11 K12 þ K21 K22 cT ð14Þ

and all the operators are defined as:

Ch ¼

0 0 0

0 0 0

0 0 0
o
ox3

0 0

0 o
ox3

0

0 0 o
ox3

2
6666666664

3
7777777775

Cl1 ¼

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

2
666666664

3
777777775

C� ¼

1 0 0 x3 0 0

0 1 0 0 x3 0

0 0 1 0 0 x3
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

Cl2 ¼

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

2
666666664

3
777777775

ð15Þ

Now, the strain energy of the plate per unit area

(which is the same as the strain energy for the defor-

mation of the normal-line element) can be written as

U ¼ 1
2
hCTDCi ð16Þ

where D is the 3-D 6	 6 material matrix, which consists

of elements of the elasticity tensor expressed in the

global coordinate system xi. This matrix is in general

fully populated. However, if it is desired to model lami-

nated composite plates in which each lamina exhibits a

monoclinic symmetry about its own mid-plane (for

which the material matrix is determined by 13 constants

instead of 21) and is rotated about the local normal to be

a layer in the composite laminated plate, then as shown

in [14], some parts of this material matrix will always

vanish no matter what the layup angle is.

To deal with applied loads, we will at first leave open

the existence of a potential energy and develop instead

the virtual work of the applied loads. The virtual dis-

placement is taken as the Lagrangean variation of the

displacement field, such that

dbRR ¼ dqBiBi þ x3dwBiBi 	 B3 þ dwiBi þ dwBiBi 	 wjBj

ð17Þ

where the virtual displacement of the reference surface is

given by

dqBi ¼ du � Bi ð18Þ

and the virtual rotation of the reference surface is de-

fined such that

dBi ¼ dwBjBj 	 Bi ð19Þ

Since the strain is small, one may safely ignore products

of the warping and the loading in the virtual rotation

term. Then, the work done through a virtual displace-

ment due to the applied loads siBi at the top surface and

biBi at the bottom surface and body force /iBi through

the thickness is

dW ¼ ðsi þ bi þ h/iiÞdqBi þ dwBa

h
2
ðsa

�
� baÞ þ hx3/ai

	
þ dðsiwþ

i þ biw
�
i þ h/iwiiÞ ð20Þ

where si, bi, and /i are taken to be independent of the

deformation, ð Þþ ¼ ðÞjx3¼h=2, and ð Þ� ¼ ðÞjx3¼�h=2. By

introducing column matrices dq, dw, s, b, and /, which
are formed by stacking the three elements associated

with indexed symbols of the same names, and using Eqs.

(1), (3), and (4), one may write the virtual work in matrix

form, so that

dW ¼ dq
T
f þ dw

T
m þ dðsTwþ þ bTw� þ h/TwiÞ ð21Þ

where

f ¼ s þ b þ h/i

m ¼
h
2
ðs1 � b1Þ þ hx3/1i

h
2
ðs2 � b2Þ þ hx3/2i

0

8<
:

9=
; ð22Þ
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The complete statement of the problem can now be

presented in terms of the principle of virtual work, such

that

dU � dW ¼ 0 ð23Þ

In spite of the possibility of accounting for nonconser-

vative forces in the above, the problem that governs the

warping is conservative. Thus, one can pose the problem

that governs the warping as the minimization of a total

potential functional

P ¼ U þ W ð24Þ

so that

dP ¼ 0 ð25Þ

in which only the warping displacement is varied, subject

to the constraints equation (5). This implies that the

potential of the applied loads for this portion of the

problem is given by

W ¼ �sTwþ � bTw� � h/Twi ð26Þ

Below, for simplicity of terminology, we will refer to P
as the total potential energy, or the total energy.

By principle of minimum total potential energy, one

can solve the unknown warping functions by minimizing

the functional in Eq. (24) subject to the constraints of

Eq. (5). Up to this point, this is simply an alternative

formulation of the original 3-D elasticity problem. If we

attempt to solve this problem directly, we will meet the

same difficulty as solving any full 3-D elasticity problem.

Fortunately, as shown in [14], the VAM can be used to

calculate the 3-D warping functions asymptotically.

