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Abstract

A non-linear theory is presented for stretching and inplane-bending of isotropic beams which have constant initial
curvature and lie in their plane of symmetry. For the kinematics, the geometrically exact one-dimensional (1-D) measures
of deformation are specialized for small strain. The 1-D constitutive law is developed in terms of these measures via an
asymptotically correct dimensional reduction of the geometrically non-linear 3-D elasticity under the assumptions of
comparable magnitudes of initial radius of curvature and wavelength of deformation, small strain, and small ratio of
cross-sectional diameter to initial radius of curvature (h/R). The 1-D constitutive law contains an asymptotically correct
refinement of O(h/R) beyond the usual stretching and bending strain energies which, for doubly symmetric cross sections,
reduces to a stretch—bending elastic coupling term that depends on the initial radius of curvature and Poisson’s ratio. As
illustrations, the theory is applied to inplane deformation and buckling of rings and high arches. In spite of a very simple
final expression for the second variation of the total potential, it is shown that the only restriction on the validity of the
buckling analysis is that the prebuckling strain remains small. Although the term added in the refined theory does not
affect the buckling loads, it is shown that non-trivial prebuckling displacements, curvature, and bending moment of high
arches are impossible to calculate accurately without this term. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The geometrically exact theory for analysis of
large deflections of beams is well known; see
Ref. [1] and the references cited therein. Elegant
treatments for the planar case are presented in Refs
[2, 3]. Relatively few applications of this type of

theory for stability analysis of initially curved be-
ams appear in the literature; an analogous treat-
ment for shell stability can be found in Ref. [4]. As
noted by Ref. [3], this type of treatment also forms
an excellent basis for postbuckling analysis. The
intent here is to provide a geometrically exact the-
ory for this purpose with a minimum of adhoc
approximations. The theory developed herein is
a special case of that which appears in Ref. [1], but
it includes an asymptotic development of the 1-D
constitutive law needed to have a complete
theory. The asymptotic analysis works on the basis
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Fig. 1. Schematic of undeformed and deformed beam.

of small parameters related to the strain and the
slenderness of the beam. Note: the case of shallow
arches must be treated with a specialized theory,
as pointed out by Simitses [5], because of the
presence of an additional small parameter related
to the ratio of beam’s length to its radius of initial
curvature.

We will start with a geometric description of the
undeformed and deformed states of the beam. This
includes the position vectors to an arbitrary mate-
rial point and definitions of the reference line and
reference cross section in both states. Geometrically
exact force and moment strain measures will be
introduced, followed by an asymptotic reduction of
the 3-D strain energy to 1-D.

Deformation and buckling of both rings and
high arches will be considered for examples. For
illustrating the approach, we consider a pressure
loading which is a constant force per unit deformed
length and acting perpendicular to the reference
line of the deformed beam. This is the closest rep-
resentation of hydrostatic pressure. Although it is
a follower force, we will prove that for many practi-
cal cases it is conservative, having a potential, in
accordance with Ref. [6].

2. 1-D strain energy

To form the strain energy of a planar, constant-
curvature beam, we develop the geometries of
both undeformed and deformed states. The beam
is symmetric about the plane in which it is
initially curved, and its displacement field is
symmetric about that plane. We then make use
of the variational-asymptotic method to reduce the
3-D strain energy to a 1-D functional for initially
curved beams. This functional depends only on the
geometrically exact stretching and bending
measures, which we specialize for the case of small
strain.

