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A rigorous approach is presented for the modelling of composite beam structures of the
type encountered in wind turbine blades, helicopter rotor blades and the like. The analysis
methodology is based on a dimensional reduction of the geometrically nonlinear, three-
dimensional, anisotropic theory of elasticity. Small parameters stemming from the beam-
like geometry of slender structures such as wind turbine blades lead to a splitting of the
problem into a (usually) linear, two-dimensional cross-sectional analysis and a geometri-
cally exact nonlinear, one-dimensional beam analysis. The incorporation of such beam
analyses into flexible multibody codes presents a unified and powerful approach to the
modelling of wind turbines with composite rotor blades. The generality and power of the
methodology are illustrated in several examples. Copyright © 2006 John Wiley & Sons, Ltd.
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Introduction
As almost anyone who has tried to analyse composite beams will have found, the numerous published works
on the theory of beams for isotropic materials are simply not suitable for application to composite beams.
Moreover, straightforward modification of those theories to make them generally applicable is problematic. In
an extensive review of the literature on beam theories from the 1940s to the mid-1980s in the book by Hodges,1

it is found that even the most mathematically sophisticated theories exhibit difficulties when one attempts to
apply them to practical problems. The first difficulty is in the formulation of appropriate cross-sectional con-
stitutive laws in terms of known three-dimensional (3D) material constants. Even the most sophisticated of the
older theories cannot deal with phenomena such as elastic couplings from anisotropic materials, initial twist
and curvature or inhomogeneous, built-up construction. The required warping functions associated with all the
types of deformation are coupled and complicated. Second, the advanced theories rely heavily on rather abstract
tensor analysis, which can be troublesome for application-oriented engineers.

Since the mid-1980s, techniques have been under development that address both these issues. Work by
Giavotto et al.2 pioneered cross-sectional analysis of general composite beams using a framework based on
linear elasticity. Although Borri and Mantegazza3 and Kosmatka and Friedmann4 applied such an approach to
the nonlinear problem of rotor blade dynamics, a unified approach to rigorously treat geometrically nonlinear
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problems and restrained warping effects did not turn out to be quickly forthcoming. However, within the last
decade there has been significant progress. As a result, the beam theory presented by Hodges1 is not only a
unified approach but is also quite suitable for practical helicopter and wind turbine rotor blade applications.
While it involves a minimal amount of tensor analysis, this only affects the derivation, not the application. It
is based on asymptotic procedures that exploit the smallness of parameters such as strain and slenderness, and
the resulting one-dimensional (1D) equations are geometrically exact, mnemonic and can be written in a few
lines. Here ‘geometrically exact’ refers to the fact that the finite rotation of the cross-sectional frame is treated
exactly, without small-angle approximations. The theory does not make use of an assumed displacement field.
Rather, the equations governing the warping fall out from the use of asymptotic methods and can be solved
either in closed form or by the finite element method. The constitutive law for the 1D theory along with recov-
ery relations for 3D strain and stress are also derived as part of this procedure. There are neither restrictions
on the type of material nor on the geometry of the cross-section.

The lowest-order theory is of the form of the Euler–Kirchhoff–Clebsch theory as far as the measures of
deformation are concerned, but it is generalized to include the structural couplings that normally follow from
the use of anisotropic materials. The refined theories are of the type that accommodate either transverse shear-
ing deformation for closed cross-sections or the Vlasov effect for open sections.

The keys to extending the older works, so as to create a workable, practical and yet rigorous analysis, were
twofold. First, a kinematical description was developed by Danielson and Hodges5 that allows the 3D strain
field to be expressed in terms of the intrinsic 1D measures for initially twisted and curved beams. The result-
ing expressions for 3D strain involve no tensor analysis at all, which facilitates the incorporation of nonlinear
effects with no significant increase in complexity. Second, the variational asymptotic method (VAM) of
Berdichevsky6 was found to split a 3D geometrically nonlinear elasticity analysis for beam-like structures into
a nonlinear 1D analysis and a (usually) linear two-dimensional (2D) analysis. This method also turned out to
be amenable to determining the cross-sectional stiffness constants. They could be found in closed form for
certain simple cases, generally possible only for either isotropic beams with relatively simple cross-sectional
geometries or thin-walled beams made of laminated composite materials; or they could be found by applica-
tion of the finite element method in even the most general case. This part of the analysis is referred to as ‘cross-
sectional analysis’.