However, the minimization problem has been solved

analytically in that work and the procedure becomes

very tedious if there are lots of layers. Here a finite ele-

ment discretization is used to solve the minimization

problem. A 5-noded isoparametric element is used be-

cause we need the second-order warping functions,

which are piecewise, fourth-order polynomials. Discret-

izing the transverse normal line into 1-D finite elements,

one can express the warping field as

wðxiÞ ¼ Sðx3ÞV ðx1; x2Þ ð27Þ

where S is the shape function and V is the nodal value of

warping field along the transverse normal. Substituting

Eq. (27) into Eq. (24), one can express the total energy in

discretized form as

2P ¼ V TEV þ 2V TðDh��þ Dhl1V;1 þ Dhl2V;2Þ
þ �TD���þ V T

;1 Dl1l1V;1 þ V T
;2 Dl2l2V;2

þ 2ðV T
;1 Dl1��þ V T

;2 Dl2��þ V T
;1 Dl1l2V;2Þ þ 2V TL

ð28Þ

where L contains the load related terms such that

L ¼ �SþTs � S�Tb � hST/i ð29Þ

The new matrix variables carry the properties of both

the geometry and material:

E ¼ h½ChS�TD½ChS�i Dh� ¼ h½ChS�TDC�i
Dhl1 ¼ h½ChS�TD½Cl1S�i Dhl2 ¼ h½ChS�TD½Cl2S�i
D�� ¼ hCT

� DC�i Dl1l1 ¼ h½Cl1S�
TD½Cl1S�i

Dl1l2 ¼ h½Cl1S�
TD½Cl2S�i Dl2l2 ¼ h½Cl2S�

TD½Cl2S�i
Dl1� ¼ h½Cl1S�

TDC�i Dl2� ¼ h½Cl2S�
TDC�i

ð30Þ

The discretized form of Eq. (5) is

V THw ¼ 0 ð31Þ

where H ¼ hSTSi and w is the normalized kernel matrix

of E such that wTHw ¼ I . Now our problem is trans-

formed to minimize Eq. (28) numerically, subject to the

constraints in Eq. (31).

3. Dimensional reduction

Now, to rigorously reduce the original 3-D problem

to a 2-D plate problem, one must attempt to reproduce

the energy stored in the 3-D structure in a 2-D formu-

lation. This dimensional reduction can only be done

approximately, and one way to do it is by taking ad-

vantage of the smallness of h=l. Another small param-

eter is the order of the generalized 2-D strains � which we

denote here as e and it has already been taken advantage

of when we derive Eq. (11). One can observe that the

first term of Eq. (11) has order kV k=h and the last two

terms have order kV k=l which is clearly one order of h=l
higher than the first term. This observation allows us to

avoid dealing with derivatives of unknown functions

with respect to in-plane coordinates. As mentioned be-

fore, although reduced-order models based on ad hoc

kinematic assumptions regularly appear in the literature,

there is no basis whatsoever to justify such assumptions.

Rather, in this work, the VAM will be used to mathe-

matically perform a dimensional reduction of the 3-D

problem to a series of 2-D models. One can refer to [11]

for a brief introduction of the VAM. To proceed by this

method, one has to assess and keep track of the order of

all the quantities in the formulation. Following [13], the

quantities of interest have the following orders:

�ab � hjab � e f3 � lðh=lÞ2e
fa � lðh=lÞe ma � lhðh=lÞe

ð32Þ

where e is the order of the maximum strain in the plate

and l is the order of the material constants (all of which

are assumed to be of the same order). It is noted that

m3 ¼ 0.

The VAM requires one to find the leading terms of

the functional according to the different orders. The

total potential energy consists of quadratic expressions
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involving the warping and the generalized strains. In

addition there are terms that involve the loading along

with interaction terms between the warping and the both

of the other types of quantities. Since only the warping is

varied, one needs the leading term that involves warping

only and the leading term that involves the warping and

other quantities (i.e., the generalized strain and loading).

For the zeroth-order approximation, these leading terms

of Eq. (28) are

2P�
0 ¼ V TEV þ 2V TDh�� ð33Þ

The Euler–Lagrange equation for functional equation

(33) subject to constraints equation (31) can be obtained

by usual procedure of calculus of variation with the aid

of a Lagrange multiplier as follows:

EV þ Dh�� ¼ HwK ð34Þ

Considering the properties of the kernel matrix w, one
calculates the Lagrange multiplier K as

K ¼ wTDh�� ð35Þ

Substituting Eq. (35) back into Eq. (34), we obtain

EV ¼ ðHwwT � IÞDh�� ð36Þ

There exists a unique solution linearly independent of

the null space of E for V because the right-hand-side of

Eq. (36) is orthogonal to the null space. Since the solu-

tion is unique, we can choose any convenient constraints

to make the problem determined. In our implementa-

tion, we arbitrarily constrain three degrees of freedom to

obtain a solution V � for the linear system, so that the

final solution can be written as

V ¼ V � þ wk ð37Þ

where k can be determined by Eq. (31) as

k ¼ �wTHV � ð38Þ

Hence the final solution minimizing the functional Eq.

