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This article presents a structural dynamic analysis of horizontal axis wind turbines (HAWTs)
using a new methodology. The methodology is based on representing a HAWT as a
multi-flexible-body system with both rigid- and flexible-body subsystems. The rigid-body
subsystems (nacelle, hub) are modelled as interconnected sets of rigid bodies using Kane’s
method. Kane’s method leads to compact equations of motion for rigid-body mechanisms.
The flexible-body subsystems (blades, tower) are modelled using geometrically exact, non-
linear beam finite elements derived from a mixed variational formulation for the dynamics
of moving beams. The use of the mixed formulation allows for the direct determination of
constraint forces and moments within the beam finite element and at the boundaries, thus
allowing simple connectivity between the finite elements and rigid bodies. The equations
for the rigid and flexible subsystems are coupled to obtain a unified framework that models
the dynamic behaviour of the complete system. Linearization of the dynamic equations
about the steady state solution yields system equations with periodic coefficients that must
be solved by Floquet theory to extract the dynamic characteristics. Numerical studies are
presented to investigate the natural frequencies and mode shapes for a HAWT with flexible
blades and tower. Copyright  2002 John Wiley & Sons, Ltd.

Introduction
Motivation

The economic costs of electricity generated by wind turbines can be reduced by decreasing construction costs
while increasing the wind turbine lifetime and the efficiency of energy conversion. To bring about these
improvements, there have been various research efforts throughout the world aimed at better understanding of
the wind turbine system. These research efforts encompass various technical disciplines, including atmospheric
modelling, wind turbine structural and aerodynamic modelling, energy conversion and power distribution
technology. The present effort is directed towards better understanding of the structural dynamic characteristics
of wind turbines. It is one of the most important research areas because (1) it leads to accurate prediction
of the stress field, which is important for determination of the lifetime, (2) it is a prerequisite for aeroelastic
analysis, which is primarily responsible for stability, and (3) it is the basis for control design, which can lead
to a significant increase in efficiency.

Previous Work

In the early years of the wind energy industry the effect of structural dynamics was either ignored completely
in the design phase or, at best, included through the use of estimated dynamic magnification factors.1 However,
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the flexibility of wind turbine blades and towers has continued to increase to the point where their dynamic
behaviour has become quite important.2

There have been various advances in structural modelling over the past several decades, and many of these
have been assimilated into the various wind turbine design codes. However, the types of structural modelling
and analysis found in these codes vary significantly from one another. The structural dynamic analyses found
in these codes can be roughly classified into three types of approach: multiple rigid bodies connected by hinges
(MBS), finite element method for flexible members (FEM), and the assumed-modes approach. Despite certain
differences in implementation, it can be said that MBS is used in ADAMS/WT, DUWECS and FLEXLAST,
FEM is used in GAST and TWISTER, and the assumed-modes approach is used in BLADED, FAST-AD,
FLEX4, GAROS and VIDYN.3

Generally, MBS coupled with a modal solution may be helpful in providing insight into wind turbine
modelling at low computational cost. It can also produce a compact system matrix for control design. However,
this type of approach is not sufficient for the detailed design of the wind turbines, especially for realistic
modelling of rotors with anisotropic blades. On the other hand, FEM may produce quite useful results for
these problems, but at high computational cost. Thus FEM has not proven itself to be suitable for preliminary
design and performance optimization. Moreover, the final system matrix from FEM is so complicated that
it cannot be used for control design. There are some studies that model the horizontal axis wind turbine
(HAWT) as a flexible multi-body (see e.g. Reference 4). Most of these studies use numerical computation
to find the solutions, which is disadvantageous for the control design of periodic systems. Researchers of
the codes have been developing tools to compensate the disadvantages of their codes. However, none of the
existing codes is well suited for the cost-effective analysis required at the preliminary design stage, including
(1) time domain simulation, (2) analysis of dynamic loads and (3) control design.3

Present Work
This article presents a method for structural dynamic modelling and stability analysis of a HAWT based on
methodology that was previously proposed by Hodges and Patil.5 The basic idea of the present work is to
model the wind turbine as a multi-flexible-body system with both rigid and flexible subsystems.

The equations of motion for the multi-rigid-body part are derived using Kane’s method,6 which makes
it possible to reduce the complexity of those dynamical equations by an appropriate choice of generalized
speeds. In the present model the multi-rigid-body part consists of a nacelle, shaft and hub. The nacelle has
a yaw degree of freedom with respect to the flexible tower, the shaft rotates with respect to the nacelle
with nominal rotor speed, and the hub has a teetering degree of freedom with respect to the shaft. The
shaft is presently assumed to be rigid, but shaft torsional flexibility is easily accommodated. A more general
representation of shaft flexibility, if needed, will be taken into account in the future. Also, at present the rotor
angular speed is assumed to be prescribed. Again, variable rotor speed dependent on the applied wind loads
will be included in future models.