In the 1990s, using the 3D strain developed by Danielson and Hodges5 and the VAM of Berdichevsky,6

Hodges and co-workers undertook the creation of a general finite element-based methodology for composite
blade cross-sectional analysis as part of the framework for nonlinear beam theory. The result was the finite
element code called VABS (variational asymptotic beam section analysis). The history of the development and
validation of VABS is extensive and can be found in works such as References 7–18. See work cited by Hodges1

for a more complete history of the development and validation of VABS as well as the corresponding 1D theory
of beams. It should be noted that the current version of VABS as of this writing is based on Reference 17.

Figure 1 shows the overall beam-modelling process. The ellipses represent bodies of data and the rectan-
gles represent analyses. Input data sets for the entire process are in green ellipses. The 1D theory and its output
are in blue. Finally, the 2D cross-sectional analysis (as a set of formulae or a finite element-based program
such as VABS) and its output are shown in red. The inertia properties are included in the cross-sectional analy-
sis as well, since they are usually written in terms of integrals over the cross-sectional plane. The cross-
sectional analysis requires details of the cross-sectional geometry, material elastic constants and material 
densities. Initial curvature and twist must be input to both 1D and 2D analyses, while loads and boundary con-
ditions only affect the 1D analysis.* Once the user creates a mesh of the cross-sectional plane and identifies
the material properties of each element, then VABS can be run. Its output includes the cross-sectional proper-
ties and stress/strain recovery relations (which require output from a 1D analysis). It has been shown that this
splitting of the 3D problem leads to two to three orders of magnitude reduction in computational effort rela-
tive to that of 3D finite elements, with comparable accuracy of the recovered stresses in the beam interior.
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* For rotor blade applications, external pressure from aerodynamics creates surface tractions that are much smaller than stress induced
by bending. For surface tractions that are not negligible, the cross-sectional analysis must be adjusted to take them into account.



In this article we will first address the formulation of the 3D problem. Then both the 2D cross-sectional and
1D beam analyses are outlined. Finally, results obtained for example problems will be presented and discussed,
followed by concluding remarks.

3D Formulation in Terms of Intrinsic 1D Variables
Here we present an overview of the 3D formulation. Since we are first considering the beam as a generic elastic
body, the displacement of every point in the beam can be expressed in terms of three components, each a func-
tion of three curvilinear coordinates x1, x2 and x3, where x1 is a running length coordinate along the reference
line of the beam. This line can be any conveniently chosen line. In elementary theory it is normally chosen to
be the locus of shear centres. However, for our purposes this choice is not viable, because the shear centre
does not in general exist for composite beams. Other convenient choices include the locus of aerodynamic
centres, the locus of cross-sectional mass centroids, etc. For beams with a straight axis about which the initial
twist takes place, choice of this axis as the reference line allows one to characterize the beam as simply ini-
tially twisted.

To make the process of dimensional reduction more understandable, we introduce 1D variables typically
associated with a refined beam theory. These are associated with the average position vector of all material
points in a cross-section and a frame associated with a planar cross-section of the undeformed beam at a spe-
cific value of x1.

It is convenient to introduce a reference frame A, in which are fixed dextral, mutually perpendicular, unit
vectors Ai for i = 1, 2, 3. The frame A is an absolute frame as far as deformation is concerned, in that the ori-
entation of the local undeformed beam cross-section in A is a function only of x1 and not of time t. The motion
of A in an inertial frame I is, however, supposed to be known for all time. This assumption is easily relaxed
for applications to flexible multibody dynamics; it is made only for the sake of simplifying our discussion here.

