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Problems: Closed book

1. Consider a uniform beam with circular cross section. The general homogeneous solution
for the torsional dynamics of a uniform beam of circular cross section can be shown to
be of the form

θ(x, t) =X(x)Y (t)

= [A sin(αx) +B cos(αx)]
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where A, B, C, and D are arbitrary constants. In this case the polar moment of
inertia Ip = J , the St.-Venant torsional constant; and the mass density is denoted
by ρ. Consider the case in which the right end is free and the left end has attached
to it a rigid flywheel with concentrated mass moment of inertia Ic = µρJ� and is
spring-restrained by a light, linear, torsional spring of spring constant k = κGJ/�, as
indicated in Fig. 1. Note that κ and µ are dimensionless parameters.

(a) Write the boundary condition on θ(�, t). (5 points)

(b) Using free-body diagrams and Euler’s law for the dynamics of a rigid body, show
that the boundary condition on θ(0, t) is of the form

βθ(0, t) + βx
∂θ

∂x
(0, t) + βtt

∂2θ

∂t2
(0, t) = 0

where β, βx, and βtt are constants. Find those constants, which may be positive
or negative. Hint: This is not a case that is worked out in the notes. You’ll have
to derive it yourself. (15 points)
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Figure 1: Schematic of uniform beam restrained by a spring and with an attached body,
both at the left end

(c) In particular, show that the boundary conditions on X reduce to

�X ′(0) + [µ(α�)2 − κ]X(0) = 0; X ′(�) = 0

Note: even if you cannot obtain these expressions, please use them in the remain-
der of the problem. (5 points)

(d) Show that the characteristic equation, i.e., the equation that governs the separa-
tion constant, can be put into the form

tan(α�) =
κ− µ(α�)2

α�

Hint: Recall that when one has two homogeneous, algebraic equations, you should
not just solve one equation and substitute into the other. Instead, one must
ascertain that the determinant of the coefficient matrix is zero to have a nontrivial
solution. (15 points)

(e) Does a rigid-body mode exist? Why or why not? Supposing κ to be identically
zero, would a rigid-body mode exist then? Why or why not? (5 points)

2. A uniform string with mass per unit length m has been stretched taut with tension T to
a length � and attached between two rigid, immovable walls. The transverse vibration
of the string is excited by two equal and opposite forces of magnitude µ1(t)/ε where ε is
the distance each force acts from the mid-point of the string. The force at x = (�−ε)/2
acts downward (opposite of positive v), and the force at x = (� + ε)/2 acts upward.
See Fig. 2. Recall that 1(t) has magnitude of zero when t < 0 and unity when t ≥ 0.

(a) Write the generalized equations of motion. In particular, find the generalized
force associated with the ith mode for the force system described above and in
Fig. 2. Make sure to define ωi and the generalized mass. (9 points)
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Figure 2: Schematic of string undergoing forced vibration

(b) Using the concept of the Taylor series, show that when ε is taken to be infinites-
imal, the generalized force can be reduced to

Ξi = µ1(t)iπ(−1)
i
2

�
i even

= 0 i odd
(1)

(5 bonus points)

(c) Use the result from part 2b for the generalized force to solve the generalized
equations of motion for the string subject to initial conditions of zero displacement
and velocity at time equal to zero. Indeed, show that

v(x, t) =
2µ

πT

∞∑
i=2,4,...

(−1)
i
2

i
[1− cos(ωit)] sin

(
iπx

�

)

for t ≥ 0. (13 points)

(d) Why are the only modes that are excited those which are antisymmetric about
the mid-point? (3 points)
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