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The advantages of mixed formulations are well known in that they simplify the form 
of the governing equations and can lead to potentially significant savings in computational 
effort for given accuracy. Likewise, the p-version of the finite element method is known 
to offer savings in computational effort for some problems. In this paper, shape functions 
for a mixed p-version finite element formulation in the time domain are developed. These 
shape functions produce a high percentage of zeros in certain coefficient matrices. The 
mixed formulation in time used here is based on a weak form of Hamilton’s extended 
principle. The present formulation allows for accurate and efficient solution of time-domain 
problems. The accuracy and power of this formulation are shown for initial value problems 
(such as time marching) and for directly obtaining the periodic response of linear systems. 
The method is shown to yield a family of accurate, unconditionally stable algorithms for 
initial-value problems based on a simple linear oscillator. 

1. INTRODUCTION 

The so-called p-version of the finite element method [l] allows for additional higher 
order polynomial shape functions within elements, whereas h-version elements have only 
the minimal set of shape functions. Thus, the p-version can be used to improve the 
accuracy of the solution by adding more unknowns to each element without refining the 
mesh. 

There are known problems in mechanics for which the p-version finite element method 
is superior to the h-version. For example, in the usual application of the finite element 
method as a method of spatial discretization, the p-version allows for achieving greater 
accuracy for a given number of unknowns (and fewer elements) in the assembled 
equations, contributing to computational efficiency. Some examples are discussed in depth 
by Babuska et al. [l]. A simple, one-dimensional example is considered in reference [2]. 

It is convenient for programming purposes if the shape functions are hierarchical 
(meaning that adding shape functions does not alter the ones already in use) [l]. Often 
the additional unknowns can be condensed out at the element level further contributing 
to computational efficiency. Some one-dimensional, hierarchical shape functions for 
displacement methods have been developed by Hodges [3]. 

Recently, finite element methods have been developed for the time domain. The earliest 
works seem to be those of Fried [4] and Argyris and Scharpf [5], although most of the 
work being done now has its roots in the mid-1970s when the use of Hamilton’s principle 
was introduced. Hamilton’s principle has traditionally been used in analytical mechanics 
as a method of obtaining the equations of motion for dynamical systems. Bailey [6,7], 
followed by several others, obtained direct solutions to dynamics problems using a form 
of Hamilton’s principle known as the law of varying action thus opening the door for its 
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use in computational mechanics; see the papers by Simkins [8], Hitzl and Levinson [9], 
Baruch and Riff [lo], Borri et al. [ll], and Peters and lzadpanah [ 121, for example. 

More recently, it was shown in references [ll, 121 that expression of Hamilton’s law 
as a weak form (commonly referred to as Hamilton’s weak principle or HWP) provides 
a powerful alternative to numerical solution of ordinary differential equations in the time 
domain. The accuracy of the time-marching procedure derived in these works is competi- 
tive with standard ordinary differential equation solvers. However, in order to derive an 
unconditionally stable algorithm, Borri et al. [ 1 I] used reduced/selective element quad- 
rature. Later work reported by Borri et al. [13] has shown that further computational 
advantages may be obtained in mixed formulations of HWP in which the generalized 
co-ordinates and momenta appear as independent unknowns. In this work, an uncondi- 
tionally stable algorithm emerges for the linear oscillator with exact element quadrature. 
This result is obtained in spite of the fact that the crudest possible shape functions were 
used for the equations written in the weakest possible form (i.e., where no field variable 
is differentiated and all boundary conditions are natural ones). 

HWP has also been shown to be an ideal tool for obtaining a periodic solution for 
dynamical systems, as well as finding the corresponding transition matrix for analysis of 
the stability of small perturbations about the periodic solution [14]. Also, Hodges and 
Bless [ 151 have applied the mixed method to two-point boundary-value problems related 
to optimal control theory. 