Consider the beam idealized as a reference line and a typical reference cross-section, as shown in Figure 2.
Let x1 denote arc length along a curved reference line r for an undeformed but initially curved and twisted
beam. Let xa denote lengths along straight lines that are orthogonal to each other and to the reference line r
within a cross-section Σ(x1). (Here and throughout this article, unless specified otherwise, Greek indices assume
values 2 and 3, while Latin indices assume values 1, 2 and 3. Repeated indices are summed over their range
unless indicated otherwise.) Here a point on the undeformed beam reference line r is located relative to a point
fixed in frame A by the position vector r(x1). At each point along r define a frame b in which are fixed orthog-
onal unit vectors bi for i = 1, 2, 3 such that b2(x1) and b3(x1) are tangent to the coordinate curves x2 and x3

at r and b1 is tangent to r. Each value of x1 then specifies not only a point on r but also a reference cross-section
at that point, shown in green at the top the figure. The frame b has an orientation that is fixed in A
for any fixed value of x1 but varies along the beam if the beam is initially curved or twisted. Notice that 
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x2b2 + x3b3 = xaba is the position vector of an arbitrary point within a particular cross-section relative to the
point in that cross-section where r intersects it. A particle of the beam is then located from a fixed point in
space by the position vector r̂(x1, x2, x3), given by

(1)

Similarly, consider the configuration of the deformed beam as shown in Figure 2. The locus of material
points along r has now assumed a different curved line denoted by R. Let s denote arc length along R. The
locus of points belonging to the initially planar reference cross-section of the undeformed beam has under-
gone a rigid body translation and rotation as well as a warping displacement. The rigid body translation is
along the vector u(x*1), the position vector from the point on the undeformed beam reference line at x1 = x*1 to
the point on the deformed beam reference line at s = s(x*1). At each point along R introduce the frame B in
which are fixed orthogonal unit vectors Bi(x1) for i = 1, 2, 3, with B1(x*1) normal to the deformed beam refer-
ence cross-sectional plane and Ba(x*1) lying in this plane, shown in red at the bottom of the figure. Note that
B1 = B2 × B3 is not necessarily tangent to R unless one adopts the Euler–Bernoulli hypothesis, here general-
ized to mean that the reference cross-section remains normal to R when the beam is deformed. In addition to
the rigid body motion of the set of particles making up the reference cross-section of the undeformed beam,
this initially plane set of particles warps, shown in blue in the figure. The frame B is chosen so that the portion
of the displacement relegated to the warping is small, so that the deformed beam reference cross-sectional
plane is the plane that is closest to those material points of the deformed beam that make up the reference
cross-section of the undeformed beam at x*1 of the undeformed beam. We will be more precise in defining
frame B later, but this level of detail is sufficient presently.

In order to represent the deformed state mathematically, we must first deal with the rotation. Rotation from
bi to Bi is characterized in terms of the matrix of direction cosines, Cij, so that

(2)

Now the displacement field can be specified. Introduce R = r + u, where u = uibi is the 1D displacement
variable, i.e. the position from a point on the undeformed beam reference line to a point with the same value
of x1 on the deformed beam reference line. Now one can represent the position of a particle in the deformed
beam that had position r̂ in the undeformed beam as R̂ (x1, x2, x3), given by

(3)R̂ r u B B B= + + + +x x wi i2 2 3 3

Cij i j= ⋅B b

r̂ r b= + xa a
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where wi = wi(x1, x2, x3) represents the (small) warping displacement field. Except for wi, all unknowns in this
equation depend only on x1. Notice that, if warping is suppressed, the locus of points that were in a reference
cross-sectional plane in the undeformed beam is now in the plane determined by B2 and B3. When warping is
not suppressed, it should be emphasized that the unit vectors Bi for i = 1, 2, 3 are orthogonal by definition and
that the material lines in the deformed beam that were along bi in the undeformed beam are neither necessar-
ily straight nor orthogonal in the deformed beam.