The flexible portions consist of the blades and tower. These are represented by mixed, geometrically exact,
non-linear beam finite elements derived from the formulation of Reference 7. The beam equations on which
this formulation is based can be found in a variety of places (see e.g. References 8–10 and references cited
therein) and are based on an extension to dynamics of the static equations of Reissner.11 The section properties
are assumed to be available from a separate analysis such as that of Reference 12. The beam model in its full
form accounts for classical deformations (extension, torsion and bending in two directions) and transverse
shearing in two directions. It makes use of no small-angle approximations in accounting for the deformation.
Unlike the older works cited above, which are displacement formulations, in the present work the equations
are put into the weakest form to facilitate the use of the simplest possible shape functions. The use of the
mixed formulation allows for the direct determination of constraint forces and moments within the beam
finite element and at the boundaries, thus allowing simple connectivity between the finite elements and rigid
bodies. By coupling these equations, a set of non-linear ordinary differential equations is obtained. Although
the resulting equations are lengthy and complex, these equations are in a form that is simpler than that which
could be obtained by other means.
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The strategy to solve the derived equations is to separate the solutions into two parts: a non-linear periodic
steady state and a transient solution linearized about the periodic steady state. The steady state solution can be
calculated either by using the harmonic balance method or by finite elements in time.13 Linearization about
the equilibrium solution yields a set of dynamic equations with periodic coefficients, which must be solved
by Floquet theory to obtain the correct modes of the system. To reduce the computational cost, we apply the
fast Floquet approach described by Peters.14

The previously described model and solution procedure are combined into a single code that can
model the flexible part using an arbitrary number of finite elements. The code models the flexible blades
and towers as non-uniform, anisotropic, initially curved and twisted beams. Thus twisted and curved
rotor blades and realistic tower with varying cross-sectional properties (stiffnesses, mass, etc.) can be
modelled. The formulation is general enough to accommodate a rotor with three or more blades, but,
to date, the code has been developed only for the two-bladed case. The rigid-body subsystems are
modelled using AutolevTM, a symbolic manipulator capable of deriving equations of motion of rigid-
body mechanisms using Kane’s method. Equations for the flexible portions of the model (blades and
tower) are incorporated using the Symbolic Toolbox of MATLAB. By using programming languages
that support symbolic computation, the set of symbolic equations of motions can be derived for the
complete system, and the symbolic system matrix can be obtained. The present capabilities of the code
are (1) structural dynamic modelling, (2) steady state solution, (3) dynamic stability analysis by Floquet
theory, (4) analysis of dynamic loads and (5) construction of the dynamic system matrix, potentially useful
for control design.

The present analysis is ideally suited for wind turbine analysis. Firstly, as stated above, it can analyze
realistic composite blades with initial twist and curvature. The beam model requires accurate cross-sectional
stiffness and inertia coefficients, which can be calculated using VABS (variational asymptotic beam sectional
analysis).12 The method was validated by the successful results of several previous works, in which the
mixed formulation and VABS are combined for various models.15,16 Secondly, it can easily accommodate
an aerodynamic model. Theoretically, the aerodynamic forces depend on the state variables of the system,
and these are directly available in the present formulation. The aerodynamic flow through the wind turbines
is modelled using the finite state dynamic inflow model of Peters et al.17 The coupling of the aerodynamic
model with the mixed finite element method was validated for the aeroelastic analysis of rotorcraft.18 Finally,
it is possible to use the present framework to treat the dynamic and (in the future) aeroelastic behaviour as
well as the control design for the whole wind turbine using symbolic tools.

The symbolic model resulting from the present formulation is one of the most important contributions of
the present study. Figure 1 shows the advantage of the present framework over other methodologies for the
control design. The first methodology presented in the figure represents a code with rigid-body modelling.
Using this methodology, the symbolic system matrix can be obtained, but the accuracy of the solution may
not be sufficient to obtain a realistic model, especially for realistic composite blades. The second methodology
represents a code with numerical FEM modelling. The results of the code would be very accurate, but it is
not possible to represent the system as a symbolic time domain model amenable to preliminary design or
control synthesis. Thus the model of the system can be regarded as a black box, which produces only time
history responses to inputs. The last methodology in the figure represents the present approach to multi-
flexible-body modelling. Using the present framework, one can obtain a symbolic system matrix similar
to that obtained in rigid-body modelling while maintaining an accuracy close to that of numerical FEM
modelling.

Unfortunately, for a complete aeroelastic analysis the computational costs to derive a symbolic system
matrix could increase considerably. Although a state space aerodynamic model is used, it lacks the sparsity
present in the structural dynamic equations. Thus symbolic computation for the structural modelling may have
to be confined to expressing the boundary forces and moments in terms of other state variables. Moreover,
for complex HAWTs it is expected that obtaining the symbolic matrix will become prohibitively expensive
as well. For this reason the methodology does have limitations on the complexity of the model.
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Figure 1. Advantage of the present frame-work

Theoretical Basis

Treatment of Flexible Subsystem

All flexible elements are represented as beams using mixed finite elements. The theoretical details were
presented earlier in Reference 5. Here we recapitulate the important steps in the derivation of the equations
for the sake of completeness.