In this paper, we explore a relatively narrow portion of the spectrum of problems 
outlined above. For highly non-linear problems, it has been shown in reference [ 151 that 
there are computational advantages of using the weakest possible form of the equations, 
as in reference [13], so that the crudest shape functions can be used. This h-version 
formulation allows the element quadrature to be carried out analytically thus avoiding 
expensive Gaussian quadrature each iteration. However, for linearproblems, where element 
quadrature has to be done only once, it is evident from earlier work involving displacement- 
based [2] methods that the well known computational advantages of the p-version will 
carry over for mixed methods. Herein, we develop a set of hierarchicai polynomials for 
mixed formulations with the intent to obtain very sparse coefficient matrices. It is also 
stipulated that the shape functions of the p-version reduce to those of the h-version 
[13,15] when the order is at its minimum value. The accuracy and efficiency of this 
approach for linear problems also will be explored. 

2. HAMILTON’S WEAK PRINCIPLE 

Let us now consider an arbitrary holonomic mechanical system, the configuration of 
which is completely defined by a set of generalized co-ordinates q. Furthermore, let us 
denote by L(q, 4, t) the Lagrangean of the system, Q the set of non-conservative general- 
ized forces applied to the system, and by p = 817,/&j the set of generalized momenta. Then, 
the variational equation 

c ‘2 c ‘2 
6Ldt-t SqTQ dr = SqTp[; 

first used by Borri et al. [ 1 I] and called Hamilton’s weak principle (HWP) describes the 
real motion of the system between the two known times t, and t2. Here p appears only 
as a discrete quantity at the ends of the time interval, and its relationship to the Lagrangean 
is enforced as a natural boundary condition. This allows p to be found without differenti- 
ation of q. Equation (1) is said to be in displacement form because it only involves the 
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variation of q. Borri et al. [ 111 applied equation (1) to an initial-value problem where 
the values of q and p are known at time t, and are to be determined at time tz. This 
equation, with reduced element quadrature over the element, leads to an explicit step-by- 
step integration formula which yields a very good approximation. Unfortunately, exact 
element quadrature results in a conditionally stable time-marching algorithm. To avoid 
numerical instability, reduced (inaccurate) element quadrature of the stitIness term is 
required. This is analogous to the locking of elements in finite element structural rep- 
resentations. It is well known that mixed formulations can circumvent these difficulties 
(e.g., see reference [ 161). 

To derive the mixed formulation, we begin by defining the Hamiltonian as 

H(q,p, +pT4-uq,4, t). (2) 

Taking the variation of equation (2) and substituting for 6L in equation (1) results in 

I ‘2 
(spTc,j+&jTp-m+6qTQ)dt=6qTp~$ 

‘I 

Integrating the first term of the integrand by parts yields 

‘2 
(&jTp-G$Tq-SH+SqTQ)dt=(SqTp-i3pTq)1$. 

‘I 

(3) 

This form was first used by Borri et al. [13] is called a mixed formulation because it 
contains independent variations of q and p. If the p and q on the right side are regarded 
as discrete quantities, distinct from their counterparts under the integral on the left side, 
equation (4) is then in a very weak form. All boundary conditions are of the natural type, 
and all variations are completely arbitrary. 

There are two main advantages of the mixed formulation over the displacement 
formulation. The first advantage is that the mixed formulation generally provides a more 
accurate solution for a given level of computational effort than does the displacement 
formulation. The second advantage is that a simpler choice of shape functions is allowed. 
Note in equation (4) that time derivatives of 6q and Sp are present. However, no time 
derivatives of q and p exist. Therefore, it is possible to implement Co continuous shape 
functions for Sq and Sp and continuous shape functions for q and p within each element. 
This way, the discrete values of q and p in the trailing terms may take on values distinct 
from those inside the element integral. In reference [15] it is shown to be advantageous 
for non-linear problems to use the simplest linear functions for Sq and Sp and constant 
shape functions for q and p within each element. This allows one to circumvent numerical 
quadrature within each element. However, for linear problems one should be able to 
develop an efficient p-version based on equation (4) since the numerical quadrature need 
only be undertaken once. 