(28) subject to constraints Eq. (31) is

V ¼ ðI � wwTHÞV � ¼ bVV0� ¼ V0 ð39Þ

Substituting Eq. (39) back into Eq. (28), one can obtain

the total energy asymptotically correct up to the order of

le2 as

2P0 ¼ �TðbVV T
0 Dh� þ D��Þ� ð40Þ

It is observed that the energy of this approximation

coincides with classical laminated plate theories. How-

ever, we do not use ad hoc kinematic assumptions such

as the Kirchhoff assumption to obtain this result. Al-

though the energy is the same, the transverse normal

strain from our zeroth-order approximation is not zero.

We notice that the zeroth-order warping is of order e.
According to the VAM, to accept this as the zeroth-

order approximation, one needs to check whether or not

the order of the next approximation is higher than this

one. To obtain the first-order approximation, we simply

perturb the zeroth-order result, resulting in warping

functions of the form

V ¼ V0 þ V1 ð41Þ

Substituting Eq. (41) back into Eq. (11) and then into

Eq. (28), one can obtain the leading terms for the first-

order approximation as

2P�
1 ¼ V T

1 EV1 þ 2V T
1 D1�;1 þ 2V T

2 D2�;2 þ 2V T
1 L ð42Þ

where

D1 ¼ ðDhl1 � DT
hl1
ÞbVV0 � Dl1� ð43Þ

D2 ¼ ðDhl2 � DT
hl2
ÞbVV0 � Dl2� ð44Þ

It is understood that the order of the loads in Eq. (32) is

associated with warping functions of different orders, as

shown in [14]. For example, L in Eq. (42) only is com-

posed of the in-plane components of the applied loads.

Integration by parts with respect to the in-plane coor-

dinates is used here and hereafter whenever it is conve-

nient for the derivation, because the present goal is to

obtain an interior solution for the plate without con-

sideration of edge effects.

Similarly as in the zeroth-order approximation, one

can solve the first-order warping field as

V1 ¼ V11�;1 þ V12�;2 þ V1L ð45Þ

and obtain a total energy that is asymptotically correct

up to the order of lðh=lÞ2e, given by

2P1 ¼ �TA�þ �T;1B�;1 þ 2�T;1C�;2 þ �T;2D�;2 þ 2�TF þ P

ð46Þ

where

A ¼ bVV T
0 Dh� þ D��

B ¼ bVV T
0 Dl1l1

bVV0 þ V T
11D1

C ¼ bVV T
0 Dl1l2

bVV0 þ 1
2
ðV T

11D2 þ DT
1 V12Þ

D ¼ bVV T
0 Dl2l2

bVV0 þ V T
12D2

F ¼ bVV T
0 L � 1

2
ðDT

1 V1L;1 þ V T
11L;1 þ DT

2 V1L;2 þ V T
12L;2Þ

P ¼ V T
1LL

ð47Þ

Here the monoclinic symmetry has already been taken

advantage of to obtain the asymptotically correct energy

in Eq. (46). It is noted that P is a quadratic term in-

volving applied loads that cannot be varied in the 2-D

model. When there is no load, this term vanishes. It

comes from the applied load and the warping of refined

approximations introduced by the applied load. The

applied loads should not vary rapidly over the plate
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surface; otherwise, F will not be of sufficiently high or-

der to meet the requirement of asymptotical correctness.

4. Transforming into Reissner-like model

Although Eq. (46) is asymptotically correct through

the second-order and straightforward use of this strain

energy expression is possible as mentioned in [13], it

involves more complicated boundary conditions than

necessary since it contains derivatives of the generalized

strain measures. To obtain an energy functional that is

of practical use, one can transform the present approx-

imation into a Reissner-like model.

In a Reissner-like model, there are two additional

degrees of freedom, which are the transverse shear

strains. These are incorporated into the rotation of

transverse normal. If we introduce another triad B�
i for

the deformed Reissner-like plate, the definition of 2-D

strains becomes

R;a ¼ B�
a þ e�abB

�
b þ 2ca3B

�
3 ð48Þ

B�
i;a ¼ ð�K�

abB
�
b 	 B�

3 þ K�
a3B

�
3Þ 	 B�

i ð49Þ

where the transverse shear strains are c ¼ b 2c13 2c23 c
T
.