We start with the weakest variational formulation given in equation (74) of Reference 7. The weakest form
refers to a system description based on the extended Hamilton principle that contains no spatial or temporal
derivatives of any unknowns. This weak form is integrated by parts in time and the time integration is removed
from virtual quantities as shown in Reference 7. In this way, only the spatial dependence is accounted for in
the finite element modelling. The weak form then reduces to
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where u is the column matrix of displacement measures of the beam reference line in the b basis (the
undeformed beam cross-sectional frame basis), 	 is the column matrix of Rodrigues parameters so that the
matrix of direction cosines C, relating the bases of B basis (the deformed beam cross-sectional frame basis)
to the b basis, is given by
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F is the column matrix of section force resultant measures in the B basis, M is the column matrix of section
moment resultant measures in the B basis, P is the column matrix of section linear momentum measures in the
B basis, H is the column matrix of section angular momentum measures in the B basis, � is the column matrix
of force strains, � is the column matrix of moment strains, V is the column matrix of velocity measures of
the beam reference line in the B basis, � is the column matrix of cross-sectional angular velocity measures in
the B basis, v and ω are the generalized speeds of the body/frame to which the flexible subsystem is attached,
mgB is gravitational force in the B frame,  is the 3 ð 3 identity matrix, e1 is [1, 0, 0]T, υq is the column
matrix of virtual displacement measures in the B basis, υ is the column matrix of virtual rotation measures
in the B basis, υF is the column matrix of virtual force transformed to the b basis, υM is a column matrix
of virtual moment test functions, υP is the column matrix of virtual linear momentum measures transformed
to the b basis, υH is a column matrix of virtual angular momentum test functions, the overbar of the virtual
variables indicates that they are not the variation of a function, all ‘hatted’ terms on the right-hand side of the
equation are the variable values at the boundaries, and all ‘primed’ and ‘dotted’ terms represent respectively
their spatial and temporal partial derivatives.

The momentum variables (P and H) are related linearly to the velocity variables (V and �). When the
locus of cross-sectional mass centroids is chosen as the reference line, these relations can be written for an
arbitrary cross-section of the beam as {

P
H

}
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where m is the mass per unit length of the beam element and I is the moment-of-inertia matrix of the
cross-section. By virtue of equation (3), the quantities P and H are eliminated in favour of V and �, the
‘generalized speeds’ of the beam element. Moreover, the force variables (F and M) are related to strain
measures (� and �) in accordance with the 1D constitutive law as{
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where [S] is the cross-sectional stiffness matrix. The stiffness matrix is calculated using VABS and is used
to eliminate � and � in favour of F and M.

Now the beam is discretized into finite elements. Since the formulation is in its weakest form (spatially),
very simple shape functions can be used for the variables. In the present case, none of the variables are
differentiated and thus one can use constant shape functions for the variables. Some of the test functions (υ
quantities) are spatially differentiated. These test functions can be assumed to be linear within the element.
Thus υq for the i th element can be written as

υq D υqi�1 � ��C υqiC1� �5�

where � is the non-dimensional length co-ordinate within the element. By spatially differentiating the test
function, the derivatives of the test functions can be obtained as

υq
0 D υqiC1 � υqi

x
�6�

where x is the element length.
By collecting terms with various test function coefficients, one can get the set of finite element equations.

The whole set of equations for a blade is
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The equations corresponding to υqi and υ i are the discretized equations of motion, the equations correspond-
ing to υFi and υMi are the discretized strain–displacement relations, and the equations corresponding to υPi
and υHi are the velocity–displacement kinematical equations; the overbar or hat of the variables indicates
respectively the element or boundary variables, and the subscripts 1 and nC 1 of the virtual variables indicate
respectively the root and tip of the beam. It should be noted here that, using the above equations, the blade
root forces � OF0� and moments � OM0� can be written explicitly in terms of the other variables and can be
transferred easily to the discrete portion of the system. On the other hand, the v and ω that appear in the
kinematical equations are calculated by the rigid-body analysis, as discussed in the next subsection. Also, it
is noted that P, H, � and � are still used in the above equations to represent the equations more compactly,
although they are substituted using V, �, F and M in the actual computation.

The above set of equations represents the complete non-linear model required to analyze realistic blades. A
similar set of equations can be derived for the tower as well. These equations are quite similar to the above
set of equations and are not presented for conciseness.

