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Abstract

The lateral±torsional buckling of composite strip- and I-beams is considered. The geometrically exact governing

equations are simpli®ed by consistently regarding certain con®guration parameters as small. The assumption that these

parameters are indeed small is equivalent to the assumption that the square of the maximum prebuckling cross-sectional

rotation due to bending is small compared to unity. The analysis takes into account various re®nements of previously

published results, including the Vlasov e�ect, elastic coupling, the o�set of the load from the centroid, and, of course,

prebuckling de¯ections. The analysis is thereby reduced to a single fourth-order di�erential equation and boundary

conditions, all of which are derivable from a corresponding energy expression. From the form of matched asymptotic

expansions of the buckling mode when small parameters are ignored altogether, a single comparison function is found

which gives the correct buckling load to within 1% for a wide range of the warping rigidity. Using this comparison

function, a formula for the buckling load as a function of the small parameters of the problem is found and validated.

With certain exceptions regarding the load o�set parameter, the formula provides results which agree quite well with the

numerical solution of the exact equations as long as all the small parameters remain small. However, the load o�set

parameter always appears in the governing equations as multiplied by a ratio of sti�nesses, which can become large,

especially for composite I-beams. For this case, a special treatment is required. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Elastic stability (or buckling) of beams, plates, and shells is one of the most important criteria in the
design of any structure. Often, it is the critical design issue (even more than strength) in sizing certain
structural elements. Because of this crucial role of elastic stability, it is extremely useful to have results of
buckling analysis expressed in closed form, even if they are approximate, whenever possible for design
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analysis. Although such approximate analyses cannot replace an over-all elastic stability analysis of the
entire structure, the ease of implementation and the physical insight that such forms give allows valuable
design tradeo�s to be made in the preliminary design phase; and that can lead to signi®cant improvements
in cost and performance of the structural design. In this paper, we consider the lateral±torsional buckling of
elastically coupled composite I-beams, and we look for closed-form approximate solutions that would be
valuable in preliminary design.

The original work on the lateral±torsional stability of cantilevered beams goes back to the pioneering
work of Michell (1899), Prandtl (1899), and Reissner (1904). Michell formulated the linear model for deep
beams, and Prandtl and Reissner independently developed closed-form approximations for the buckling
load that included some e�ects of bending prior to buckling. Hodges and Peters (1975) corrected some
small errors in their earlier work. The corrected equations turned out to be simpler than the original ones,
and Hodges and Peters used an asymptotic expansion to develop a closed-form buckling load formula that
included the e�ect of bending prior to buckling in an asymptotically correct way. The method of asymptotic
expansions was also used by Reissner (1979) to include the e�ect of shear deformations on the buckling of
cantilever beams.

Since 1979, little further attention was given to the lateral buckling of cantilever beams until the advent
of practical applications with composite materials. Work which attempts to address the potential of
composites to improve the lateral±torsional stability of I-beams was presented by Pandey et al. (1995). The
work was based on the composite I-beam theory of Bauld and Tzeng (1984). The theory of Bauld and
Tzeng has been shown to fail in certain situations by a comparison with numerical solutions and with an
asymptotically correct theory for composite I-beams developed by Volovoi et al. (1998). The purpose of the
present work is to apply this more general, asymptotically correct theory of composite I-beams to the
lateral±torsional stability of cantilevered beams at the same time giving heed to the e�ects of prebuckling
de¯ections, o�set of the applied load away from the centroid, and elastic coupling. The goal is to obtain an
approximate, closed-form solution for the buckling load taking into account all of these phenomena.

2. Derivation of governing equations

Consider a thin-walled composite I-beam. When the ¯ange length is zero, the beam has a thin rectan-
gular cross-section (herein termed a ``strip-beam''), so the treatment here is designed to treat both cases. Let
the beam be cantilevered and loaded at its free end with a transverse dead load. The point of application for
the load is in the plane of greatest ¯exural rigidity and at a distance e above the centroidal axis, see Fig. 1.

Fig. 1. Schematic of end-loaded cantilever.
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The load is directed vertically downward, perpendicular to the undeformed beam axis and parallel to the
plane of the beam's greatest ¯exural rigidity. In the ®gure, B1, B2, and B3 are unit vectors ®xed in the cross-
sectional frame. The beam is spanwise uniform and made of generally anisotropic materials, the only re-
striction being that the plane of greatest ¯exural rigidity is assumed to be a plane of symmetry for the beam
geometry, material, and loading. This implies that prebuckling de¯ections of the beam axis occur in this
plane and that in the prebuckling state there is no torsion. Thus, the cross-sectional frame rotates about
a3 � B3 by the angle h3.

Ignoring the stretching of the beam, this means that there is elastic coupling only between torsion and
bending about the weak ¯exural axis. Asymptotically exact formulae for the cross-sectional sti�ness con-
stants of thin-walled anisotropic strip- and I-beams can be found in Volovoi et al. (1998). The only dif-
ference in the two cases is that the Vlasov term (see below) is absent in the strip-beam case, but very
important for the I-beam. For the present analysis, the constitutive law is only needed for the moment stress
resultants. Let x1 be the beam axial coordinate and x2 and x3 be its cross-sectional principal axes for
bending, it is of the form

M1 � D11K1 � D12K2;

M2 � D12K1 � D22K2;

M3 � D33K3;

Q1 � D44K 01;

�1�

where � �0 denotes the derivative with respect to x1. Here and throughout this paper, Latin indices vary
from 1 to 3, and Greek ones from 2 to 3. It is noted that B0i � K� Bi with Ki � K � Bi. Thus, K1 is the elastic
twist per unit length, and Ka are the elastic bending curvatures. The cross-sectional moment stress resultant
is M, with Mi �M � Bi, and Q1 is the bi-moment. For isotropic beams D12 � 0; D11, D22, D33, and D44 are
usually written as GJ, EI2, EI3, and EC with G as the shear modulus, E as Young's modulus, J as the Saint±
Venant torsion constant, Ia as area moments of inertia, and C as the Vlasov constant (sometimes called
warping rigidity). The only di�erence between the models for the two types of beams is the presence
(absence) of the sti�ness constant D44 in the case of the I-beam (strip-beam).