From the definitions in Eqs. (8) and (48), one can obtain

the Rodrigues parameters corresponding to the rotation

relating Bi and B�
i . Using the procedures listed in [17],

one can express the classical strain measures � in terms

of the strain measures of the Reissner-like plate model

(see [18] for the details of the derivation):

� ¼ R�Dac;a ð50Þ

where

D1 ¼
0 0 0 1 0 0

0 0 0 0 1 0

� 	T

D2 ¼
0 0 0 0 1 0
0 0 0 0 0 1

� 	T

R ¼ be�11 2e�12 e�22 K�
11 K�

12 þ K�
21 K�

22c
T ð51Þ

Now one can express the energy, Eq. (46), correct to

second-order, in terms of strains of the Reissner-like

model as

2P1 ¼ RTAR� 2RTADac;a þRT
;1BR;1

þ 2RT
;1CR;2 þRT

;2DR;2 þ 2RTF þ P ð52Þ

The generalized Reissner-like model used in many 2-D

analyses is of the form

2PR ¼ RTARþ cTGc þ 2RTFR þ 2cTFc ð53Þ

To find an equivalent Reissner model Eq. (53) for Eq.

(52), one has to eliminate all partial derivatives of the

classical 2-D strain measures. The equilibrium equations

are used to achieve this purpose. From the two equi-

librium equations balancing bending moments with ap-

plied moments ma which is calculated from Eq. (22), one

can obtain the following formula

Gc þ Fc ¼ DT
1 AR;1 þDT

2 AR;2 þ
m1

m2

� �
ð54Þ

Using Eq. (54), one can rewrite Eq. (52) as

2P1 ¼ RTARþ cTGc þ 2RTF þ P þ U � ð55Þ

where

U � ¼ RT
;1BR;1 þ 2RT

;1CR;2 þRT
;2DR;2 ð56Þ

and

B ¼ B þ AD1G�1DT
1 A

C ¼ C þ AD1G�1DT
2 A

D ¼ D þ AD2G�1DT
2 A

P ¼ P �
m1

m2

� �T

G�1
m1

m2

� � ð57Þ

If we can drive U � to zero for anyR, then we have found

an asymptotically correct Reissner-like plate model. For

generally anisotropic plates, this term will not be zero;

but we can minimize the error to obtain a Reissner-like

model that is as close to asymptotical correctness as

possible. The accuracy of the Reissner-like model de-

pends on how close to zero one can drive this term of the

energy.

One could proceed with the optimization at this

point, but the problem will require a least squares so-

lution for three unknowns (the shear stiffness matrix G)

from a linear system of 78 equations (12	 12 and

symmetric). This optimization problem is too rigid. The

solution will be better if we can bring more unknowns

into the problem. As stated in [12], there is no unique

plate theory of a given order. One can relax the con-

straints in Eq. (5) to be hwii ¼ const and still obtain an

asymptotically correct strain energy. Since the zeroth-

order approximation gives us an asymptotic model

corresponding to classical plate theory, we only relax the

constraints for the first-order approximation. This re-

laxation will modify the warping field to be

V 1 ¼ V11�;1 þ V12�;2 þ V1L þ L1�;1 þ L2�;2 ð58Þ

where L1, L2 consist of 24 constants. The remaining

energy U � will also be modified to be

U � ¼ RT
;1
bBBR;1 þ 2RT

;1
bCCR;2 þRT

;2
bDDR;2 ð59Þ
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and

bBB ¼ B þ 2LT
1 D1

bCC ¼ C þ ðLT
1 D2 þ DT

1 L2ÞbDD ¼ D þ 2LT
2 D2

ð60Þ

Since now we have 27 unknowns, the optimization is

much more flexible. It can give us a more optimal so-

lution for the shear stiffness matrix G to fit the second-

order, asymptotically correct energy into a Reissner-like

model. In other words, here we have found the Reissner-

like model that describes as closely as possible the 2-D

energy that is asymptotically correct through the sec-

ond-order in h=l. However, the asymptotical correctness

of the warping field to that same order can only be as-

certained after obtaining another higher-order approxi-

mation, which will be discussed in the next section.