Treatment of Rigid-body Subsystem

The multi-rigid-body portion of the wind turbine model comprises the collection of rigid bodies. The present
model consists of three rigid bodies: the nacelle, shaft and hub. Figure 2 shows the conceptual sketch of the
model. However, the number of degrees of freedom for the subsystem is eight, not two, because the tower
top displacements and rotations are considered as unknown variables. Otherwise the tower top forces and
moments are considered to be given variables derived from the flexible-body analysis of the tower. Frame
T, attached to the tower top, can move relative to an inertial frame N restrained only by the stiffness of the
tower. Body Y, representing the nacelle, yaws with respect to T about an axis common to both which is
parallel to t3 D y3 and passes through a point fixed in both bodies, TY. The shaft S rotates with respect to
Y about an axis which is parallel to y2 D s2 and passes through Ys. The motion of the shaft S is prescribed
by a constant angular velocity. Body H, representing the hub, teeters with respect to S about an axis which
is parallel to s1 D h1 and passes through SH. Blades are attached to H at points fixed in H.
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Figure 2. Conceptual model

The generalized co-ordinates for the discrete portion are defined in terms of the yaw angle �qy� of the
body Y with respect to the body T and the teeter angle �qh� of the body H with respect to the shaft S. The
generalized speeds can be defined in various possible ways. Here the definitions of the generalized speeds
follow the recommendations of Mitiguy and Kane19 and are given by

U1 D n!Y Ð y3

U2 D n!H Ð h1
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
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where the Ui are the generalized speeds and [U3U4U5]T and [U6U7U8]T represent respectively column
matrices of the linear and angular velocity measures for the tower top frame T written in the frame B at the
tower top. Using these equations, the time derivative of the generalized co-ordinates can be related to the
generalized speeds as
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It is common for generalized speeds to be taken as measure numbers for the angular velocity of the second
body relative to the first. The above definition is thus considerably different. Reference 19 shows that the
present type of definition can provide dynamical equations with greatly reduced complexity for the subsystems
in which this angular velocity appears. The size of the set of equations of motion derived in the present paper
is 70 per cent of one that makes use of the more common definition for the generalized speeds.

Using the above-described choice of generalized speed, one can generate the non-linear, time-dependent
equations of motion for the multi-rigid-body subsystem using Autolev. The full non-linear set of equations
of motion for the present model is too complex to present here. However, a simplified form equations is
presented in Appendix A, after they were linearised about an approximate steady-state solution.

It should be noted that the equations of motion generated by Autolev are dependent on the forces and
moments applied to the hub by the blades and to the nacelle by the tower. These forces and moments are
calculated by the flexible-blade analysis. The expressions for the velocity (v) and angular velocity �ω� required
by the flexible-blade analysis and the tip displacement � Ou� and tip rotation �O	� required by the flexible-tower
analysis are derived by Autolev.

Solution Methodology
Coupling of Subsystems

The two types of subsystem are coupled by transferring the information at the interface between them. In
the mixed finite element model for the blades the blade roots are clamped to H at points HUO and HDO , and
thus the blade root displacement Ou0 and orientation variables O	0 are set equal to zero. The inertial velocity of
HO, the mass center of the hub and angular velocity of H define the motion of the frame to which the blades
are clamped and thus determine the variables v and ω needed in the mixed finite element formulation. One
can solve for the blade root force OF0 and moment OM0 in terms of the element internal variables. This force
is applied at the point where the blade is attached to the hub, and the moment is applied to H. Similarly,
for the tower the root displacement and rotation are set to zero and the tip displacements and rotations are
specified by the rigid-body subsystem. Again, the tower tip force and moment are transferred to the rigid-body
subsystem. By accomplishing the above transfer, the two systems are coupled and one obtains the equations
of motion for the complete HAWT. The equations can be divided into two parts depending on whether the
variables are time differentiated. The complete sets of equations can be represented in a symbolic manner as

Gd� Px, x, y� D 0, Ga�x, y� D 0 �10�

where
x D [u, q,V,Z, qy, qh,U1, U2, . . . , U8]T �11�

and
y D [F,M]T �12�

with u, q, V, Z, F and M representing respectively the row matrices containing the set of element values for
displacements, Rodrigues parameters, velocities, angular velocities, forces and moments.

Separation of Solutions
The set of equations of motion derived within the flexible-body analysis can be used with a time integration
scheme to solve initial value problems. The present framework can be used to solve problems with external
forces with minor modifications. One can thus study the non-linear dynamic behaviour of the system by
conducting simulations with various initial conditions or external forces.