3. DEVELOPMENT OF SHAPE FUNCTIONS 

We now turn our attention to obtaining p-version shape functions. Let the time interval 
be Al = f2 - t, , where the quantities ti for i = 1,2 are the nodal values of the time. Now 
the time can be written as t = t, + TAG, where the non-dimensional time is denoted by 
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T = (t - t,)/At and 0~ TS 1. Rewriting equation (4) in dimensionless form, one then 
obtains 

I 

I 
[Gq’Tp-Gp’Tq-At(GH+GqTQ)] d~=(6qrp-8pTq)[,j,. (5) 

0 

Derivatives with respect to non-dimensional time 7 are denoted by ( )‘. As noted above, 
Co shape functions may be used to be used to represent Sq and Sp. For the present 
development, these functions are chosen to be hierarchical “bubble” functions, similar 
to those of reference [3]: 

N-2 

and 

6~=6~,(l-T)+~~2T+(f-T)T c 6/$pi(T)f;, Octal, (6) 
,-I 

N-2 

Sq=Sq,(l-T)+6q,T+(l_T)T I, hFPi(T)f;v o<Tcl. (7) 

Here Sq, and 6p, denote values of 6q and Sp at the left node of the element, Sq, and Sp, 
denote values of Sq and Sp at the right node of the element, and N - 1 is the degree of 
the polynomials describing Sp and 6q within the element. The summation term is excluded 
if N =2 (its minimum value). The functions pi are the Jacobi polynomials so that 
pi(T) = G<_,(Py Q; T) and P and Q are parameters to be determined later. The factors f; 
are normalizing constants, also to be found below. Detailed mathematical characteristics 
of Jacobi polynomials may be found in reference [ 171. 

The approximate values of ;7 and q are taken as continuous functions on the element 
interior while allowing for distinct, discrete values on the element boundaries. Thus, 

N-l N-l 

P = C Fjaj(T), 4= C qjaj(T), o<T<l 
j=l j=l 

p =h 4=41 T=o 

p=l% 4 = 42 T= 1. (8) 

Here p^i and 4, denote discrete values of p and q at the left node of the element, b2 and 
B denote discrete values of p and q at the right node of the element, and ai is a yet 
unspecified polynomial of degree i - 1 describing p and q within the element. Note that 
both czi and pi are of degree i - 1 and that these shape functions reduce to those of 
reference [ 151 for the simplest case when N = 2 if (Y, = 1. 

In order to show the form of the resulting equations in a simple manner, we specialize 
the analysis for a one-degree-of-freedom system. The polynomial aj( T) will now be found 
which will lead to the simplest algebraic equations for each element. These polynomials 
will be determined based on the first two terms which appear in the integrand of equation 
(5). These terms always appear in the formulation regardless of the complexity of the 
system being modeled. These terms are of the form ji pSq’ dT and ji qSp’ dT. Note that 
Sp and 6q are assumed as free variations which exist when p and q are prescribed, and 
the functional forms of Sp and Sq are quite different from those of p and q. Since p and 
q are handled identically, as are their variations, it is only necessary to consider one of 
these integrals. 

Substitution of equations (7) and (8) into j: Sq’p dT yields 
I N-l 

I 

1 

&‘P dT=(&2-%l) C Pj (Yj(T) dT 
j=l 0 

N-2 N-l 

+ C &?_A C Pj ’ [T(I-T)pi(T)]‘(Yj(T) dT. 
i=l j=* 

(9) 
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For the second term above, with just the coefficient matrix considered, integration by 
parts yields 

f; r’ [T(l-T)Pi]‘~jdT=~T(l-T)Pi~j~jJ:,-~ r’ ~(l-~)pia: dT. (10) 
Jo Jo 

Obviously, the first term on 
second term will produce a 
that 

the right side vanishes. Since pi is a Jacobi polynomial, the 
diagonal matrix if Q: (which is of degree j - 2) is chosen so 

cu: = pi-_, “f__, (11) 

and if the Jacobi polynomial parameters are chosen so that P = 3 and Q = 2. Now, 

J; jo’ [T(l-T)PiI’~j dT= -&f-l I, 
I 

T( 1 - T)p,p;-, dr = -6 ,,,. _, (12) 