The present analysis will be based on the geometrically exact equilibrium equations of classical 1 beam
theory as augmented with the Vlasov e�ect. One can write these equations in a compact form as demon-
strated in Hodges (1990). These equations are easily augmented with the e�ect of K 01 in the strain energy (the
so-called Vlasov e�ect) to yield

F 01 ÿ F2K3 � F3K2 � 0;

F 02 ÿ F3K1 � F1K3 � 0;

F 03 ÿ F1K2 � F2K1 � 0;

M 0
1 ÿM2K3 �M3K2 ÿ Q001 � 0;

M 0
2 ÿM3K1 �M1K3 ÿ �1� ��F3 ÿ K3Q01 � 0;

M 0
3 ÿM1K2 �M2K1 � �1� ��F2 � K2Q01 � 0;

�2�

where the cross-sectional stress resultant is F, and Fi � F � Bi. For small-strain analysis, it is permissible to
drop the stretching strain � compared to unity in the last two equations.

1 The term ``classical'' is used to refer to the fact that transverse shear deformation is neglected.
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For lateral±torsional buckling analysis, one can let

Ki � Ki � K̂i;

Fi � F i � F̂i;

Mi � Mi � M̂i;

Q1 � Q1 � Q̂1;

�3�

where the �̂ � quantities are regarded as in®nitesimal, and write two sets of equations from the above. The
®rst set, which contains no �̂ � quantities, can be described as the prebuckling equations of equilibrium. The
second set which is linear in the �̂ � quantities is the set of equations which govern the stability.

The prebuckling equilibrium equations only involve F1, F2, and M3 and are given by

F
0
1 ÿ F 2K3 � 0;

F
0
2 � F 1K3 � 0;

M
0
3 � F 2 � 0;

�4�

where K3 � h
0
3. Letting F 1 � P sin h3 and F 2 � P cos h3, one can reduce the prebuckling equations to one

equation:

D33h
00
3 � P cos h3 � 0 �5�

subject to boundary conditions h3�l� � 0 and M3�0� � ÿeP sin h3�0�.
The required perturbation equations for buckling analysis can be written as

F̂ 03 ÿ P sin h3K̂2 � P cos h3K̂1 � 0; �6a�
M̂ 0

1 ÿ K3M̂2 �M3K̂2 ÿ Q̂001 � 0; �6b�
M̂ 0

2 ÿM3K̂1 � K3M̂1 ÿ F̂3 ÿ K3Q̂01 � 0; �6c�
subject to boundary conditions F̂3�l� � 0, K̂1�l� � 0, K̂ 01�0� � 0, M̂1�0� ÿ Q̂01�0� ÿ eF̂3�0� � 0, and
M̂2�0� � 0.

The exact solution to these equations is unknown. What is of interest here is to ®nd an approximate
closed-form solution for the buckling load. The approach of Hodges and Peters (1975) was shown therein
to provide excellent accuracy for the buckling load and the e�ects of a variety of secondary phenomena.

To undertake this approach in the present context, one must introduce a set of small parameters. First,
the square of the prebuckling rotation is assumed to be small compared to unity, so that h

2

3 � 1. Thus, the
prebuckling rotation equation, Eq. (5), can be simpli®ed to

D33h
00
3 � P � 0: �7�

Using arguments similar to those of Hodges and Peters (1975), one can easily show that the following small
parameters are all of the same order:

max h3

ÿ � � Pl2

D33

;

e � e
l
;

A � D11

D33

;

B � D22

D33

:

�8�
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Thus, one can solve Eq. (7) to obtain

h3 � P �l2 ÿ x2
1�

D33

: �9�

It should be noted that Hodges and Peters (1975) did not consider the parameter e. It is noted below that
there are circumstances under which one should not assume that e is small.

Introducing j such that D12 � j
��������������
D11D22

p
and c such that

D44 � cD11l2 � cAD33l2; �10�

one can write the entire constitutive law in terms of D33 and the nondimensional parameters A, B, j, and c.
Following Hodges and Peters (1975), we note that the combination of Eq. (6b) plus h3 times Eq. (6c) yields
an equation which, when small terms are consistently neglected, is a perfect di�erential of

k � BK2 � AK1h3 �
���
A
p ���

B
p

j K1

ÿ � K2h3

�� F3h
0
3

P
ÿ Al2ch3K 001 � 0; �11�

where k is an arbitrary constant to be determined later. This equation can be solved along with Eq. (6a) for
K̂1 and K̂2. When small terms are discarded consistently, one obtains

K̂1 � ÿ/0 �
h3

���
A
p ���

B
p

j/0 ÿ /h
0
3

� �
B

;

K̂2 �
ÿBk � ���

A
p

B3=2j/0 ÿ B/h
0
3 �

���
A
p

h3

���
A
p

B 1ÿ 2j2� �/0 � 2
���
B
p

j/h
0
3 ÿ

���
A
p

Bl2c/000
h i

B2
;

�12�

where the nondimensional perturbation out-of-plane shear force / � F̂3=P . Thus, the M̂1 equation, Eq.
(6b), and all the boundary conditions can now be expressed completely in terms of / and its derivatives
with respect to x1.