And after minimizing U �, the total energy to be used

for the 2-D plate solver can be expressed as:

2PR ¼ RTARþ cTGc þ 2RTF ð61Þ

The quadratic term of loads P is dropped from Eq. (55)

because it will not affect the 2-D governing equations. It

should be noted that the load-related terms in F are a

new feature in the present development. One must

slightly modify traditional Reissner-like plate solvers to

accommodate these terms. This modification is not dif-

ficult and has a form similar to terms that must be in-

cluded when considering thermal effects or actuated

materials.

5. Recovering relations

From the above, we have obtained a Reissner-like

plate model which is as close as possible to being as-

ymptotically correct in the sense of matching the total

potential energy. The stiffness matrices A, G and load

related term F can be used as input for a plate theory

derived from the total energy obtained here. The geo-

metrically nonlinear theory presented in [9] is an ap-

propriate choice, but some straightforward modification

of the loading terms is required.

However, while it is necessary to accurately calculate

the 2-D displacement field of composite plates, this is

not sufficient in many applications. Ultimately, the fi-

delity of a reduced-order model such as this depends on

how well it can predict the 3-D results in the original 3-D

problem. Hence, recovering relations should be provided

to complete the reduced-order model. By recovering

relations, we mean expressions for 3-D displacement,

strain, and stress fields in terms of 2-D quantities and x3.
For validation, results obtained for the 3-D field vari-

ables from the reduced-order model must be compared

with those of the original 3-D model.

For a strain energy that is asymptotically correct

through the second-order, we can recover the 3-D dis-

placement, strain and stress fields only through the first-

order in a strict sense of asymptotical correctness. Using

Eqs. (1), (3), and (4), one can recover the 3-D displace-

ment field through the first-order as

U3d ¼ u2d þ x3
C31

C32

C33 � 1

2
4

3
5þ SV0 þ SV 1 ð62Þ

where U3d is the column matrix of 3-D displacements

and u2d is the plate displacements. Cij are the compo-

nents of global rotation tensor from Eq. (3). And from

Eq. (11), one can recover the 3-D strain field through the

first-order as

C ¼ ChSðV0 þ V 1Þ þ C��þ Cl1SV0;1 þ Cl2SV0;2 ð63Þ

Then, one can use the 3-D constitutive law to obtain 3-D

stresses rij.

Since we have obtained an optimum shear stiffness

matrix G, some of the recovered 3-D results through the

first-order are better than classical theory and conven-

tional first-order deformation theory. However, for the

transverse normal component of strain and stress (i.e.,

C33 and r33), the agreement is not satisfactory at all. Let

us recall, that the Reissner-like theory that has been

constructed only ensures a good fit with the asymptoti-

cally correct 3-D displacement field of the first-order

(while energy is approximated to the second-order).

Thus, in order to obtain recovering relations that are

valid to the same order as the energy, the VAM iteration

needs to be applied one more time.

Using the same procedure listed in previous section,

the second-order warping can be obtained and expressed

symbolically as

V2 ¼ V21�;11 þ V22�;12 þ V23�;22 ð64Þ

Eq. (64) is obtained by taking the original first-order

warping V1 to be the result of the first-order approxi-

mation. It is clear that V2 is one order higher than V1

which confirms that V1 is the first-order approximation.

One might be tempted to use V1 in the recovering rela-

tions. However, the VAM has split the original 3-D

problem into two sets of problems. As far as recovering

relations concerned, it is observed that the normal-line

analysis can at best give us an approximate shape of the

distribution of 3-D results. The 2-D plate analysis will

govern the global behavior of the structure. Since V 1 is

the warping that yields a Reissner-like plate model that

is as close as possible to being asymptotically correct, we

should still use V 1 in the recovering relations instead of

V1. By doing this, we choose to be more consistent with

Reissner-like plate model while compromising some-

what on the asymptotical correctness of the shape of the

distribution. It has been verified by numerical examples

that this is a good choice.
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Hence, we write the 3-D recovering relations for

displacement through the second-order as

U3d ¼ u2d þ x3
C31

C32

C33 � 1

8<
:

9=
;þ SðV0 þ V 1 þ V2Þ ð65Þ

and the strain field through the second-order is

C ¼ ChSðV0 þ V 1 þ V2Þ þ C��þ Cl1SðV0;1 þ V 1;1Þ
þ Cl2SðV0;2 þ V 1;2Þ ð66Þ

Again the stresses through the second-order can be ob-

tained from use of the 3-D material law. It will be shown

in the next section that the recovered 3-D results

through the second-order agree with the exact results

very well.