On the other hand, one could also calculate the non-linear steady state solution and modal characteristics
of the system at that steady state. To do so, first the set of non-linear ordinary differential equations is solved
by assuming it to be composed of a non-linear steady state solution and a linear transient dynamic one.
Mathematically, this can be represented as

z D zSS C zTS �13�
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where
z D [x, y]T �14�

Steady State Solution

For simple cases the steady state solution is obvious. For example, for a HAWT with no precone and without
consideration of the effects of gravity, the steady state solution is zero for all variables except the axial
force and displacement and the velocity and angular velocity components that are non-zero by virtue of
the rotor rotation. This approximate solution is easily determined by solving the kinematical equations for
the velocity and angular velocity and the simplified steady state equations of motion for the force. For the
general case the steady state solution is not only periodic in time but also must be determined from non-linear
equations. The calculation of the steady state including gravity is thus quite complicated (and even more so
with aerodynamics). There are various methods used to do such analyses, such as harmonic balance, periodic
shooting and finite elements in time (over the period). The steady state solution by the harmonic balance
method is represented as

zSS D h0 C
∑

[hcj cos�j�t�C hsj sin�j�t�] �15�

This representation of the solution is substituted into the non-linear differential equations of motion to derive
the non-linear algebraic equations in terms of the harmonic coefficients. These equations can be solved using
a non-linear equation solver to obtain the harmonic coefficients and thus the steady state solution.

Linear Model

If the primary interest is in the modal characteristics, then one needs to linearize the system about the
non-linear, periodic, steady state calculated using harmonic balance or some other method. It is noted that
the linearization is performed symbolically in the present framework. Linearization about the steady state
solutions yields a set of first-order ordinary differential equations with periodic coefficients with the form

APx D Bx C Cy

0 D Dx C Ey �16�

where

Aij D �∂Gdi
∂Pxj

Bij D ∂Gdi
∂xj

Cij D ∂Gdi
∂yj

�17�

Dij D ∂Gai
∂xj

Eij D ∂Gai
∂yj

Floquet Theory

Owing to the periodic components in the system matrix, Floquet theory is necessary to investigate the modal
characteristics of the system. Here the so-called fast Floquet method14 is used as it saves computer time. In
the usual implementation of Floquet theory the linearized periodic system equations are integrated over one
period using a set of independent initial conditions equal to the number of states of the system. The state
variables at the end of one period help define the Floquet transition matrix. The formula of the fast Floquet
method is

[�T, 0�] D �[P][��, 0�]�Q �18�
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where [�T, 0�] is the Floquet transition matrix for a full period, [P] is the permutation matrix, [��, 0�] is
the Floquet transition matrix for � D T/Q,T is the period and Q is the number of blades.

Here a time-marching scheme is used, based on finite elements in time (a temporal discretization of the
above weak form). For the present problem this is equivalent to using a central differencing scheme. The
time integration scheme can be represented as

A�tm�
xf � xi

t
D B�tm�

xf C xi

2
C C�tm�ym

0 D D
xf C xi

2
C Eym �19�

where xf is the final value of x for a time step, xi is the initial value of x for a time step, ym is the constant
value of y for a time step and tm is the midpoint of a time step.

The transition matrix provides the modal frequencies and damping. The frequencies are indeterminate by
an integer times the rotor angular speed. This indeterminacy can by removed by conducting Fourier analysis
on the periodic eigenvector of the system to determine the dominant frequency of the system. To calculate the
periodic eigenvector, the system is simulated over a period by using each eigenvector of the Floquet transition
matrix as an initial condition. The periodic eigenvector is then derived by representing the time history as a
product of the periodic eigenvector and the exponential of the eigenvalue. Now, there are numerous ways of
representing this eigenvalue and corresponding periodic eigenvector pair (owing to the eigenvalue uncertainty).
It is prudent to transfer the dominant frequency/periodicity to the eigenvalue and keep the eigenvector as
close to constant as possible (with some variation due to the possibilities of other frequencies). The dominant
frequency of the mode is thus calculated by finding the dominant frequency of the periodic eigenvector (based
on an assumed eigenvalue) and then transferring this periodicity from the eigenvector to the eigenvalue. In
this way, one represents the mode with an eigenvalue which corresponds to the dominant frequency and
an eigenvector denoting the dominant mode shape and presence of other frequencies. The procedure to find
dominant eigenvalues is represented by the form

OZ�t� D Z�t�e��t �20�

and
�dom D �C max[FFT� OZ�t��] �21�

where Z(t) is the time history of a state vector with initial conditions given by the eigenvector of [�T, 0�], �
is the eigenvalue of the Floquet transition matrix normalized by the period, FFT represents the fast Fourier
transform function and �dom is the dominant eigenvalue.

Results
The methodology described in the previous section is applied to a HAWT model. The rigid-body subsystem
degrees of freedom of the model are yaw and teeter. The blades and tower are considered to be flexible in
flap bending, lead–lag bending and torsion. The geometric and structural properties of the model are given
in Table I. The original source of the table is data from the National Wind Technology Center (NWTC) at
the National Renewable Energy Laboratory (NREL), Golden, CO, USA. Some modifications of the original
data are undertaken. The geometric parameters are simplified; for example, cn is zero. Also, the stiffnesses
of blades and tower are taken as constant values. The results for a flexible tower are presented in Table II
for blades and tower each having two, three and four elements.