To facilitate the writing of this equation, we introduce a nondimensional buckling load b such that
P � b

��������������
D11D22

p
=l2 � b

������
AB
p

D33=l2 and a nondimensional axial coordinate x such that lx � x1. The constant
k can be found to be

k �
A3=2

���
B
p

b 1ÿ j2� �/0�0� ÿ c/000�0�
h i

2
; �13�

where the prime now indicates a derivative with respect to x. However, use of the boundary conditions
leads to homogeneous equations without boundary values of the unknown in them. It turns out that the
boundary conditions must be multiplied by appropriate constants in order to make them variationally
consistent. The details of this operation are straightforward and not given here. The resulting equation is

c 1
� ÿ A 1

ÿ ÿ x2
�
bj
�
/0000 � 4Axbcj/000 ÿ 1

� � 3
2
A 1
ÿ ÿ 3x2

�
b2cÿ Ab 1

ÿ ÿ x2 � 3c
�
jÿ j2

� A 1
ÿ ÿ x2

�
bj3
�
/00 � Axb 9bc

ÿ ÿ 2j� 2j3
�
/0 ÿ b 1�� ÿ B�x2bÿ jÿ Ab 3c

� � x2 1
ÿ ÿ x2

�
bj

� 1
ÿ ÿ 3x2

�
1
2

ÿ ÿ j2
��	

/ � 0; �14�

and the boundary conditions are
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/�1� � /0�1� � 0;

c 1�
�
ÿ Abj�/00�0� ÿ Ab2/�0�

2

�
� 0;

c 1� ÿ Abj�/000�0� ÿ 1
ÿ� ÿ j2

�
1� ÿ Abj� ÿ Abc j� ÿ b��/0�0� ÿ ���

B
p

eb/�0����
A
p � 0:

�15�

For stability analysis, it is convenient to work in terms of an energy functional in terms of / and its
derivatives and boundary values. This functional can be shown to be of the form

L � 1

2

Z 1

0

L0/
2

�
� L1/

02 � L2/
002
�

dx� Ab2c/�0�/0�0�
2

ÿ
���
B
p

eb/2�0�
2
���
A
p ; �16�

where

L0 � ÿb 1�� ÿ B�x2bÿ j
�� Ab2

2
1
� � 6cÿ 2x4bjÿ 2j2 ÿ x2 3

ÿ ÿ 2bjÿ 6j2
��
;

L1 � 1� 2Abcjÿ j2 ÿ Ab 3
2

3x2
ÿ� ÿ 1

�
bc� j 1

ÿ ÿ x2 � 3cÿ j2 � x2j2
��
;

L2 � c 1
� ÿ A 1

ÿ ÿ x2
�
bj
�
:

�17�

The above di�erential equation, boundary conditions, and functional reduce to the corresponding ex-
pressions given by Hodges and Peters (1975) when c � e � j � 0.

For both the strip- and I-beam cases, the load o�set parameter e is multiplied by
���������
B=A

p
in its only

appearance in the formulation. Somewhat complicating the procedure from here on, is the fact that this
quantity may be large under certain circumstances, thus magnifying the in¯uence of the e parameter. In
such cases, the assumption that e is small ought to be relaxed. Such cases will be considered below in each of
the two cases.

3. Approximate solution

3.1. Case of zero warping rigidity

For thin beams having rectangular cross-sections (i.e., strip-beams), the Vlasov e�ect may be ignored
even for anisotropic beams according to Volovoi et al. (1998). For the case of zero warping rigidity, i.e.,
c � 0, the above equations and energy functional are greatly simpli®ed. The main reason for the simpli-
®cation mathematically is that the order of the governing equations and number of boundary conditions
are reduced. The di�erential equation becomes

1
� ÿ Abj 1

ÿ ÿ x2
���1ÿ j2�/00 � 2Abjx 1

ÿ ÿ j2
�
/0 � b 1�

�
ÿ B�x2bÿ jÿ Ab x2 1

ÿ�
ÿ x2

�
bj

� 1
ÿ ÿ 3x2

� 1

2

�
ÿ j2

���
/ � 0; �18�

and the boundary conditions are
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/�1� � 0;

�1ÿ j2� 1� ÿ Abj�/0�0� �
���
B
p

eb/�0����
A
p � 0:

�19�

The solution to this boundary-value problem is not known to the authors. However, using the solution
to the case A � B � e � j � 0 to obtain an accurate comparison function, as done by Hodges and Peters
(1975), one obtains a useful result. To do so, one notes that the solution of the simpli®ed equation is / � w,
where

w � ���
x
p

Jÿ1
4

4:0126x2

2

� �
; �20�

where the factor 4.0126 is the smallest positive zero of the Bessel function Jÿ1
4
�b=2�. Using this function in

the energy allows one to solve for b, given by

b � 4:0126 1

 
� 0:642365A� B

2
ÿ 1:02543

���
B
A

r
e

!
� 2:78473jÿ 1:04j2; �21�

where j2 is taken to be of the same order as A, B, and e. This expansion in j is valid for j up to about 0.5,
which is su�ciently large for most purposes. One can use the expansion to ®nd the buckling load of uniform
strip-beams.

Unfortunately, when e
���������
B=A

p
is not small of the same order as A, the above expansion breaks down. For

anisotropic strip-beams, for example, one can have the e�ective ratio of extension modulus to shear
modulus (E=G) quite large. This would tend to magnify the in¯uence of the load o�set. The solution to the
case in which e

���������
B=A

p 6� 0, but where otherwise A � B � j � 0 is

w � ���
x
p

c1Jÿ1
4

x2b
2

� ��
� c2J1

4

x2b
2

� ��
�22�

subject to the boundary conditions

/�1� � 0;

/0�0� �
���
B
p

eb/�0����
A
p � 0;

�23�

which leads to a characteristic equation that can be solved numerically for b given any value of e
���������
B=A

p
. A

plot of the solution is shown in Fig. 2. Indeed, in the limit of large and positive e
���������
B=A

p
, the result ap-

proaches the case of applying a downward compressive load at the end of a long, rigid rod extending
upward from the beam axis (instead of from within the beam cross-section). This buckling load b clearly
approaches zero as the length of the rigid rod increases. On the other hand, when e

���������
B=A

p
is large and

negative, the buckling load approaches that for a downward tensile load applied at the end of a long, rigid
rod extending downward (i.e., in the direction of the load). In this case, the buckling load approaches that
for the case of /�0� � 0, for which b � 5:56178, the smallest positive zero of J1

4
�b=2�. Obviously no linear

function of e can capture this behavior outside of a small range near e
���������
B=A

p � 0. Eq. (21) is then not valid
in the cases when e

���������
B=A

p
is not small, but it can serve to indicate the trend of b versus e. One could develop
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a comparison function which contains e as a parameter, but the resulting buckling load formulae would be
very complex.