Here Si,j_, is the Kronecker symbol which vanishes unless i =j - 1 where it has the value 
of unity. Thus, the normalizing factors can be determined as 

2 
.fi=[/ 

1 

T(l-T)P;dT . I--’ (13) 
0 

For the particular Jacobi polynomials considered here (P = 3 and Q = 2), the recursion 
relation used to compute the polynomials pi is 

P,(T) = 1, /?,(T)=T-;, P,(T)=P~(T)P,-,(T)--,~~(T)A,-z, (14) 

where 

This way 

A, = i(i+2)/4(2i+ 1)(2i+3). (15) 

j-:=6 f’ =fi 3 .r+i 
A’ 

is-l. 

Now one can choose (Y, = 1 and solve for (Y~ for i 2 2 obtaining 

(16) 

ai =f;_, pi-, dT+ cj, i 2 2. (17) 

From the first term in equation (9), one can see that the sparsity could be further 
improved if 

I 

I 
U’i( 7) dT = 0, i 2 2. (18) 

0 

The integration constants c, can now be obtained by imposing this condition on LY, in 
equation (17) so that 

[I 

1 
a,(T) =A-, T*&,(T*) dT*- ’ &,(T*) dT* , iS2. (19) 

0 I T 1 
For example, with N = 4 these polynomials can be easily worked out to be 

f,P, =A, j&=di%(T-;), cr, = 1, CY,=&(T-it), (Y,=fl[(T-$)‘-$], 

(20) 

leading to a cubic representation for Sq and 8~ and a quadratic one for p and q, 
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Now, the first two terms in the integrand and the trailing terms in equation (5) can be 
expressed as 

I 1 
pSq’ d7 - pSq = SqTAp - 

0 

and 

where 

A= 

and 

I I 

q&f dr - qSp = GfAq, 
0 Jo 

0 
-1 

0 

0 

-1 0 
1 0 
0 -1 
. . . . 

‘0 ..: 

. . . 

. . . 

0 

sp = - 

I i SPp*N-2 

sq = - 

1 
41 
42 

41 

q2 

!7N-l 

For all problems there will be matrices of this type, but there will also be problem- 
dependent matrices stemming from the 6H and virtual work terms. For some problems, 
such as the linear oscillator example considered in reference [ll], there will be terms of 
the form j: p Sp dr and ji q Sq dT. These terms can also be put into a matrix form such that 

where 

B= 

1 1 

q Sq dr = GqTBq and 
- - P SP d7 = SfBp, 

0 0 112 -&/I2 0 ... 0 
0 0 l/2 %/s/12 0 .a* 0 
00&i/6 0 -x6/30 *** ; 

00 0 X6/10 *.. -m/140 0 
. . . . . . . m/70 * *. . . 
00 0 . . . . . . .._ 0 ma Nx(N+l) 

(23,24) 

L 

The first two rows are all zeros except for the third and fourth columns, and the lower 
N - 2 rows and last N - 1 columns have two non-zero diagonals. In view of the sparsity 
of these matrices, computational efficiency can be improved by using a sparse matrix 
linear equation solver. 

4. RESULTS AND DISCUSSION 

For the purpose of evaluating the performance of the method, we consider a single- 
degree-of-freedom linear oscillator for which the Hamiltonian is given by 

H=pcj-~mcj2+fkq2=p2/(2m)+kq2/2. (25) 
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The numerical example in reference [ll] was chosen to show both the accuracy and the 
freedom from numerical instability of the present method. In reference [ 1 l] a unit impulse 
was applied at t = 0.5 s. Substitution of equation (25) into equation (4) then leads to a 
matrix form of the equations, 

-Bkdr A 

-A 

where Q, is an impulse applied at the beginning of a time step; Q1 is set equal to zero 
for all time steps except t = O-5 where QI = 1. (Introduction of the unit impulse as a 
trailing term in equation (5), rather than under the integral, avoids “smearing” the impulse 
over a time element, as pointed out in reference [ 111.) For the numerical results, initial 
conditions were specified as q(0) = 0 and p(O) = 1 and k = m = 1. For one element in time, 
we can then obtain a time-marching algorithm for generating & and p^* given 4, and 3,. 
Exact element quadrature is used; the ad hoc procedure of reduced element quadrature 
is not necessary with the present mixed formulation. Since 4, and p1, are known at any 
time step, the number of equations and unknowns is 2N. 