Thus the 3D displacement field is expressed in terms of the displacement of the reference line, u, the direc-
tion cosine matrix of the cross-sectional frame, C, and the warping w and its partial derivatives. (Here and
throughout this article, symbols without subscripts, e.g. w, are used to denote matrices having elements denoted
by the corresponding symbols with subscripts, i.e. w1, w2 and w3.) Using the small local rotation approxima-
tion of Hodges,1 which is adequate for blades with closed cross-sections, the six components of the 3D strain
are expressible as linear functions of the 1D generalized force strains g and moment strains k. The force strains
are defined such that

(4)

where ( )′ denotes the derivative with respect to x1. The moment strains are defined as

(5)

where k is the column matrix of initial twist/curvature measures in the b basis and K is the column matrix of
deformed beam twist/curvature measures in the B basis. Components of K which form an antisymmetric matrix
K̃ij = −eijlKl using the permutation symbol eijk can be expressed in the form

(6)

From equation (4) we can find explicit expressions for the 1D generalized force strains, namely

(7)

where e1 = [1 0 0]T. Therefore the strain energy of the cross-section or the strain energy per unit length of the
beam may be written as

(8)

where the angle brackets signify integration of the argument times 1 − x2k3 + x3k2 over the cross-sectional plane
Σ. The 3D strain components are here represented by the matrix

(9)

where Γ is a function of the generalized strains g and k along with the warping w and its partial derivatives
with respect to xi. Thus one may write that

(10)

which is the most general form. The appearance of the column matrix w should be interpreted as w and a subset
of its partial derivatives.

An expression for the velocity of every point in a typical cross-section is also needed in order to calculate
the kinetic energy per unit length. Asymptotic methods have proven that the warping is of the order of the
strain relative to the cross-sectional dimension. Therefore we may neglect the influence of warping when cal-
culating the velocity field. This in effect regards the cross-sectional plane as rigid only for the purposes of cal-
culating the velocity. Elementary laws of kinematics allow us to write the velocity of a typical material point
M in the inertial frame I in terms of motion variables or generalized velocity variables for the system of par-
ticles that make up the reference cross-section. These are the generalized speeds of Kane and Levinson.19 We
first introduce the column matrices that contain the measure numbers of wbI in the B basis and wBI in the B
basis, denoted by w and Ω respectively and related by

U U= ( )g k, , w

Γ Γ Γ Γ Γ Γ Γ= [ ]11 12 13 22 23 332 2 2 T

U D= 1
2

Γ ΓT

g = + ′ +( ) −C e u ku e1 1
˜

˜ ˜K C C CkC= − ′ +

k = −K k

′ = +( ) +R B B1 211 1 1g g a a
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(11)

where (·) is the partial derivative with respect to time. The similarity of this equation to equation (6) is duly
noted. Any representation for finite rotation can be used.

The reference line intersects the cross-section at point B*, so that now one can introduce the column matrix
that contains the measure numbers of vB*I, the velocity of B* in I in the B basis, denoted by V and given by

(12)

where v is the velocity of b in the inertial frame, expressed in the b basis. The similarity between this relation
and the strain in equation (7) is also apparent. With these motion variables the inertial velocity of M expressed
in the B basis is

(13)

where

(14)

and the kinetic energy becomes

(15)

where m is mass per unit length. It should be noted that the matrix i also can be written

(16)

where the (1,1) element is the torsional inertia and the terms in the lower-right 2 × 2 submatrix contribute to
the cross-sectional rotary inertia terms associated with bending.

Application of Hamilton’s principle yields two problems, one involving variations of 1D variables g, k, V
and Ω and the other involving variations of w and its first partial derivatives. The latter is a 3D problem which
can be solved by taking into account the smallness of the cross-sectional length scale a relative to the wave-
length of deformation along the beam and to the characteristic length associated with initial curvature and
twist, namely . The presence of the warping displacements in the strain energy makes the problem
3D. Because the warping only appears in the strain energy, the solution for the warping can be found from the
static analysis (i.e. with only the strain energy). The warping is eliminated through the process of dimensional
reduction. This process also precisely determines the orientation of B, so that the warping is indeed small, of
the order of the strain, compared with the cross-sectional dimensions. Note that the displacement field in equa-
tion (3), through the introduction of u and the change of orientation between b and B, is six times redundant.
Therefore the warping must be constrained six times. Detailed discussions of the constraints and dimensional
reduction process are found in Reference 1. Suffice it to say here that, with the choice of constraints used
therein and embodied in VABS, the warping displacement is of the order of a times the strain, where a is the
characteristic dimension of the cross-section. An overview of the dimensional reduction process and its output
is presented next.