3.2. Case of nonzero warping rigidity

The case of nonzero warping rigidity is far more di�cult. The governing equations and boundary
conditions with all secondary e�ects set to zero are

c/0000 ÿ /00 ÿ x2b2/ � 0;

/�1� � /0�1� � /00�0� � c/000�0� ÿ /0�0� � 0:
�24�

Other than an in®nite series solution, results of which are presented in Timoshenko and Gere (1961), the
solution to this deceptively simple-looking boundary-value problem is not known to the authors. Without a
one-term solution which has an explicit behavior in c, one has no exact ``zeroth-order'' solution to use as
the assumed mode in the energy to ®nd the buckling load in the presence of the small parameters A, B, e,
and j. The only alternative seems to be some kind of approximate comparison function.

In Eq. (24), the parameter, c, can vary from being small compared to unity to being considerably larger
than unity. In order to obtain a better understanding of the behavior of the equation, it is interesting to ®rst
look at the limiting behaviors for cases of c small and c large. A natural means of doing this is the method
of matched asymptotic expansions. In that method, the buckling load parameter, b, must be expanded in
some selected powers of c as must the solution, /, itself. Furthermore, there must be an expansion of the
independent variable, x, in terms of powers of c at the ®xed and free ends (the boundary layers) in order to
capture the correct limiting behavior. The solutions in the boundary layers (inner solutions) must be
matched (as the inner variables become large) to the general solution away from the ends (outer expansion)
as the outer variable approaches either end. This yields a unique solution for the buckling load and the
buckling mode shape. As the term with c multiplies /0000, and the next highest derivative is /00, all expansions
for small c must be done in powers of c1=2 in order to allow the inner and outer solutions to be matched. As
it turns out, only the ®xed end (x � 1) has a boundary layer that a�ects the outer solution and buckling load
to order c1=2 or c1. The resultant expansion shows that the boundary layer dies out into the outer solution as
exp��1ÿ x�=c1=2�. The next term in the outer expansion (and the next term in the expression for the ap-
proximate buckling load) can then be found by solving a nonhomogeneous, second-order equation for the

Fig. 2. Plot of b versus e
��
B
A

q
.
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outer solution. This involves integrals of the Bessel functions that are rather involved. For our purposes
here, it is enough to know how the ®xed-end boundary layer behaves and, particularly, how it decays into
the outer region.

The large c solution can be written in terms of con¯uent, hypergeometric functions. Since no derivatives
are lost as c becomes large, there are no boundary layers or matching required in that case. One can do a
straightforward expansion in terms of the small parameter, 1=c. The ®rst expansion term in that solution
involves fairly complicated integrals of the hypergeometric functions and is not tractable in closed form.
Nevertheless, the fact that there are no boundary layers in that solution, indicates that an approximation
for the entire mode, fairly accurate at all values of c, might be constructed from simple polynomials plus
the crucial boundary layer terms. In contrast to the asymptotic expansions, in which boundary conditions
are satis®ed only to the order of the expansion that is taken, here, we use the exponential decay term for
the ®xed end and add the simplest possible polynomial that will match the other boundary conditions
exactly. We expect that this comparison function will provide accurate results. Whether or not this ex-
pectation is realized can only be determined by comparison with numerical solutions to the exact equa-
tions.

Taking a cubic polynomial along with the exponential, one ®nds the simplest comparison function of
that form (i.e., one which satis®es all the boundary conditions in Eq. (24)) to be

h � 1� ÿ x�2 1� � 2xÿ 6c�eÿ1=
��
c
p � 6eÿ�1ÿx�= ��cp c 1� � 2c� � 2

���
c
p

1
� ÿ x3 ÿ 3

���
c
p � 6 1� ÿ x�cÿ 6c3=2

�
:

�25�
The use of / � h in the energy functional which corresponds to Eq. (24) will give an approximate closed-

form expression for the nondimensional buckling load b. This energy functional is simply

b2 �
R 1

0
�/02 � c/00

2�dxR 1

0
x2/2 dx

: �26�

The accuracy of this predicted buckling load as a function of c can be regarded as a measure of how well h
performs as a one-term approximation of the actual buckling mode /. The nondimensional buckling load
can be written as b � b0, where

b0 �
������������������������������������������������
g0 � g1eÿ1=

��
c
p � g2eÿ2=

��
c
p

d0 � d1eÿ1=
��
c
p � d2eÿ2=

��
c
p

s
; �27�

where

g0 � 1512c 3
ÿ ÿ 15

���
c
p � 40cÿ 60c3=2 � 60c2 ÿ 60c5=2

�
;

g1 � 756
���
c
p

3f ÿ 10c 1� ÿ 12c 1� � 2c��g;
g2 � 756 1

� ÿ 10c3=2 3
� � 4 2

���
c
pÿ � 3c� 3c3=2 � 3c2

��	
;

d0 � 2c�140ÿ 9
���
c
p �140ÿ 520

���
c
p � 70c� 8862c3=2 ÿ 47; 355c2

� 131; 880c5=2 ÿ 215; 460c3 � 224; 280c7=2 ÿ 243; 180c4��;
d1 � ���

c
p �133ÿ 18�28

���
c
p ÿ 3cÿ 28c3=2 ÿ 2436c2 � 21; 672c5=2

ÿ 75; 600c3 � 124; 320c7=2 � 40; 320c4 � 161; 280c9=2 � 362; 880c5��;
d2 � 19ÿ 18ch7ÿ 3c 4

� ÿ 35
���
c
p

1� � 2c� 8� ÿ 3c 111� � 416
���
c
p � 190c��	i:

�28�
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Indeed, one ®nds an error of less than 1% over a wide range of c, certainly within an acceptable range of
error for design purposes. In Fig. 3, the value of b0 is plotted versus c over a wide range. The symbols are
the exact solutions at discrete values of c taken from Table 6-3 of Timoshenko and Gere (1961), Page 259.
Notice that the symbols are on top of the curve, to within plotting accuracy, over the whole range of c
shown. Moreover, for c! 0, the relative error from Eq. (27) is only 0.3% o� the exact solution of 4.0126.
For c!1, the limiting value of b0 is 13.9473c, only about 1% o� the exact value of 13.8058c.