The results for displacement and momentum are shown in Tables 1 and 2 for a unit 
impulse applied at t = O-5 s. First, note that the present formulation with N = 2 gives the 
same result as those obtained by the displacement formulation with reduced element 
quadrature of reference [ 111. The present N = 3 approximation gives extremely good 
results-accurate to six digits. The present N = 4 results reproduce the exact solution to 
as many places as are displayed in the tables. Also, it should be noted that by using these 
shape functions, the formulation yields an unconditionally stable algorithm for all N 5 2. 

In order to verify that the time-marching algorithm is conditionally stable, one may 
eliminate the @ and jjs and write the finite element approximation for the system transition 
matrix. For k = m = 1, this approximation has the form 

{;;}=[.Ts :I{;:). 
TABLE 1 

Displacement response of linear oscillator due to unit impulse function at t = 0.5 s 

1 

0.0 0~00000000 0~00000000 0~00000000 0~00000000 
0.1 0.09983361 0.09975062 0.09983340 0.09983342 
0.2 0.19867054 0.19850623 0.19866930 0.19866933 
0.3 0.29552408 0.29528172 0.29552017 0.29552021 
0.4 0.38942729 0.38911176 0.38941829 0.38941834 
0.5 0.47944271 0.47906039 0.47942548 0.47942554 
0.6 0.66450529 0.66398098 0.66447581 0.66447589 
0.7 0.84293388 0.84227832 0.84288692 0.84288702 
0.8 1.01294715 I.01217388 1.01217618 1.01287630 
o-9 1.17284780 1.17197294 1.17274512 1.17274525 
1.0 1.32103949 1.32008150 1.32089639 1.32089652 

Displacement method 
[ll] (exact 

element quadrature; 
conditionally stable) 

Mixed method 
N=2 and 

displacement method 
[ 1 l] (reduced 

element quadrature) 
Mixed method 

N=3 

Mixed method 
N=4 

and exact 
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TABLE 2 

Momentum response of linear oscillator due to unit impulse function at t = 0.5 s 

Mixed method 
Displacement method N=2and- 

[ll] (exact displacement method Mixed method 
element quadrature; [ 1 l] (reduced Mixed method N=4 

t conditionally stable) element quadrature) N=3 and exact 

0.0 1~00000000 1’00000000 1~00000000 1~00000000 
0.1 0.99500832 0.99501247 0.99500417 0.99500416 
0.2 0*98008311 0.98009963 0.98006658 O-98006658 
0.3 0.95537338 0.95541023 0.95533650 0.95533649 
0.4 0.92112581 0.92119056 0.92106102 0.92106099 
0.5 0.87768231 0.87778195 0.87758259 0.87758256 
0.6 1.8204849 1 1.82062988 1.82033983 1.82033978 
0.7 1.74511295 1.74531692 1.74490883 1.74490877 
0.8 1.65231890 1.65259431 1.65204329 1.65204320 
0.9 1.54302915 1.54338696 1.54267108 1.54267096 
1.0 1.41833479 1.41878424 1.41788502 1.41788487 

The elements of the approximate transition matrix, c and s, are rational functions of At 
which are distinctly different for each value of IV. They satisfy the constraint c2 + s2 = 1 
for all values of At. For the exact transition matrix, c and s are cos At and sin At, 
respectively. For the approximate transition matrix, c = cos At + O(e)At and s = 
sin At - O(e), where the error function e = e(N) is also tabulated in Table 3. The error 
after M equal-length time steps can be shown to be approximately Me. The accuracy of 
the momentum is comparable to that of the displacement. (Recall that the momentum 
value is obtained directly from the solution of the algebraic equations-not by differenti- 
ation of the displacement.) As shown in reference [Ill, if the eigenvalues of the transition 