6. Numerical examples

A computer program, VAPAS based on the present

theory has been developed. Several numerical examples

are given here to validate the proposed theory and code

developed based on this. First we investigate several

cases for cylindrical bending problem of which the exact

solutions have already been worked out by Pagano [19].

Then we study the vibration of laminated plates using a

2-D solver (here DYMORE is used) along with VAPAS

to recover the 3-D fields at a specific time to compare

the results with first-order shear deformation theory

(FOSDT) [20].

6.1. Cylindrical bending problem for plate

In this section we give a few sample results to illus-

trate the power of the derived theory. The material

properties of all plates studies in the section are

EL ¼ 25	 106 psi ET ¼ 106 psi

GLT ¼ 0:5	 106 psi GTT ¼ 0:2	 106 psi

mLT ¼ mTT ¼ 0:25

where L denotes the direction parallel to the fibers and T
the transverse direction. The test problem is a plate with

width L ¼ 4 in. along x1 (the ‘‘lateral’’ direction) as

sketched in Fig. 2 and infinite length in the x2 direction

(the ‘‘longitudinal’’ direction). The thickness of the plate

is 1 in., so that the aspect ratio L=h ¼ 4. The plate is

simply supported and subjected to a sinusoidal surface

loading of the form

s3 ¼ b3 ¼
p0

2
sin

px1
L

� �
ð67Þ

with sa ¼ ba ¼ 0. Three different cases of layups (the

stacking sequence is from bottom to top) are investi-

gated:

• case 1: antisymmetric angle ply, [15�/)15�];
• case 2: symmetric angle ply, [30�/)30�/)30�/30�];
• case 3: symmetric nearly cross ply, [0.5�/90.5�/90.5�/

0.5�]. The reason we change the ply angle a little bit

from the cross-ply case is to allow us to use a Math-

ematicae code we developed based on [19] which

does not apply to cross-ply case.

Although our Reissner-like model is consistent with a

geometrically exact, nonlinear, 2-D plate theory such as

in [9], only geometrically linear examples are considered

herein for the purpose of comparing the results with the

exact linear elasticity solutions of [19].

For the purpose of presenting the results graphically,

the following normalization scheme is used:

rij ¼
rij

p0
ð68Þ

All six components of the 3-D stress along the thickness

direction are presented. However, since the 3-D dis-

placement field is usually of relatively little interest in

analysis of composite plates, those results are not pre-

sented here. Similarly, the strain results are not pre-

sented for the sake of brevity since their accuracy is the

same as that of the stresses. Note that, because the 2-D

variables are either sine or cosine functions of x1, rab and

r33 are plotted for the position x1 ¼ L=2, and ra3 are

plotted for the position x1 ¼ 0 or x1 ¼ L.
First, we investigate a laminated composite plate

with layup [15�/)15�]. The results of present theory

(dashed line) plotted in Figs. 3–8 are compared with the

exact solutions from [19] (solid line), classical theory (the

zeroth-order approximation derived herein, dash–dotted

line) and a similar yet very different theory in [12]

(dotted line) which is referred to as the Sutyrin theory

here. From the plotted results, one can observe that both

the present theory and the Sutyrin theory have excellent

agreement with the 3-D exact solution and produce

much better results than the classical theory, especially

for the transverse shear and transverse normal stresses.

Fig. 2. Cylindrical bending of composite plate.
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Although there are significant differences between the

present approach and that of [12], the results from both

approaches are very close and have excellent agreement

with 3-D exact solutions. However, [12] uses a so-called

smart minimization procedure without a known math-

ematical basis to produce the good agreement obtained.

If one simply applies the least squares technique as is

done for the present theory, the accuracy of the results

produced by the theory of [12] will be slightly degraded.

Next, we take another laminated composite plate

with layup [30�/)30�/)30�/30�] and the same material

properties as the previous plate. The results are shown in

Figs. 9–14. The power of the present theory is clearly

exhibited in the excellent agreement with exact 3-D

Fig. 3. r11 vs the thickness coordinate (case 1).

Fig. 4. r12 vs the thickness coordinate (case 1).

Fig. 5. r22 vs the thickness coordinate (case 1).

Fig. 6. r13 vs the thickness coordinate (case 1).

Fig. 7. r23 vs the thickness coordinate (case 1).

Fig. 8. r33 vs the thickness coordinate (case 1).
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solutions. Indeed, even though there are more layers in

this example, the agreement is still excellent. Recall that

the recovery relations use results from a standard Re-

issner-like plate model. The large number of degrees of

freedom in layer-wise models depends on the number

of layers and is obviously not needed to achieve the level

of accuracy shown here.