2.1. Undeformed state

Consider an initially curved beam with radius
of curvature R in its undeformed state. The un-
deformed beam reference line (the line of area

centroids will suffice in this case) is shown as the
dark, heavy line in Fig. 1. The position vector from
some fixed point to an arbitrary point p on
the beam reference line is denoted by r (x

1
),

where x
1
"R/ is the arc-length coordinate along

the undeformed beam reference line. Thus, we can
write the position vector to a point in the unde-
formed beam as

r6 (x
1
, x

2
, x

3
)"r(x

1
)#x

2
b
2
(x

1
)#x

3
b
3
, (1)

where the undeformed beam base vectors b
1

and
b
2

are functions of x
1

and where b
3
"b

1
]b

2
"a

3
is not. Spatially fixed base vectors are denoted by
a
i
, for i"1, 2, and 3, as shown in Fig. 1; note also

that a
3
"a

1
]a

2
. (Here and throughout the paper,

Latin indices vary from 1 to 3, while Greek indices
vary from 2 to 3. Repeated indices are summed over
their ranges.)

The relationship between these vectors is seen
from the geometry to be

G
b
1

b
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b
3
H"C

cos / sin/ 0
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0 0 1D G
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a
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a
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The unit vector tangent to the curve described by
r(x

1
) is

dr

dx
1

"r@"b
1
, (3)

where ( )@"d( )/dx
1
. The curvature vector for the

undeformed state is defined as k"b
3
/R, so that

b @
i
"k]b

i
. (4)

The initial curvature then is exhibited, as expected,
in

b @
1
"

b
2

R
, b @

2
"!

b
1

R
. (5)

Let us define an operator S(f)T to be the integral
over the cross-sectional plane of the undeformed
beam of any quantity (f), or

S(f)T"P
A
P (f) dA (6)

with A as the cross-sectional area. Integrating the
position vector of the undeformed beam over the
cross section, we obtain

Sr6 T"Ar#SxaTba . (7)

Noting that the second term on the right-hand side
vanishes if the area centroid is chosen to be the
reference line location in any cross section, one
finds that the vector r is the average position of all
points of the cross-sectional plane, viz.,

1

A
Sr6 T,r. (8)

2.2. Deformed state

The deformed state is a straightforward exten-
sion of the above. The position vector for the same
material point in the deformed beam to which
r6 points in the undeformed beam is

R1 (x
1
, x

2
, x

3
)"R (x

1
)#x

2
B
2
(x

1
)#x

3
B
3

#w
i
(x

1
, x

2
, x

3
)B

i
(x

1
), (9)

where w
i
(x

1
, x

2
, x

3
) is the displacement of points in

the reference cross-sectional plane relative to the
rigid-body displacement and rotation reflected by

R(x
1
) and B

i
(x

1
); for planar deformation B

3
"b

3
,

and the curvature vector for the deformed state is
K"((1/R)#i)b

3
. In general, w

i
describes both in-

and out-of-plane warping of the material points
which make up the reference cross-sectional plane
of the undeformed beam. These functions are not
known a priori; they must be calculated subject to
constraints which remove redundant degrees of
freedom.

In a manner similar to the above treatment of the
undeformed state, for the deformed state we can
write

SR1 T"AR#SxaTBa#Sw
i
TB

i
. (10)

Again, the second term on the right-hand side van-
ishes by the above choice of the reference line. By
constraining the average value of the warping to be
zero, so that

Sw
i
T"0, (11)

the last term also vanishes leaving

1

A
SR1 T,R. (12)

This means that R is the average position of the
points that make up the cross-sectional plane of the
undeformed beam when the beam is in the de-
formed state. Letting R"r#u, one then finds that
u is the vector from a point on the undeformed
beam reference line to the corresponding point (i.e.,
at the same value of x

1
) of the deformed beam

reference line. This implies that u is not the dis-
placement of some material point in the 3-D struc-
ture. Rather, it is the average displacement of all the
points contained in the undeformed beam reference
cross section, i.e.,

u"
1

A
SR1 !r6 T. (13)

The above development implies that the warping
is measured relative to a translated and rotated
planar image of the undeformed beam cross-sec-
tional plane. One specifies the rotation in accor-
dance with the type of theory to be derived. To
derive a theory of the ‘‘classical’’ type, which ne-
glects transverse shear deformation, we require the
cross-sectional plane of the deformed beam to be
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normal to the tangent of the local deformed beam
reference line, so that

Ba ·
dR

ds
"0, (14)

where s is the running arc-length along the de-
formed beam reference line. Since dR/ds is a unit
vector, we define the local stretching strain measure
e to be such that s@"1#e. It then follows that

R@"(1#e)B
1
. (15)

To complete the specification of the rotation, the
rotation of this plane about B

1
must be defined.