Cross-sectional Analysis
Dimensional reduction is a mathematical process that involves removing variables that depend on a number
of dimensions and replacing them with other variables that depend on a smaller number of dimensions, along
with explicit dependence on one or more independent variables. In a beam analysis we want to eliminate any
variables that depend on cross-sectional coordinates x2 and x3 and in their place introduce a functional that

R k k= ( )1 T

i

i i

i i

i i

=
+













2 3

2 23

23 3

0 0

0

0

K = − +( )1
2 2m m xV V V iT T TΩ Ω Ω˜

x = =









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p x

x
B
M B*

0

2

3

v VB
MI = + Ω̃x

V C v u u= + +( )˙ w̃

˜ ˙ ˜Ω = − +CC C Cw
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depends explicitly on x2 and x3. Thus we need to eliminate w from the strain energy in terms of 1D variables
and x2 and x3. This process is well suited for the VAM of Berdichevsky.6 A cross-sectional analysis leading to
a generalized Timoshenko model for initially curved and twisted anisotropic beams was first carried out by Yu
et al.,17 is embodied in the computer program VABS and is described in the context of complete beam analy-
sis in Chapter 4 of Reference 1.

For non-homogeneous, anisotropic beams, VABS gives the elastic constants for a strain energy per unit
length of the form

(17)

where A22 ≈ S44 + S55. The last term represents the energy associated with the trapeze effect, accounting for the
influence of the axial force caused by rotation of the rotor on the effective torsional stiffness. For slowly turning
rotors, such as those of wind turbines, one may neglect this term. VABS also provides the relations for recov-
ery of all strain and stress components over each cross-sectional model, given the solution for appropriate 1D
variables at that cross-section.

A strain energy density for classical theory, i.e. without the transverse shearing variables 2g1a, can be found
by minimization of this expression for the energy with respect to 2g1a while simultaneously constraining g11

and ki so that 2g1a = 0. The resulting matrix of elastic constants is only 4 × 4 instead of 6 × 6. Although the
classical theory can also be used for composite beams, it cannot achieve the accuracy of the generalized Tim-
oshenko theory. Moreover, as shown below, the classical theory must be applied at a specific reference line in
order to obtain reasonably accurate results, whereas the generalized Timoshenko theory allows an arbitrary
choice of reference line.

1D Equations for Rotating Wind Turbine Blades
Equations resulting from the strain energy density of equation (17) and the kinetic energy density of equation
(15) lead to a set of partial differential equations, derived in Chapter 5 of Reference 1. In this section we present
these governing equations, including partial differential equations of motion and kinematics.

The partial differential equations of motion are derived in Chapter 5 of Reference 1 and are given as

(18)

Here the new variables are column matrices of the measure numbers of vectors expressed in the B basis: the
section force F, the section moment M, the section linear momentum P, the section angular momentum H, the
applied distributed force per unit length, f, and the applied distributed moment per unit length, m.

When the trapeze terms are neglected, equation (17) provides the constitutive equations (algebraic) for this
system as

(19)
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To form a complete system, the equations of motion in equation (18) and the constitutive relations in equation
(19) must be augmented by the kinematical partial differential equations, equations (12) and (11) for the gen-
eralized speeds plus equations (7) and (6) for the generalized strains. When a particular finite rotation formu-
lation is used, these can be rewritten accordingly. Chapter 5 of Reference 1 uses Rodrigues parameters. These
equations can be used in mixed form, such as the weakest form found in equation (5.50) of Reference 1. Alter-
natively, they can be collapsed into a set of six partial differential equations of motion in three displacement
and three rotation variables, as done by Bauchau and Kang.20 Either set is suitable for finite element dis-
cretization. Examples of finite element discretization of this set of equations can be found in the documenta-
tion for flexible multibody codes DYMORE20–22 and RCAS23,24. Both codes have geometrically exact composite
beam elements and use the beam cross-sectional properties from VABS.