When / � h is substituted into the energy, Eq. (16), one can easily solve for b in terms of c and the small
parameters A, B, e, and j. This is most easily accomplished by the use of a perturbation expansion in terms
of the small parameters, keeping terms up through ®rst order in A, B, and e, and through second order in j
as in Eq. (21). This equation is expressible in the form

b � 1

�
� B

2

�
b0 � AbA � e

���
B
A

r
be � jb1 � j2b2; �29�

where

bA �
9
�����
21
p ������������������������������������������������

a0 � a1eÿ1=
��
c
p � a2eÿ2=

��
c
pp

b0 � b1eÿ1=
��
c
p � b2eÿ2=

��
c
pÿ �

2 c0 � c1eÿ1=
��
c
p � c2eÿ2=

��
c
p� �3=2

;

be � ÿ315
2
���
c
p ÿ 6c� 12c3=2 ÿ 12c2 � 1� 12c2� �eÿ1=

��
c
p� �2

a0 � a1eÿ1=
��
c
p � a2eÿ2=

��
c
p ;

b1 �
d0 � d1eÿ1=

��
c
p � d2eÿ2=

��
c
p

k0 � k1eÿ1=
��
c
p � k2eÿ2=

��
c
p ;

b2 �
3
�����
21
p

p0 � p1eÿ1=
��
c
p � p2eÿ2=

��
c
pÿ �2

q0 � q1eÿ1=
��
c
p � q2eÿ2=

��
c
p � q3eÿ3=

��
c
p � q4eÿ4=

��
c
pÿ �

28
�����������������������������������������������
r0 � r1eÿ1=

��
c
p � r2eÿ2=

��
c
pp

s0 � s1eÿ1=
��
c
p � s2eÿ2=

��
c
p� �3=2

;

�30�

and where

Fig. 3. b0 versus c compared with exact solution (symbols) from Timoshenko and Gere (1961).
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a0 � 2c 3
ÿ ÿ 15

���
c
p � 40cÿ 60c3=2 � 60c2 ÿ 60c5=2

�
;

a1 � ���
c
p

3f � 10c� ÿ 1� 12c 1� � 2c��g;
a2 � 1ÿ 10c3=2 3

� � 4 2
���
c
pÿ � 3c� 3c3=2 � 3c2

��
;

b0 � 4c�65ÿ 9
���
c
p �35ÿ 22

���
c
p ÿ 770c� 5880c3=2 ÿ 24; 360c2

� 62; 160c5=2 ÿ 95; 760c3 � 100; 800c7=2 ÿ 100; 800c4��;
b1 � ���

c
p �257ÿ 6�126

���
c
p ÿ 247c� 924c3=2 ÿ 10; 584c2 � 66; 864c5=2

ÿ 226; 800c3 � 312; 480c7=2 � 10; 080c4 � 362; 880c9=2 � 846; 720c5��;
b2 � 59� 30c 1

� ÿ 24c 1
� � 42

���
c
p

1� � 2c� 1
ÿ � 3

���
c
p ÿ 10cÿ 60c3=2 ÿ 24c2

��	
;

c0 � 2c�140ÿ 9
���
c
p �140ÿ 520

���
c
p � 70c� 8862c3=2 ÿ 47; 355c2

� 131; 880c5=2 ÿ 215; 460c3 � 224; 280c7=2 ÿ 243; 180c4��;
c1 � ���

c
p �133ÿ 18�28

���
c
p ÿ 3cÿ 28c3=2 ÿ 2436c2 � 21; 672c5=2 ÿ 75; 600c3

� 124; 320c7=2 � 40; 320c4 � 161; 280c9=2 � 362; 880c5��;
c2 � 19ÿ 18ch7ÿ 3c 4

� ÿ 35
���
c
p

1� � 2c� 8� ÿ 3c 111� � 416
���
c
p � 190c��	i;

�31�

a0 � 2c�140� 9
���
c
p �ÿ140� 520

���
c
p ÿ 70cÿ 8862c3=2 � 47; 355c2

ÿ 131; 880c5=2 � 215; 460c3 ÿ 224; 280c7=2 � 243; 180c4��;
a1 � ���

c
p �133ÿ 18�28

���
c
p ÿ 3cÿ 28c3=2 ÿ 2436c2 � 21; 672c5=2

ÿ 75; 600c3 � 124; 320c7=2 � 40; 320c4 � 161; 280c9=2 � 362; 880c5��;
a2 � 19ÿ 18ch7ÿ 3c 4

� ÿ 35
���
c
p

1� � 2c� 8� ÿ 3c 111� � 416
���
c
p � 190c��	i;

�32�

d0 � 810cÿ 5670c3=2 � 18; 144c2 ÿ 28; 350c5=2

� 15; 120c3 � 22; 680c7=2 ÿ 45; 360c4 � 113; 400c9=2;

d1 � 585
���
c
p ÿ 1890c� 252c3=2 ÿ 3780c2

� 34; 020c5=2 ÿ 90; 720c3 ÿ 181; 440c4 ÿ 181; 440c9=2;

d2 � 117ÿ 1008cÿ 3780c3=2 � 2268c2 � 32; 130c5=2 � 90; 720c3

� 113; 400c7=2 � 181; 440c4 � 68; 040c9=2;

k0 � 280cÿ 2520c3=2 � 9360c2 ÿ 1260c5=2 ÿ 159; 516c3 � 852; 390c7=2

ÿ 2; 373; 840c4 � 3; 878; 280c9=2 ÿ 4; 037; 040c5 � 4; 377; 240c11=2;

k1 � 133
���
c
p ÿ 504c� 54c3=2 � 504c2 � 43; 848c5=2 ÿ 390; 096c3

� 1; 360; 800c7=2 ÿ 2; 237; 760c4 ÿ 725; 760c9=2 ÿ 2; 903; 040c5 ÿ 6; 531; 840c11=2;

k2 � 19ÿ 126c� 216c2 ÿ 15; 120c5=2 � 599; 130c7=2 � 2; 358; 720c4

� 2; 336; 040c9=2 � 4; 717; 440c5 � 2; 154; 600c11=2;