In case 3, we apply our technique to a very chal-

lenging layup [0.5�/90.5�/90.5�/0.5�]. The properties and

behavior of a plate with this kind of layup are very close

to those of a sandwich plate with a soft core. That the

present theory can approximate the results very closely

shows the present theory to be suitable for the model-

ing of such structures. The stress results are shown in

Fig. 9. r11 vs the thickness coordinate (case 2).

Fig. 10. r12 vs the thickness coordinate (case 2).

Fig. 11. r22 vs the thickness coordinate (case 2).

Fig. 12. r13 vs the thickness coordinate (case 2).

Fig. 13. r23 vs the thickness coordinate (case 2).

Fig. 14. r33 vs the thickness coordinate (case 2).
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Figs. 15–20. As one can observe from the results, even

for this case, the present theory agrees very well with the

exact solution. These results illustrate that one can use

the present theory to model laminated plates confidently

and get great accuracy with much less computational

effort than layer-wise theories [21].

To demonstrate that the proposed theory and the

code developed based the theory, namely VAPAS, can

handle practical layups, we investigate the cylindrical

bending problem for a composite plate with 20 layers

with symmetric layup as [30�/)30�/)30�/30�]
5
numbered

from the bottom to the top. The Sutyrin theory cannot

obtain the result for this case due to the prohibitive

computational time. The FOSDT is used instead for

comparison. The results are reported in Figs. 21–26.

From the figures, one can observe that all the models

Fig. 15. r11 vs the thickness coordinate (case 3).

Fig. 16. r12 vs the thickness coordinate (case 3).

Fig. 17. r22 vs the thickness coordinate (case 3).

Fig. 18. r13 vs the thickness coordinate (case 3).

Fig. 19. r23 vs the thickness coordinate (case 3).

Fig. 20. r33 vs the thickness coordinate (case 3).
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(CLT: dash–dotted line; FOSDT: dashed line; VAPAS:

dots) can produce reasonable predictions for the in-

plane stress distribution through the thickness compared

to the exact solution (solid line). VAPAS results are al-

most on the top of the exact solutions. Most significant,

however, is the fact that VAPAS obtains much more

accurate results for the transverse stress components. It

should be noted that the computation can be done by

VAPAS within one second in a personal computer.

It is to be expected that the present theory is far

better than ad hoc models. Mathematically, the accuracy

of the present theory should be comparable to that of a

layer-wise plate theory with assumed in-plane displace-

ments as layer-wise cubic polynomials of the thickness

direction and transverse displacement as a layer-wise

fourth-order polynomial. However, the present theory is

still an equivalent single-layer theory, and the compu-

tational requirement is much less than layer-wise theo-

ries. Moreover, it is not necessary to use integration

through the thickness of the 3-D equilibrium equations

to get the transverse normal and transverse shear strain

and stress results presented herein.

6.2. Vibration of composite plate analyzed by DYMORE

and VAPAS

VAPAS has been inserted into DYMORE to provide

an efficient and accurate analysis for composite plates.

VAPAS provides a generalized 2-D constitutive law for

the input of DYMORE to carry out a 2-D analysis.

Then VAPAS takes the output from DYMORE to re-

cover the 3-D displacement, strain and stress fields.

Fig. 21. r11 vs the thickness coordinate (20 layers).

Fig. 22. r12 vs the thickness coordinate (20 layers).

Fig. 23. r22 vs the thickness coordinate (20 layers).

Fig. 24. r13 vs the thickness coordinate (20 layers).

Fig. 25. r23 vs the thickness coordinate (20 layers).

Fig. 26. r33 vs the thickness coordinate (20 layers).

W. Yu et al. / Computers and Structures 81 (2003) 439–454 451



To illustrate results from this procedure, vibration of

a thick square composite plate of width w ¼ 0:04 m and

thickness h ¼ 0:01 m (see Fig. 27) is analyzed with

DYMORE and VAPAS. The plate is clamped along

edges BC and CD and free along the other two. A con-

centrated mass M ¼ 50 kg is attached at point A. The

plate is made of laminated composite material with a

two-ply layup [90, 0�], where the 0� direction is parallel

to the x1 axis. Material properties for the composite are

E1 ¼ 172:4 GPa E2 ¼ E3 ¼ 6:9 GPa

G23 ¼ 1:38 GPa G12 ¼ G13 ¼ 3:45 GPa

q ¼ 1600 kg=m3 m12 ¼ m13 ¼ m23 ¼ 0:25

ð69Þ

The plate is subjected to a concentrated transverse load at

point A. This load is a triangular impulse linearly rising

to 10 KN in 0.001 s, then linearly decreasing to reach a

zero value at time t ¼ 0:002 s. The plate was modeled by a

regular 12	 12 mesh of quadratic elements and simula-

tions were run with a constant time step dt ¼ 10�4 s.