Examples
A Pitfall Associated with Use of Classical Theory
VABS provides common engineering beam models such as the classical model (a generalized Euler–
Bernoulli/Saint-Venant model represented by a 4 × 4 stiffness matrix), a generalized Timoshenko model (rep-
resented by a 6 × 6 stiffness matrix) and a generalized Vlasov model (represented by a 5 × 5 stiffness matrix
and appropriate for thin-walled, open section beams). The classical model is the simplest; it is commonly
accepted that it can approximate results of the generalized Timoshenko model for static and low-frequency
vibration analysis of slender beams. However, for accurate prediction using the classical model, it is neces-
sary for the analyst to choose the reference line along the locus of generalized shear centres defined below.
On the other hand, if the Timoshenko model is used to carry out the analysis, the reference line can be selected
arbitrarily. In what follows, we will use an example to clarify this subtlety.

Consider a prismatic composite beam of length �, clamped at x1 = 0 and loaded at the tip with F(�) = F̂ and
M(�) = M̂. The cross-sectional properties of this beam can be characterized using the VABS Timoshenko model
in terms of a 6 × 6 flexibility matrix as follows:

(20)

Let us denote the column matrix of infinitesimal spanwise rotation measures by q and displacement measures
by u, both expressed in the b basis. According to Hodges,1 the linear static behaviour of this beam has the
closed form solution

(21)

and

(22)

This is the most compact expression for static behaviour of linearly elastic beams with full elastic coupling.
The shear centre is usually defined as the point on the cross-section at which transverse shearing forces can

be applied without inducing twist, q1. Because of possible non-zero bending–twist couplings, i.e. when T1a ≠
0, such a point does not in general exist for composite beams. On the other hand, the generalized shear centre,
defined as the point on the cross-section at which Za1 = 0, will always exist. At this point, transverse shear
forces contribute to the twist only through the bending moments they induce.

It is noted that the origin of the cross-sectional Cartesian coordinate system is chosen arbitrarily. If we offset
the origin to be at a point A (a2, a3) in the coordinate system used to obtain equation (20), the flexibility matrix
will be transformed according to
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(23)

where the subscript A denotes that the subscripted variable is evaluated at the point A and where r = [0 a2 a3]T.
The transformed flexibility matrix in equation (23) can be substituted into equations (21) and (22) to obtain
the rotations qA and displacements uA respectively, which are the global beam behaviour if the locus of point
A is chosen as the reference line. It can be easily verified that

(24)

which means that the displacement and rotation at some arbitrary point in the beam are invariant no matter
what the choice of reference line.

On the other hand, when using the classical model, one loses the freedom to use a cross-sectional model for
an arbitrary reference line. The 4 × 4 cross-sectional flexibility matrix of the classical model can be obtained
from the corresponding cross-sectional flexibility matrix of the Timoshenko model, equation (20), by elimi-
nating the two rows corresponding to 2g1a and the two columns corresponding to Fa. Linear static analysis
using this model yields the following exact solutions for rotations and displacements:

(25)

(26)

with q = [q1 − u′3 u′2]T and eT
1 Z = [Z11 Z12 Z13]. One can obtain u2 and u3 from a simple integration of the second

and third equations of equation (25). For convenience of discussion, we list the differences between ui and q1

from the generalized Timoshenko and classical models in Table I. One can make the following observations.
First, the twist behaviour will be predicted exactly when using the classical model if and only if the general-
ized shear centre (the point on the cross-section at which Za1 = 0) is chosen as the reference line. Second, the
axial displacement will be predicted exactly when using the classical model if and only if R1a = 0. Finally, the
classical model provides acceptable accuracy if:

1. The extension–shear couplings 2R12 and 2R13 are negligible compared with extension–bending couplings
�Z13 and �Z12 respectively.