The results for the effect of tower flexibility are presented in Table III. The degrees of freedom and the
time required for computation increase with an increase in the number of elements, and so does the accuracy.
The total number of degrees of freedom for the system is 3MC 6NC 2, for M elements in the tower and N
elements in each blade. The results of dominant frequencies for various tower flexibility values are given in
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Table I. Model data

�0 Nominal shaft angular speed 6Ð02 rad s�1

cn Distance from yaw axis to nacelle mass centre 0Ð0 m
cs Distance from yaw axis to shaft mass centre 0Ð0 m
ch Distance from teeter axis to hub mass centre 0Ð0 m
dn2 Distance from yaw axis to teeter axis 2Ð388 m
dh1 Distance from teeter axis to blade root 0Ð0 m
dh2 Distance from shaft axis to blade root 1Ð8 m
my Mass of nacelle 6900 kg
ms Mass of shaft 0Ð0 kg
mh Mass of hub 0Ð0 kg
Iy1 Moment of inertia of nacelle about lateral axis 0Ð0 kg m2

Iy2 Moment of inertia of nacelle about longitudinal axis 0Ð0 kg m2

Iy3 Moment of inertia of nacelle about yaw axis 16 599 kg m2

Islat Moment of inertia of shaft about lateral axis 0Ð0 kg m2

Islong Moment of inertia of shaft about longitudinal axis 0Ð0 kg m2

Ih1 Moment of inertia of hub about teeter axis 50 kg m2

Ih2 Moment of inertia of hub about shaft axis 5 kg m2

Ih3 Moment of inertia of hub about lateral axis 50 kg m2

Ky Yaw stiffness 0Ð0 N m rad�1

Cy Yaw damper coefficient 0Ð0 N m s rad�1

Kh Teeter stiffness 0Ð0 N m rad�1

Ch Teeter damper coefficient 0Ð0 N m s rad�1

lb Length of blade 8Ð42 m
lt Length of tower 27 m
mb Mass per unit span of a blade 67Ð5772 kg m�1

mt Mass per unit span of tower 67Ð5772 kg m�1

Ib
1 Cross-sectional moment of inertia of blade for torsion 5 kg m2 m�1

Ib2 Cross-sectional moment of inertia of blade for flapping 0Ð0001 kg m2 m�1

Ib3 Cross-sectional moment of inertia of blade for lead–lag 4Ð9999 kg m2 m�1

It1 Cross-sectional moment of inertia of tower for torsion 5 kg m2 m�1

It2 Cross-sectional moment of inertia of tower about lateral axis 0Ð0001 kg m2 m�1

It3 Cross-sectional moment of inertia of tower about longitudinal axis 4Ð9999 kg m2 m�1

GJb Torsional rigidity of blade 1Ð0 ð 107 N m2

EIb2 Bending rigidity of blade in flapping motion 1Ð0 ð 107 N m2

EIb3 Bending rigidity of blade in lead–lag motion 1Ð0 ð 107 N m2

GJt Torsional rigidity of tower 1Ð0 ð 109 N m2

EIt2 Bending rigidity of tower in longitudinal motion 1Ð0 ð 109 N m2

EIt3 Bending rigidity of tower in lateral motion 1Ð0 ð 109 N m2

Table III. The table shows the frequencies for a rigid tower as well as for tower stiffnesses that are 10, 100
and 1000 times that of the blades.

For the present example the first two modes in flap bending, lead–lag bending and torsion are converged
by using four elements for the blades and tower. The results use 500 time steps for Floquet theory. It should
be noted that the frequencies given in Tables II and III are the dominant frequencies. The response in general
contains other frequencies, but in the present example the contributions from the other frequencies are quite
small. Some of the blade modes couple strongly with the tower modes and change with tower flexibility,
especially the symmetric flapping mode. As the tower stiffness increases, the frequencies of the blade modes
converge well to the rigid-tower case.

Figures 3–6 show the first four flap-dominated blade modes. Note that the mode shapes depicted here
represent the periodic modes evaluated when the rotor is in the vertical. The symmetric modes couple with
the fore–aft bending modes of the tower. This is expected, since the forces and moments transferred to
the rigid body (teeter) by the two blades are equal in magnitude and opposite in direction. Here the tower
mode shape amplitude is exaggerated so it can be seen in the plots. Also, the antisymmetric modes have
a strong coupling with the teetering degree of freedom, as can be seen in the plots. Finally, all modes
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Table II. Dominant frequencies of the HAWT with number of elements