Fig. 28 shows the time history of the displacements at

mid-plane at point M (x1 ¼ w=2; x2 ¼ w=2). At time

t > 0:002 s, the applied load vanishes so the plate shows

free vibration behavior with period T ¼ 0:0332 s. The

time histories of the stresses through the thickness at M

are shown in Fig. 29. The recovered stress components

show periodic behavior as expected. First and second

derivatives of strain and curvature components are re-

quired for the recovering process of VAPAS. The

higher-order strain derivatives were obtained by inter-

polating the strain values at the Gauss points of each of

the four elements forming a 2	 2 patch of elements

around the recovering point.

At time t ¼ 0:0096 s, the 3-D stress fields through the

thickness of the plate were recovered at points M and Q

(x1 ¼ h; x2 ¼ w � h) and using VAPAS and FOSDT [20].

Note, however, that our FOSDT results are based on the

shear stiffness matrix G obtained from VAPAS since the

traditional FOSDT has no inherent means to obtain

the shear stiffness coefficients for composite plates.

These results are shown in Figs. 30 and 31 for the points

Fig. 27. Configuration of the clamped composite plate prob-

lem.

Fig. 28. Time history of displacements at mid-plane at point M.

Vertical displacement U3––solid line; Lateral displacement U1––

dashed line; Lateral displacement U2––dotted line.

Fig. 29. Time histories of the 3-D stress distribution along the

thickness at the point M.

Fig. 30. Comparison of the 3-D stress distribution at point M.

Dashed line––VAPAS; solid line––FOSDT.
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M and Q, respectively. As expected, the theories predict

values of in-plane stress components that are in good

agreement with each other. However, the predictions for

the interlaminar stresses components vary widely. In-

deed, the FOSDT assumes constant transverse shear

strain distributions and vanishing normal strains,

whereas these strain components can be accurately

predicted by VAPAS. Note that the predictions from

VAPAS also satisfy the conditions of zero transverse

shear and normal stresses at the top and bottom of the

laminated plate.

7. Conclusion

A complete Reissner-like plate theory that is as close

as possible to an asymptotically correct theory is de-

veloped for laminated, composite plates. The theory is

applicable to plates for which each layer is made of

monoclinic material. Although the resulting plate theory

is as simple as a single-layer, FOSDT, the recovered 3-D

displacement, strain and stress results have excellent

accuracy, comparable to that of higher-order, layer-wise

plate theories with many more degrees of freedom. The

present paper has built on the work of several previous

works mainly represented in [11–13]. The main contri-

butions are as follows:

(1) The present theory formulates the original 3-D elas-

ticity problem in an intrinsic form which is suitable

for geometrically nonlinear plate theory as well as

linear theory.

(2) The present theory solves the unknown 3-D warping

functions asymptotically by using the variational as-

ymptotic method and the principle of minimum total

potential energy, a procedure which is systematic

and easy to apply iteratively. In [12], the warping

functions are calculated by an equivalent but in-

volved analytical formulation.

(3) The present theory finds a total potential energy in-

stead of only the strain energy as presented in [11].

Having a total potential energy asymptotically cor-

rect to a certain order, one can derive a geometri-

cally nonlinear plate theory in a straightforward

manner using an energy method as done in [9].

A computer program, VAPAS, based on present

theory has been developed and can calculate the gener-

alized 2-D stiffness matrices (A, G, F ) for analysis of

nonlinear plate problems. This program can also recover

the 3-D displacement/strain/stress fields with an accu-

racy comparable to that of layer-wise theory. Since

VAPAS merely solves a 1-D problem, such a code exe-

cutes very rapidly, enabling these very accurate recov-

ering relations to be cheaply included in standard plate

finite element codes. Also, since the kinematical foun-

dation of the present theory is intrinsic, it is natural to

extend the present theory to model composite shells,

including inflatables. Such extensions of the present

theory are under development and will be presented in

future papers.
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