Letting f
,a"L(f)/Lxa , we can choose this rotation

to satisfy

SR1
,2

· b
3
!R1

,3
· B

2
T"0, (16)

so that the final constraint on the warping is

Sw
2,3

!w
3,2

T"0, (17)

making a total of four constraints on the warping.
Note that our choice of constraints is not unique,
but it is necessary that the constraints render the
displacement field unique.

The strain is now defined based on the simplest
small-strain approximation given by Danielson
and Hodges [7]. This choice is appropriate for
large deflection analysis of isotropic beams with
closed cross sections, since there are no restrictions
on the magnitudes of reference line displacement or
on cross-sectional rotation — only on the local rota-
tion, which is related to the cross-sectional warping
w
i
. (Indeed, as long as the magnitude of the warping

remains of the order of strain compared to the
cross-sectional diameter, the analysis is suitable
even for stretching and bending of isotropic beams
with open cross sections, since the only component
of warping that would be large in such cases is that
due to torsion.) The matrix of strain components
! in a local Cartesian frame can be expressed in
terms of the matrix of deformation gradient com-
ponents in mixed bases s as

!
ij
"

s
ij
#s

ji
2

!d
ij
, (18)

where

s
ij
"B

i
· G

k
p
k
· b

j
, g

i
"

Lr6
Lx

i

,

G
i
"

LR1
Lx

i

, p
i
· g

j
"d

ij
(19)

and d
ij

is the Kronecker symbol. In the above, the
g
i

are the covariant base vectors for the unde-
formed state, G

i
are the covariant base vectors for

the deformed state, and p
i

are the contravariant
base vectors for the undeformed state.

For the beam under consideration,

g
1
"Jgb

1
, ga"ba ,

p
1
"

b
1

Jg
, pa"ba , (20)

where
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2
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3
. (21)

The strain in a local Cartesian system parallel to
b
i
is then

!
11
"

e!x
2
i#w @

1
!(w

2
/R)

Jg
,

2!
12
"w

1,2
#

w @
2
#(w

1
/R)
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,

2!
13
"w

1,3
#

w @
3

Jg
,

!
22
"w

2,2
, 2!

23
"w

2,3
#w

3,2
,

!
33
"w

3,3
. (22)

For cross sections other than those that are open
and thin-walled, it can be shown [8] that the first
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approximation of the warping is of the order he,
where h2 is a constant of the order of the cross-
sectional area, and e"max( De D, h DiD) is the max-
imum strain. Now, assuming ( )@ is the order of ( )/R
(which requires that the wavelength of the deforma-
tion, assumed here to be of the order of the beam
length, and R are of the same order) and h2/R2;1,
one can rewrite the strain terms through O(he/R) as

!
11
"e!x

2
i#w @

1
#(e!x

2
i)

x
2

R
!

w
2

R

2!
12
"w

1,2
#w @

2
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1

R
,

2!
13
"w

1,3
#w @

3
,

!
22
"w

2,2
, 2!

23
"w

2,3
#w

3,2
,

!
33
"w

3,3
, (23)

where the non-underlined terms are all O(e) and the
underlined ones are O(he/R).