�33�

and

p0 � 6c 15
� ÿ 7

���
c
p

15
ÿ ÿ 48

���
c
p � 75cÿ 40c3=2 ÿ 60c2 � 120c5=2 ÿ 300c3

��
;

p1 � ���
c
p

65
� ÿ 14

���
c
p

15
ÿ ÿ 2

���
c
p � 30cÿ 270c3=2 � 720c2 � 1440c3 � 1440c7=2

��
;

p2 � 13ÿ 14c 8
� � 3

���
c
p

10
ÿ ÿ 6

���
c
p ÿ 85cÿ 240c3=2 ÿ 300c2 ÿ 480c5=2 ÿ 180c3

��
;

�34�
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q0 � ÿ 56c2 6
ÿ ÿ 45

���
c
p � 160cÿ 300c3=2 � 360c2 ÿ 420c5=2

��140ÿ 9
���
c
p �140

ÿ 520
���
c
p � 70c� 8862c3=2 ÿ 47; 355c2 � 131; 880c5=2 ÿ 215; 460c3

� 224; 280c7=2 ÿ 243; 180c4��;
q1 � ÿ 28c3=2 1638

� ÿ ���
c
p

16; 569
� ÿ 2 29; 182

���
c
pÿ � 17; 937cÿ 383; 610c3=2

ÿ 489; 213c2 � 17; 118; 900c5=2 ÿ 99; 959; 670c3 � 321; 418; 800c7=2 ÿ 656; 219; 340c4

� 886; 243; 680c9=2 ÿ 761; 934; 600c5 ÿ 116; 575; 200c11=2 � 1; 784; 008; 800c6

ÿ 1; 494; 158; 400c13=2 � 2; 947; 492; 800c7
��	

;

q2 � ÿ 28c 793
ÿ ÿ 4887

���
c
p � 2356c� 45; 582c3=2 ÿ 47; 816c2 ÿ 705; 198c5=2

� 666; 780c3 � 24; 815; 220c7=2 ÿ 135; 485; 460c4 � 247; 556; 520c9=2 � 22; 090; 320c5

ÿ 648; 058; 320c11=2 � 1; 087; 732; 800c6 ÿ 4; 951; 497; 600c13=2 ÿ 2; 471; 212; 800c7

ÿ 5; 753; 462; 400c15=2 ÿ 6; 921; 028; 800c8
�
;

q3 � ÿ 28 190
���
c
pÿ ÿ 504cÿ 2604c3=2 ÿ 2151c2 � 63; 736c5=2 ÿ 394; 206c3

� 948; 840c7=2 � 1; 008; 690c4 � 11; 324; 880c9=2 ÿ 42; 689; 700c5 ÿ 43; 133; 040c11=2

� 530; 583; 480c6 � 1; 034; 661; 600c13=2 � 3; 690; 262; 800c7 � 6; 280; 545; 600c15=2

� 6; 643; 425; 600c8 � 7; 919; 856; 000c17=2 � 3; 510; 864; 000c9
�
;

q4 � ÿ 28 1
� ÿ 5c 2

ÿ � 15
���
c
p � 40c� 60c3=2 � 96c2 � 60c5=2

���19

ÿ 18ch7ÿ 3c 4
� ÿ 35

���
c
p

1� � 2c� 8� ÿ 3c 111� � 416
���
c
p � 190c��	i�;

�35�

r0 � 2c 3
ÿ ÿ 15

���
c
p � 40cÿ 60c3=2 � 60c2 ÿ 60c5=2

�
;

r1 � ���
c
p

3f ÿ 10c 1� ÿ 12c 1� � 2c��g;
r2 � 1ÿ 10c3=2 3

� � 4 2
���
c
pÿ � 3c� 3c3=2 � 3c2

��
;

s0 � 2c 140
� ÿ 9

���
c
p �140ÿ 520

���
c
p � 70c� 8862c3=2 ÿ 47; 355c2

� 131; 880c5=2 ÿ 215; 460c3 � 224; 280c7=2 ÿ 243; 180c4��;
s1 � ���

c
p

133
� ÿ 18�28

���
c
p ÿ 3cÿ 28c3=2 ÿ 2436c2 � 21; 672c5=2

ÿ 75; 600c3 � 124; 320c7=2 � 40; 320c4 � 161; 280c9=2 � 362; 880c5��;
s2 � 19ÿ 18c 7


 ÿ 3c 4
� ÿ 35

���
c
p

1� � 2c� 8� ÿ 3c 111� � 416
���
c
p � 190c��	�:

�36�

While lengthy, the above formulae can be programmed in a spreadsheet to give rapid estimation of the
lateral±torsional buckling load over a wide range of c and small values of A, B, e, and j2. It can be shown
that the sensitivities with respect to A, B, e, and j are all within 9% of the exact values (i.e., those in Eq.
(21)) for small c. For c < 0:1, the errors on the sensitivities increase dramatically if the assumed mode does
not contain an exponential term. To the authors' knowledge, sensitivities for large c have not been pub-
lished. Comprehensive validation of this formula by numerical solutions is now presented.

4. Results

The results of comparing a numerical solution of the exact perturbation equations, Eq. (6), with the
results from our buckling load formula, Eq. (29), are presented in Figs. 4±14. In all cases, the approximate
solutions are depicted as dashed lines, and the numerical solutions of the exact perturbation equations are
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Fig. 4. Buckling load versus A � B for e � 0, j � 0, and c � 0:1; solid line is numerical solution of exact equations, and dashed line is

Eq. (29).

Fig. 5. Buckling load versus B � 2A for e � 0, j � 0, and c � 0:1; solid line is numerical solution of exact equations, and dashed line is

Eq. (29).

Fig. 6. Buckling load versus A � 2B for e � 0, j � 0, and c � 0:1; solid line is numerical solution of exact equations, and dashed line is

Eq. (29).
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Fig. 7. Buckling load versus e for A � 0:025, B � 0:025, j � 0, and c � 0:1; solid line is numerical solution of exact equations, and

dashed line is Eq. (29).

Fig. 8. Buckling load versus e for A � 0:05, B � 0:05, j � 0, and c � 0:1; solid line is numerical solution of exact equations, and dashed

line is Eq. (29).