2. The relative error in the transverse deflections caused by transverse shear flexibility is small, which is true
if 3(R22 + Z23�) << T33�

2 and 3(R33 − Z32�) << T22�
2. The relative error in the terms coupling the transverse

deflections is 6R23 + 3(Z33 − Z22)� relative to 2T23�
2; this term may or may not have an important influence.

3. The relative error in transverse deflections caused by moments (or in rotations caused by transverse shear
forces) is small if 2Z2a << Ta3� and 2Z3a << Ta2�.

These relations are sufficient but not all are necessary; most hold for static behaviour of beams that are suffi-
ciently slender and, by inference, for beams vibrating with sufficiently long wavelength. For example, even in
the best case, if the generalized shear centre is used as a reference line in a classical model, accuracy for
bending modes higher than the first or second will definitely deteriorate, and more so the higher the mode.
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Table I. Differences between global displacements and rotation predicted by generalized Timoshenko 
and classical models

Deformation Difference

u1 x1(F̂2R12 + F̂3R13)
u2 x1{F̂1R12 + M̂iZ2i + F̂2(R22 + �Z23) + F̂3 [R23 − �Z22 + x1/2 (Z22 + Z33)]}
u3 x1{F̂1R13 + M̂iZ3i + F̂3(R33 − �Z32) + F̂2 [R23 + �Z33 − x1/2 (Z22 + Z33)]}
q1 x1(F̂2Z21 + F̂3Z31)



One should definitely use the generalized Timoshenko model rather than the classical one for structural dynam-
ics applications.

Examples Using VABS, DYMORE and RCAS
To demonstrate the application of VABS to model wind turbine blades, we will use VABS to obtain the prop-
erties of a typical wind turbine blade cross-section as sketched in Figure 3. The outline of the blade is a VR-
7 aerofoil (see http://www.nasg.com/afdb/list-airfoil-e.phtml) with chord length 20·2 in and the web located
8·4025 in from the leading edge. The materials used to make the different components of this blade are listed
in Table II, where titanium is assumed to be isotropic and both graphite/epoxy and Nomex honeycomb are
taken to be transversely isotropic. The material properties (density and elastic constants) are given in Table III.
The lay-up orientations for the D-spar are [45°/ − 45°/0°/0°/0°] from outside to inside. The lay-up angle is 45°
for the trailing edge skin and 0° for the web.

The cross-section is meshed for the running of VABS as depicted in Figure 4, with 890 eight-noded quadri-
lateral elements. The shear centre does not exist for this section, but the generalized shear centre is located at
a point 5·889 in back and 0·65789 in up from the leading edge. VABS was run with the origin of the sectional
coordinate system reset to this point. Although the choice of reference line does not affect global results of the
beam calculations, such as natural frequencies, when obtained from the generalized Timoshenko model (a 6 ×
6 matrix of cross-sectional stiffnesses), this choice does affect the accuracy of results obtained from the clas-
sical theory (a 4 × 4 matrix of cross-sectional stiffnesses).

The sectional mass properties calculated using VABS are

(27)
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Figure 3. Sketch of a cross-section for a typical wind turbine blade

Table II. Materials composing the wind turbine blade

Component Material Thickness (in)

Leading edge cap Titanium 0·04
D-spar Graphite/epoxy 0·35
Web Graphite/epoxy 0·04
Trailing edge skin Grapite/epoxy 0·04
Fill core Nomex honeycomb N/A



where m is the mass per unit length, i2 is the mass moment of inertia about the direction along the chordline
and i3 is the mass moment of inertia about the perpendicular direction. The centre of mass is slightly off the
generalized shear centre and is located at x2 = −0·00351124 in and x3 = −0·196410 in.

The generalized Timoshenko model obtained from VABS for this blade section is represented by the fol-
lowing matrix of cross-sectional stiffness constants:

(28)

where the units associated with stiffness values are Sij (lb), Si,j+3 (lb in) and Si+3,j+3 (lb in2) for i, j = 1, 2, 3. It
should be noted that the cross-sectional matrix from classical theory is obtained by striking the second and
third rows and columns from the inverse of the 6 × 6 cross-sectional matrix in equation (28) and inverting the
resulting 4 × 4 matrix.