2.3. Dimensional reduction

In order to reduce the 3-D strain energy to a 1-D
functional, we employ the variational-asymptotic
method of Berdichevsky [9]. For a homogeneous,
isotropic beam with Young’s modulus E, shear
modulus G, and Poisson’s ratio l, twice the strain
energy per unit length ºM can be written as

2ºM "ES!2
11

JgT#GS[(2!
12

)2#(2!
13

)2

#(2!
23

)2]JgT#
E
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]TG
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33
H
T

C
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l
l
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]G
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22
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33
HJgU . (24)

Considering only terms that are O(e) in the strain
for now, one can write the dominant terms of 2ºM as

2ºM
0
"EAe2#EI

3
i2#GSw2

1,2
#w2

1,3

#(w
2,3

#w
3,2
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(1#l)(1!2l)
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2
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H
T
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l
l
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l (e!x
2
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2,2
l (e!x

2
i)#w

3,3
HU . (25)

The variational-asymptotic procedure requires that
this expression be minimized by the warping, as
constrained above in Eqs. (11) and (17). Carrying
out this minimization in the usual manner of the
calculus of variations, one can show that the fol-
lowing warping functions uniquely satisfy all con-
straints and minimize the approximate energy 2ºM

0
:

w
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,0,

w
2
"!lex

2
#

li
2 A

I
2
!I

3
A

#x2
2
!x2

3B ,

w
3
"!lex

3
#lix

2
x
3
. (26)

The minimized value of 2ºM
0
is then the familiar first

approximation to the 1-D energy for planar defor-
mation

2ºM *
0
"EAe2#EI

3
i2. (27)

Notice that no adhoc assumptions such as ‘‘the
rigidity of the cross section in its own plane’’ or
‘‘l"0’’ were made. Such assumptions are neither
necessary nor asymptotically correct.

In order to find the next approximation to the
1-D energy, the variational-asymptotic method re-
quires that we perturb the above ‘‘classical’’ ap-
proximation of the warping, so that

w
1
"v

1
,

w
2
"!lex

2
#

li
2 A

I
2
!I

3
A

#x2
2
!x2

3B#v
2
,

w
3
"!lex

3
#lix

2
x
3
#v

3
. (28)

We must substitute the perturbed warping into the
strain expressions in Eq. (23), including the under-
lined terms, and in turn substitute those expres-
sions into Eq. (24), thus retaining all terms in the
3-D energy up through O(h/R) relative to the lead-
ing terms.
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Carrying out these operations, one finds that v
i
is

O(he/R) and that the next approximation of the
1-D energy, including terms that are O(h/R) rela-
tive to the leading terms of the 1-D energy found in
Eq. (27), can be found without having to calculate
v
i
. The resulting strain energy density is
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3
i2#E T
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2

R
(e!x

2
i)2

!2
w
2

R
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EI
3

R
ei#2lESx
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2
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R
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EAh2e2
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Based on this approximate 1-D energy, the corres-
ponding 1-D constitutive law is then

F"

LºM *
1

Le
"EAe!

(1#l)EI
3

R
i

#O A
EAh2e

R2 B ,

M"

LºM *
1
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"!

(1#l)EI
3

R
e

#CEI
3
!

ESx3
2
T (1#l)
R D i

#O A
EAh3e2

R2 B , (30)

where F and M are the tangential force resultant
and bending moment, respectively. The underlined
terms are O(h/R) relative to the leading terms and
represent (a) a slight change in the bending stiffness,
which vanishes for doubly symmetric cross sec-
tions, and (b) stretching—bending coupling indica-
tive of a shift in the position of the neutral axis

away from the area centroid. This result is in agree-
ment with that of Ref. [10]. The only approxima-
tions in the dimensional reduction are thus e;1
and h2/R2;1. Later, it will be shown that these
conditions dovetail into one condition for ring- and
high-arch-buckling problems. The next approxima-
tion would produce terms in the 1-D energy which
are O(h2/R2) relative to the leading terms. These
are associated with large initial curvature and
transverse shear effects, not necessary in the present
treatment.