Fig. 9. Buckling load versus j for e � 0, A � 0:025, B � 0:025, and c � 0:1; solid line is numerical solution of exact equations, and

dashed line is Eq. (29).
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Fig. 10. Buckling load versus c for e � 0, A � 0:025, B � 0:025, and j � 0; solid line is numerical solution of exact equations, and

dashed line is Eq. (29).

Fig. 11. Buckling load versus c for e � 0:1, A � 0:0125, B � 0:025, and j � ÿ0:2; solid line is numerical solution of exact equations,

and dashed line is Eq. (29).

Fig. 12. Plot of b versus e for composite I-beam of Pandey et al. (1995) with ply angle of 0�; solid line is numerical solution, and dashed

line is from Eq. (29).
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solid lines. As expected, the results indicate that the buckling load formula is very accurate when A, B, and e
are small. The formula captures the behavior of the exact solution very well for all values of c, which must
be positive, and for all values of j such that ÿ1

2
< j < 1

2
, which is its range of practical values.

In Figs. 4±6, the e�ect of prebuckling de¯ections on the buckling load is shown. This e�ect was shown by
Hodges and Peters (1975) to be re¯ected in the parameters A and B. Very good agreement is obtained at
small values of A and B, regardless of the ratio of A to B. The worst case is when A � B, the buckling load
formula tends to capture the behavior well for A and B less than about 0.035. At larger values of A and B,
one ®nds a steady departure of the results from the formula away from the numerical solution with the
error being conservative. It should be noted that as the buckling load increases signi®cantly for larger A and
B, these cases tend to become of less practical signi®cance.

In Figs. 7 and 8, the variation of the buckling load with the o�set of the load, e, is shown for small
and moderately large values of A and B. For the values of A and B within the applicable range (i.e.,
<0.035), the behaviors for both positive and negative values of e are picked up well by the formula. When
the values of A and B are increased, not only is there a slight disagreement at small e, but also the slope of

Fig. 14. Plot of b versus e
���������
B=A

p
for an I-beam with c � 1, ignoring prebuckling de¯ections; solid line is from the numerical solution of

Eq. (37), and dashed line (nearly coincident) is from minimum over a of L (Eq. (39)) with / � h from Eq. (38).

Fig. 13. Plot of b versus e for composite I-beam of Pandey et al. (1995) with ply angle of 45�; solid line is numerical solution, and

dashed line is from Eq. (29).
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the curve becomes further away from the correct value. This indicates that one can use the formula even
for cases in which A and B are slightly outside the formula's range of applicability. In doing so, however,
one should expect that the sensitivities (as indicated by the slope of this curve) may also exhibit increased
errors.

In Fig. 9, we look at the e�ect of elastic coupling. It is shown that bending-torsion coupling can strongly
a�ect the buckling load, either positively or negatively. The behavior with j appears to be nearly linear for
this case. However, one cannot conclude that the j2 terms in the formula are not needed. It is clear that
elastic coupling could be used to tailor the structure to have a larger buckling load without changing the
bending or torsional sti�nesses.

In Figs. 10 and 11, the e�ects of the Vlasov term are depicted, with zero and nonzero values of all other
parameters, respectively. There is very little error in the formula associated with this e�ect for reasons
pointed out above in connection with the exponential term in the comparison function. In Fig. 11, the
results for a typical case with nonzero values for all parameters are shown. There is no signi®cant di�erence
between the results from Eq. (29) and the numerical solution of the exact perturbation equations, Eqs. (6).

For I-beams as well as for the strip-beam, when e
���������
B=A

p
is not small of the same order as A, the above

approximate solution breaks down. For I-beams, however, the value of
���������
B=A

p
can be large for two di�erent

reasons. First, just as for strip-beams, the e�ective G=E can be small for anisotropic I-beams causing A to be
smaller than B. Second, even for isotropic I-beams, B=A can be large because the ¯ange width is typically
larger than the wall thickness. This means that the e�ect of load o�set for composite I-beams can be much
more signi®cant than for isotropic strip-beams. To see this more clearly, we consider the composite beam
example presented by Pandey et al. (1995). Results obtained therein will also be compared with the present
results.

The I-beam has a uniform wall thickness of 0.00953 m, a depth of 0.2032 m, and a ¯ange width of 0.1016
m. The length considered here is l � 1:2192 m. In the undertaking of this comparison, the following dif-
®culties were encountered. First, the 3-D elastic constants for the material system considered in Pandey
et al. (1995) were not given directly. Only the ®ber and matrix properties were given, along with the
statement that the ®ber volume fraction was taken to be 60%. No statement was given as to which model
was used to obtain the 3-D elastic constants, nor was their actual value given. By comparison with their
results, however, it was ascertained that the simple strength of material model was used. This gives elastic
constants of E11 � 42:7� 109 N=m2, E22 � 8:02� 109 N=m2, G12 � 3:10� 109 N=m2, and m12 � 0:248.

The second di�culty was that the plots of torsional rigidity D11, bending sti�ness D22, and warping
rigidity D44 in Pandey et al. (1995) are at variance with those obtained from the asymptotically correct
formulation of Volovoi et al. (1998) as well as with the basic physics of the problem. The I-beam considered
was such that the upper and lower ¯anges were unidirectional with 0� ply angle. Only the web contained o�-
axis ®bers, being basically a single layer of material with ply angle h. As the web does not contribute to the
smallest bending rigidity, it should not be a function of ply angle. This is not at all re¯ected in the plots of
D22 and D44 in Pandey et al. (1995). For both these elastic constants, the asymptotic analysis shows them to
be constant with ply angle, as expected, with values of D22 � 71; 200 N m2 and D44 � 735 N m4. Although
our values for these constants at 0� ply angle are very close to theirs (see their Fig. 9), they show both D22

and D44 to be sharply decreasing from their maximum values at 0� ply angle to very small values at a ply
angle of 90�. It is also noted that the units given by Pandey et al. (1995) are incorrect for D44, the correct
units being N m4 rather than kN m.