Eigenvalues per revolution

Number of elements 2 3 4

Yaw 0 0 0
Teeter š0Ð009i š0Ð009i š0Ð009i
1st tower lateral bending š0Ð282i š0Ð291i š0Ð292i
2nd tower lateral bending š14Ð711i š8Ð711i š8Ð377i
1st tower fore–aft bending š0Ð930i š0Ð938i š0Ð938i
2nd tower fore–aft bending š11Ð785i š8Ð052i š7Ð615i
1st tower torsion š56Ð940i š56Ð824i š56Ð431i
2nd tower torsion š99Ð990i š98Ð128i š97Ð049i
1st symm. flap š0Ð315i š0Ð317i š0Ð320i
1st anti-symm. flap š3Ð410i š2Ð935i š2Ð624i
2nd symm. flap š8Ð365i š5Ð937i š4Ð710i
2nd anti-symm. flap š23Ð748i š12Ð500i š9Ð583i
1st symm. torsion š15Ð482i š14Ð078i š13Ð936i
1st anti-symm. torsion š14Ð822i š14Ð123i š13Ð935i
2nd symm. torsion š46Ð212i š43Ð471i š41Ð610i
2nd anti-symm. torsion š46Ð233i š43Ð459i š41Ð662i
1st symm. lead–lag š0Ð498i š0Ð490i š0Ð491i
1st anti-symm. lead–lag š0Ð662i š0Ð654i š0Ð655i
2nd symm. lead–lag š7Ð408i š5Ð399i š4Ð465i
2nd anti-symm. lead–lag š7Ð589i š5Ð550i š5Ð345i

Table III. Dominant frequencies of the HAWT with tower stiffness

Eigenvalues per revolution

Ratio of tower to blade rigidity 10 100 1000 1

Yaw 0 0 0 0
Teeter š0Ð009i š0Ð009i š0Ð009i š0Ð009i
1st tower lateral bending š0Ð219i š0Ð292i š0Ð760i
2nd tower lateral bending š3Ð164i š8Ð377i š22Ð225i
1st tower fore–aft bending š0Ð920i š0Ð938i š1Ð494i
2nd tower fore–aft bending š4Ð584i š7Ð615i š23Ð985i
1st tower torsion š21Ð460i š56Ð431i š148Ð091i
2nd tower torsion š79Ð450i š97Ð049i š235Ð723i
1st symm. flap š0Ð217i š0Ð320i š0Ð667i š0Ð802i
1st anti-symm. flap š2Ð624i š2Ð624i š2Ð624i š2Ð624i
2nd symm. flap š4Ð660i š4Ð710i š4Ð737i š5Ð495i
2nd anti-symm. flap š9Ð578i š9Ð583i š9Ð583i š9Ð583i
1st symm. torsion š13Ð937i š13Ð936i š13Ð937i š13Ð937i
1st anti-symm. torsion š14Ð093i š13Ð935i š13Ð947i š13Ð972i
2nd symm. torsion š41Ð610i š41Ð610i š41Ð610i š41Ð610i
2nd anti-symm. torsion š41Ð724i š41Ð662i š41Ð610i š41Ð620i
1st symm. lead–lag š0Ð467i š0Ð491i š0Ð494i š0Ð496i
1st anti-symm. lead–lag š0Ð477i š0Ð655i š0Ð633i š0Ð639i
2nd symm. lead–lag š4Ð223i š4Ð465i š5Ð300i š5Ð356i
2nd anti-symm. lead–lag š4Ð660i š5Ð345i š5Ð647i š5Ð588i

also have very small contributions from tower lateral bending and torsion and from yaw, not shown in the
figures.

Figures 7–10 show the first four torsion-dominated blade modes. Owing to the difficulty in illustrating
torsion deformation, the deformation of a straight line on a circular rod undergoing the same twist as the
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Figure 3. First symmetric flapping mode �0 Ð320 �

Figure 4. Second symmetric flapping mode �4 Ð710 �

present eigenvector is shown. Here the symmetric modes do not interact with other degrees of freedom. The
definition of symmetric/antisymmetric mode needs to be clarified for blade torsion and lead–lag. For flapping,
the symmetric mode is simply the mode in which both blades deform in the same manner, out of the plane
of rotation in the same direction. On the other hand, for the torsion and lead–lag modes the deformations
are in the plane of rotation. Here the symmetric torsion mode is defined to be the one for which both blades
experience twist of the same sign in their respective blade frames of reference. Similarly, the symmetric
lead–lag mode is defined to be the one for which both blades experience lead–lag deflection of the same sign
in their respective blade frames of reference. One sees that the symmetric torsion and lead–lag modes do not
interact with other modes, because the forces and moments transferred to the hub are equal and opposite and
thus are cancelled. The antisymmetric torsion modes couple weakly with the yaw mode, as expected from
the transfer of yawing moment from the blade root via the hub.

Figures 11–14 show the first four lead–lag bending modes of the blades. The symmetric modes are purely
lead–lag bending modes. The antisymmetric modes couple with lateral bending modes of the tower, along
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Figure 5. First antisymmetric flapping mode �2 Ð624 �

Figure 6. Second antisymmetric flapping mode �9 Ð583 �

with the yaw mode, because the inertia force induces forces and moments at the tower top when both blades
move in the same direction. It is interesting that the yawing component vibrates at a frequency that is once per
revolution greater than the lead–lag motion. This is possibly because the inertial coupling described above is
only present when the blades are vertical. When the blades are horizontal, the antisymmetric lead–lag mode
would couple inertially with the nacelle pitch degree of freedom, if it were present. Also, the mode shape of the
second antisymmetric lead–lag mode couples with the lateral bending of the tower for this model of HAWT.