Substituting Eq. (28) into Eq. (23), one can for-
mally write the asymptotically correct 3-D strain
field to O(he/R). However, without calculation of
v
i

the present analysis only allows recovery of
!
11

to O(he/R), while recovery of !
1a and !ab is only

possible to O(e). This means that stresses are only
recoverable to O(Ee). It should be noted that the
moment stress resultant M, when calculated from
the 3-D stress based on the approximate 3-D strain,
is accurate to O(h/R) relative to the leading classi-
cal term and agrees with the result in Eq. (30). This
is because the terms of the approximate 3-D stress
which contain v

i
, when multiplied by x

2
and inte-

grated over the cross-sectional area, are zero, since
the average values of the warping perturbations
v
i
must also vanish. In contrast, only the leading

term of the tangential force resultant, when cal-
culated from the 3-D stress based on the approxi-
mate 3-D strain, is correctly obtained without
knowledge of v

i
.

2.4. 1-D Strain—displacement relations

From the above, the unit tangent to the reference
line of the deformed beam (see Fig. 1) is

dR

ds
"B

1
, (31)

where B
1

is a unit vector tangent to the reference
line at P and s is the arc-length coordinate along
the deformed beam. By choosing a specific set of
displacement variables, one can find the relation-
ship between s and x

1
.

Let u"u
1
b
1
#u

2
b
2
. This way, u

1
is the ‘‘tangen-

tial’’ displacement and u
2

is the ‘‘radial’’ displace-
ment. Using Eq. (5) to express the derivatives of the

728 D.H. Hodges / International Journal of Non-Linear Mechanics 34 (1999) 723–737



base vectors, one finds

B
1
"

dR
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"
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"

(1#u @
1
!(u

2
/R))b

1
#(u @

2
#(u

1
/R))b

2
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. (32)

However, it is also clear from the restriction to
planar deformation that one can regard the unit
vectors B

1
, B

2
, and B

3
"B

1
]B

2
"b

3
"a

3
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terms of a simple rotation by an angle, say, h
3

such
that
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B
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B
3
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3
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3

0
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3
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3

0

0 0 1D G
b
1

b
2

b
3
H . (33)

Now, we can determine three things by comparing
the expressions for B

1
in Eqs. (32) and (33). The first

two are that cos h
3

and sin h
3

can be found as

cos h
3
"

1#u @
1
!(u

2
/R)

s@
, sin h

3
"

u @
2
#(u

1
/R)

s@

(34)

and the third is that, since B
1

must be a unit vector

s@"SA1#u @
1
!

u
2

RB
2
#Au @

2
#

u
1

RB
2
. (35)

Since s@"1#e, for completeness we note that

e"SA1#u @
1
!

u
2

RB
2
#Au @

2
#

u
1

RB
2
!1. (36)

Finally, the state of deformation of a beam is
characterized by the bending energy, which de-
pends on the curvature. Reissner’s theory for static
deformation of beams [2] makes use of a ‘‘moment
strain’’ which is i"h@

3
rather than dh

3
/ds. These

only differ by a factor of s@"1#e, and for a small
strain analysis one can ignore e compared to unity
(i.e., to set s@ equal to unity) in the bending measure
(but not in the stretching energy). Thus, we can
develop i"h@

3
by differentiating the second of

Eqs. (34), yielding

h@
3
cos h

3
"

s@(u @@
2
#(u @

1
/R))!s@@(u @

2
#(u

1
/R))2

s@2
. (37)

Now using the first of Eq. (34) and noting that

sA"
(1#u @

1
!(u

2
/R))(uA

1
!(u @

2
/R))

s@

#

(u @@
2
#(u @

1
/R))(u @

2
#(u

1
/R))

s@
, (38)

we find (after a remarkable series of cancellations!)

h@
3
"

(1#u @
1
!(u

2
/R))(uA

2
#(u @

1
/R))

s@2

!