Finally, Pandey et al. (1995) show the torsional rigidity, D11, on the same plot as D22, reaching a
maximum value at a ply angle of 45�. However, the results from the asymptotic analysis for D11 are three
orders of magnitude smaller than theirs; moreover, from the asymptotic analysis the correct peak value is
not nearly as large relative to the 0� ply angle value as the one they obtained. For ply angle of 0�, we obtain
D11 � 364 N m2, and for ply angle of 45�, we obtain D11 � 610 N m2. For completeness, we note that for 0�

ply angle D33 � 1:14� 106 N m2 and for ply angle of 45�, we get D33 � 912; 000 N m2.
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The cases with ply angles of 0� and 45� are chosen for presentation here. For both cases j � 0; indeed, we
have found it di�cult to conceive of an I-beam con®guration which will yield a large value of j. For the
case with ply angle equal to 0�, the nondimensional constants are A � 0:000319, B � 0:0625, and c � 1:36.
For the case with ply angle of 45�, A � 0:000669, B � 0:0780, and c � 0:810. The sensitivity with respect to
e is large for both cases because of the large values of

���������
B=A

p
, resulting in highly nonlinear behavior of b

relative to e as shown in Figs. 12 and 13. The results from Eq. (29) are shown for reference. As with
the strip-beam, when

���������
B=A

p
is large, one must not expect the linear trend with respect to e to be valid. The

buckling load formula does give, however, accurate predictions of the buckling load at small e and of the
slope of the curve at e� 0.

Given the signi®cant discrepancies in the cross-sectional constants used by Pandey et al. (1995), one
should not expect our results to be in agreement with theirs. At 0� ply angle, their results give a buckling
load of approximately 72,000 N, versus 63,500 N from our analysis. At 45�, they obtained 54,000 N,
whereas our results give 67,500 N. Indeed, not only are the numerical values very di�erent; more signi®-
cantly, the trend versus ply angle is the opposite. Their results are maximum at 0�, while ours peak at 45�;
their results are minimum at 45� but ours at 0�. From the above discussion of the section properties, there
are signi®cant reasons to believe that the results presented by Pandey et al. (1995) are incorrect. On the
other hand, although we do not have any results from a truly independent approach to validate ours (such
as 3-D ®nite elements), we have several good reasons that suggest the present results are correct: the well-
validated asymptotic formulae used for the section constants, the trends in these constants following the
expected behavior, and the excellent agreement between our formula and an essentially exact numerical
solution.

Accurate treatment of the cases where e
���������
B=A

p
is not small compared to unity is far more problematic.

Somehow one must remove the restriction that e is a small parameter, because it always appears multiplied
by

���������
B=A

p
in the boundary conditions. Alternatively, it could mean treating A as a much smaller parameter

than all others. Proceeding as above with these kinds of changes would make the already long formulae
above far more complicated. For the case in which all prebuckling de¯ections are ignored, an alternative
approach, based on the treatment of Rayleigh's quotient with a free parameter in Hodges (1997), can be
developed as follows:

The governing equation is the same as Eq. (24), but with a di�erent boundary condition at the free end,
viz.,

c/0000 ÿ /00 ÿ x2b2/ � 0;

/�1� � /0�1� � /00�0� � c/000�0� ÿ /0�0� ÿ
���
B
p

eb/�0����
A
p � 0:

�37�

The simplest possible admissible function that satis®es the ®rst three boundary conditions and contains
both the exponential term and a free parameter is used, given by

h � ÿ 1� ÿ x�2eÿ1=
��
c
p � 2 1� ÿ x� ���cp � 2ceÿ�1ÿx�= ��cp ÿ 2c 1

� ÿ a 2
ÿ ÿ 3x� x3

��
: �38�

The energy functional depends on / and its derivatives and is of the form

L � 1

2

Z 1

0

c/002
�

� /02 ÿ b2x2/2
�

dxÿ
���
B
p

eb/2�0�
2
���
A
p : �39�

One ®rst substitutes / � h into L, then minimizes L with respect to a, and ®nally solves the resulting quartic
equation for b. This yields a closed-form approximate formula for the buckling load. Although it is a very
complicated expression (too long to print here), it is not too di�cult for computerized symbolic manipu-
lation to handle. Results from this approximate closed-form expression for the buckling load are compared
with a numerical solution of Eq. (37) in Fig. 14. The agreement is excellent. To add the prebuckling de-

1602 D.H. Hodges, D.A. Peters / International Journal of Solids and Structures 38 (2001) 1585±1603



¯ections may present di�culties for some symbolic computational tools. However, as shown above, these
e�ects generally make the predicted buckling load larger and frequently may be ignored for design pur-
poses.

5. Conclusion

The geometrically exact elastica equations for a composite beam are applied to the lateral±torsional
buckling analysis of an end-loaded composite cantilever beam. Considering the case for which the pre-
buckling state is planar deformation, a stability analysis was developed based on the equations, linearized
about the prebuckling state. Moreover, consistently ignoring terms of the order of the square of the pre-
buckling section rotation compared to unity in both the prebuckling and perturbation equations, one
obtains a single ordinary di�erential equation that governs the stability problem. Using the energy method
and a single comparison function for the beam without any of the small terms, an approximate closed-form
expression for the buckling load was written which takes into account various re®nements of previously
published results, including the Vlasov e�ect, elastic coupling, the o�set of the load from the centroid, and,
of course, prebuckling de¯ections. This formula, then, can be used with con®dence, in conjunction with
published asymptotically correct sti�ness constants of composite I-beams and strip-beams. Indeed, it is
shown herein that this formula produces results which, except for the variation of one parameter, agree
quite well with a numerical solution of the exact equations. This exception involves the o�set of the load
from the cross-sectional centroid. This o�set is normally small relative to the beam length, so that the ratio
can be treated as a small parameter. However, its only appearance is in the boundary conditions where it is
multiplied by a quantity which can be large for composite strip-beams and for I-beams in general. Thus, the
o�set cannot be treated as a small parameter in those cases. To deal with the exception, a separate de-
velopment that ignores the (normally small) e�ects of prebuckling de¯ections is presented, yielding a for-
mula that matches with the exact solution very well for that case.
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