Conclusion
The article presents a methodology for the dynamic stability analysis of a horizontal axis wind turbine
(HAWT) and presents numerical results. The analysis framework is based on separating the complete HAWT
system into flexible- and rigid-body subsystems. The equations of motion for the subsystem of rigid bodies
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Figure 7. First symmetric torsion mode �13 Ð936 �

Figure 8. Second symmetric torsion mode �41 Ð610 �

are dependent on the boundary conditions from the flexible subsystem (tower and blades); and the frame
motion of the blades and tip deflection of the tower come from the rigid-body subsystem. Using the boundary
conditions, the equations of motion for the subsystems can be coupled to get the complete system equations.
Once the governing equations are linearized about the steady state solution, Floquet theory is then used to
extract the characteristic exponents of the complete system.

The numerical results presented in the article are for a two-bladed HAWT with flexible blades and tower.
Rigid-body subsystem degrees of freedom include yaw and teeter, whereas the blades and tower are assumed
to be flexible in torsion and bending in two directions. The results give the dynamic characteristics of the
HAWT, including dominant eigenvalues and mode shapes. A convergence study indicates that four finite
elements for each blade are sufficient to calculate the first few modes of the system. Also, a time-marching
algorithm based on finite elements in time (equivalent to a central differencing scheme) was found to be
simple, efficient and accurate for the time marching required for the application of Floquet theory.

This work will be extended in later articles to include a complete aeroelastic model based on the present
structural model and an aerodynamic wake model. The aeroelastic framework will be applied to the aeroelastic
analysis of HAWTs with composite blades. The cross-sectional analysis of the composite blades will be
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Figure 9. First antisymmetric torsion mode �13 Ð935 �

Figure 10. Second antisymmetric torsion mode �41 Ð662 �

accomplished using VABS. The aeroelastic framework will be used for time domain simulation, aeroelastic
stability characteristics, aeroelastic optimization and, where possible, obtaining a symbolic aeroelastic system
matrix for use in control design.
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Appendix A

0 D �dh1 � dn2� cos��0t� OFu20
C �Kh � chdn2mh�

2
0� sin��0t�qh

C �Ch sin��0t���0�Ih2 � Ih1 � Ih3 � 2chmh�ch � dn2�� cos��0t��U2
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Figure 11. First symmetric lead-lag mode (0.491)

Figure 12. Second symmetric lead-lag mode (4.465)

C chmh sin��0t� cos��0t� PU8 �Kyqy � cos��0t� OMd
10

� dn2 sin��0t� OFu10

� �dh1 � dn2� cos��0t� OFd20
� �Cy � 2�0�Ih3chmh�ch � 1.5dn2�� sin��0t� cos��0t��U1

��0�Islong C 2Ih3 cos��0t�
2 C 2chmh�ch � dn2 � �ch � 1Ð5dn2� sin��0t�

2��U3

� chdn2mh sin��0t� PU2 � �Ih3 C chmh�ch � 2dn2�� sin��0t� cos��0t� PU3

� �cnmy C csms � mh�dn2 � ch cos��0t�
2�� PU6 C dn2 sin��0t� OFd10
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Figure 13. First anti-symmetric lead-lag mode (0.655)

Figure 14. Second anti-symmetric lead-lag mode (5.345)
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where �0 is the nominal shaft angular speed; cn, cs, ch are, respectively, distances from the yaw axis to the
nacelle mass center, from the yaw axis to the shaft mass center, and from the teeter axis to the hub mass
center; dn2 is the distance from the yaw axis to the teeter axis; dh1 is the distance from the shaft axis to the
blade root; dh2 is the distance from the teeter axis to the blade root; Iy1 , Iy1 , and Iy1 are the moments of inertia
of the nacelle about axes fixed in the nacelle; and Islong , Islat are the moments of inertia of the shaft about the
longitudinal and lateral axes; Ih1 , Ih1 , and Ih1 are the moments of inertia of the hub about axes fixed in the
hub; OFu10

, OFu20
, and OFu30

denote the forces on the hub transferred from the blade U at the point of attachment
(root); OMu

10
, OMu

20
, and OMu

30
denote the corresponding moments, and OFd10

, OFd20
, OFd30

, OMd
10
, OMd

20
, and OMd

30
are the

forces and moments transferred by the blade D; F
u
10

and F
d
10

are the steady-state axial forces of each blade;
and OFt1l , OFt2l , OFt3l , OMt

1l ,
OMt

2l , and OMt
3l denote the forces and moments transferred by the tower.
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