Having these sectional properties, we are ready to perform all types of analysis related to the wind turbine
blade. Moreover, we can define a beam element using this information in a flexible multibody code so that the
dynamic behaviour of a wind turbine with such blades can be simulated. For example, considering a blade
having such a section with a span of 404 in, one can easily calculate the vibration modes and corresponding
frequencies of this blade when it rotates with different angular speeds. Figure 5 shows the fan plot of the first
six modes using both classical and generalized Timoshenko theories (F1, first flapping mode; F2, second flap-
ping mode; F3, third flapping mode; L1, first lagging mode; L2, second lagging mode; T1, first feathering or
torsional mode) of the blade clamped to a shaft rotating with different angular speeds. These results have been
obtained from DYMORE, but essentially identical results are obtained from RCAS. It can be observed from
the plot that the flapping frequencies change with the angular speed pretty significantly, yet the lagging and
feathering/torsional frequencies do not vary nearly as much with angular speed. It is also evident that, as one
looks at the frequencies of modes dominated by bending, results from classical theory are slightly stiffer, and
the higher the frequency (or the shorter the wavelength) the less accurate they are. If the beam becomes fatter,
the difference will be more significant.

For the purpose of demonstrating that a complete wind turbine can be simulated within the present method-
ology, we use DYMORE to hook three identical blades onto a tower used by Bauchau and Wang25 to build the
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Table III. Material properties

Material Density (×10−4 lb sec2 in−4) Elastic properties

Titanium 4·220147 E = 14·94977Mpsi, n = 0·34
Graphite/epoxy 1·49717 El = 26·25182Mpsi, nlt = 0·28

Et = 1·493888Mpsi, ntt = 0·33
Glt = 1·039920MPsi

Nomex honeycomb 0·059912 Glt = 47Kpsi, nlt = νtt = 0·30
El = Et = 28Kpsi

Figure 4. Wind turbine blade cross-sectional mesh (to scale)



wind turbine model depicted in Figure 6. The rotor is initially rotating at 90 rpm and the angular speed is sud-
denly decreased to 80 rpm. We can simulate the dynamic behaviour during and after this event to evaluate
whether the system can withstand such a change. Please note that, for simplicity, we do not consider aerody-
namic loads in this simulation. All the time histories of displacement, force and moment can be predicted. In
Figures 7–9 we plot the time histories of elastic displacement components at the tip of the blade and section
force and moment components at the blade root respectively. Such information provides important informa-
tion for wind turbine design and analysis.
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Figure 7. Time history of blade tip displacements. Red thick line: axial; black solid line: lateral; 
dashed purple line: transverse
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Figure 8. Time history of blade root forces. Red thick line: axial; black solid line: lateral; 
dashed purple line: transverse
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Figure 9. Time history of blade root moments. Red thick line: axial; black solid line: lateral; 
dashed purple line: transverse



Concluding Remarks
A general methodology for analysing composite beams such as wind turbine and helicopter blades has been
presented. The methodology accounts for generally anisotropic materials and arbitrary cross-sectional geom-
etry. A rigorous asymptotic dimensional reduction procedure splits the underlying 3D problem into a 1D beam
problem and a 2D cross-sectional problem, leading to significant reduction in computational effort vis-à-vis
3D finite elements. The cross-sectional analysis is implemented in VABS. The cross-sectional model output
by VABS is nonlinear, but, because the angular speed is generally small for wind turbine rotors, one may
discard results from the nonlinear part of the cross-sectional model, which are dominated by the trapeze effect.
The resulting model then is a set of cross-sectional elastic constants for each modelled section that can be used
in flexible multibody codes such as DYMORE and RCAS, both of which use geometrically exact 1D finite
elements. The 1D results obtained can be used for stress recovery for each modelled cross-section. Results
obtained demonstrate that the methodology can model realistic blades. When coupled with appropriate models
for the aerodynamics and power generation equipment, the approach is sufficiently powerful to calculate the
dynamic behaviour of complete wind turbines.
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