TABLE 3 

Elements of the transition matrix and error versus N 

N C s e 

2 

3 

4 

9At’ llAt4 At6 

1-20+--- 600 14 400 
At2 At4 At6 

1+-+-+- 
20 600 14 400 

At l-s+% 
( > 
At2 At4 At6 

1+-+-+- 
20 600 14400 

Exact cos At sin At 

At2 

l-T 
1+$ 

5At2 At4 

1-12+144 

At2 At4 

‘+12+144 

At 

At2 At4 

‘+iT+144 

At’ - 
12 

At5 

720 

At’ 

100 800 
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matrix lie on the unit circle in the complex plane for all values of At, the algorithm is 
unconditionally stable. For the present formulation, the moduli of the eigenvalues are 
exactly 1 for all N regardless of the value of At. Thus, it is concluded that the present 
formulation is unconditionally stable for the linear oscillator. 

Another important measure of the accuracy of a time-marching method is its periodicity 
error. We obtained it by using the finite element method to take M equal-length time 
steps, the length of which is adjusted so that the last step yields values of p and q that 
are the same as their starting values. Then, the approximate period MAt is compared 
with the exact period. The computational effort is related to the size of the element matrix 
2N times the number of steps. 

Figure 1 shows the periodicity error versus the total numbers of unknowns in an 
assembled set of finite elements over one period with the degree of shape function as the 
parameter. It can be seen that the higher order elements give very high accuracy, as has 
come to be expected from p-version formulations. Also, it is clear that for a given size 
of the element coefficient matrix times the number of elements, given by 2MN, the higher 
the order N the lower the error. This means that higher order elements will be more 
efficient for a given error. In other words, with the higher order element one can take 
much larger time steps in time marching without compromising accuracy. The sparsity 
of the present formulation is not taken into account in generation of these results. However, 
it is believed that some savings in computational effort can be demonstrated by taking 
advantage of the high level of sparsity. Figure 1 also exhibits the accuracy one could 
expect from direct calculation of the transition matrix by the mixed method in linear 
systems with periodic coefficients. This aspect of the work is presently under investigation 
and will be treated in a later paper. 

IO2 

10' \ 
\ ‘\ 

100 \ ‘\ 
7 \ 

\ 

‘\ 
c \ ‘\\ 
b 10-I \ ‘\ 
il ‘\ 
f 10-2 

\ 
\ ‘1 

0 
“0 10-3 

\ ‘\\ 
t 1 ‘\\\ 
a 10-4 

\ \ 
\ 

\ 

10-5 \ 
\ 

10-G I , , ,,<,,1 I/.cC( J 
1 10 100 1000 

2MN 

Figure 1. Periodicity error versus matrix size for solving periodic response problems. -, N = 2; ‘, 
N = 3; - - -, N = 4. 

5. CONCLUSION 

A set of higher order shape functions for a p-version finite element formulation in time 
based on the mixed form of Hamilton’s weak principle has been derived. This method 
is suitable for determination of the dynamic response of linear systems. These shape 
functions lead to very sparse coefficient matrices and are suitable for obtaining extremely 
high accuracy solutions for both time marching and the determination of the transition 
matrix in periodic coefficient problems. As pointed out in reference [12], p-version finite 
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elements in time can be made competitive with conventional time-marching algorithms, 
particularly if high accuracy is needed. With the present approach, it is believed that by 
taking appropriate advantage of sparsity, this method can be made computationally more 
efficient than conventional linear system simulation techniques. For the linear oscillator, 
the present technique yields unconditionally stable time marching algorithms. As pointed 
out in reference [ 151, for non-linear systems, one is more likely to develop computationally 
efficient algorithms based on an h-version algorithm because of the need in non-linear 
problems to continually recalculate the element integrals. For the linear case, however, 
these integrals need to be calculated only once, and the p-version is believed to be superior 
in this case. 
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