(u @
2
#(u

1
/R))(u @@

1
#(u @

2
/R))

s@2
, (39)

which, when specialized for RPR, is in agreement
with Ref. [11]. We note that to be consistent with
Hooke’s law, one must restrict e"max(e, hi) to be
small compared to unity. Thus, for small strain we
may regard s@"1 in the denominator of Eq. (39),
yielding a polynomial in the displacement functions
and their derivatives for the moment strain [3]

i"A1#u @
1
!

u
2

RB Au @@
2
#

u @
1

RB
!Au @

2
#

u
1

RB AuA
1
!

u @
2

RB . (40)

Other than small stretching strain e;1, we have
made no approximations in the 1-D variables. The
differences between this expression for ‘‘curvature’’
and that found in calculus texts is discussed fully in
Ref. [11]. An alternative approximation that is
discussed in Ref. [11] for straight beams is to make
use of the fact that the stretching strain is essentially
zero in order to altogether eliminate u

1
from

moment strain (see also Ref. [12]). However, this
approach cannot be used to eliminate u

1
for an

initially curved beam; it can be used only to write
u @
1
!(u

2
/R) in terms of u @

2
#(u

1
/R) as done in

Ref. [4]. This does not serve to eliminate a vari-
able; instead it introduces an unnecessary mathe-
matical singularity into the formulation along with
an artificial limit on the ‘‘rotation’’ such that
Du @

2
#(u

1
/R) D(1. The difference between this ap-

proach and the singularity-free one obtained from
Eq. (40) used herein is of the order of the strain
compared to unity.
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2.5. Final 1-D strain energy

To simplify the notation somewhat, we write
I"I

3
and consider a doubly symmetric cross sec-

tion (so that Sx3
2
T"0). The 1-D strain energy is

then the integral over the length of º*
1

º"

1

2 PL CEAe2!
2EI(1#l)

R
ei#EIi2D dx

1
,

(41)

whereL is the total length of the beam. The under-
lined coupling term between e and i is due to the
shift of the neutral surface away from the area
centroid in a curved beam. As one can see, the
strain energy density becomes quite complicated
when Eqs. (36) and (40) are substituted into Eq. (41).
There are many problems for which the result does
become tractable, however, and for this reason this
approach is to be preferred over adhoc approaches
in which one cannot easily assess the error asso-
ciated with particular approximations.

3. Potential energy of applied pressure loading

In anticipation of applying the above theory to
inplane deformation and buckling, here we develop
the potential energy by first finding the virtual
work of the applied loading. Then we establish the
criteria by which the virtual work can be represent-
ed as the variation of a functional, namely the
negative of the potential energy.

3.1. Virtual work of pressure

We consider the case of a distributed follower
force that is a constant per unit deformed beam
length. This means that the local force on an ele-
ment of the deformed beam is, say, f

2
B

2
ds where

f
2

is a constant. This force does the following work
through a virtual displacement

d¼"PL f
2
s@B

2
· (du

1
b
1
#du

2
b
2
) dx

1
, (42)

where the d¼ is the virtual work and the bar over
the symbol indicates that it is not necessarily equal
to the variation of a functional ¼. We already

know that B
2
"!sin h

3
b
1
#cos h

3
b
2

so that, from
Eqs. (34), we have

d¼"f
2 PL CA1#u @

1
!

u
2

RB du
2

!Au @
2
#

u
1

RB du
1Ddx

1
. (43)

3.2. Potential energy functional

For a beam of length l, this can now be put into
the form

d¼"f
2
d PL Au2!

u2
1

2R
!

u2
2

2R
!u

1
u @
2B dx

1

#u
1
du

2 K
l

0

. (44)

It is clear then that there are situations in which the
trailing term vanishes which, in turn, allows the
follower force to be derived from a potential func-
tion. Namely, this is the case if the ends of the beam
are not allowed to displace, or if the beam is
a closed ring, for which the ends are joined so that
u
1
(l)du

2
(l)"u

1
(0)du

2
(0); for a discussion of this

type of ‘‘holonomicity’’ see pp. 159—162 of Ref. [6].
In these cases, the potential energy functional is

»"!f
2 PL Au2!

u2
1

2R
!

u2
2

2R
!u

1
u @
2Bdx

1
. (45)

4. Applications

In-plane deformation and buckling of circular
rings and high arches are considered as applica-
tions. A simple buckling analysis will be developed
from the total potential energy, and the prebuck-
ling deflections will be determined for cases in
which they are not trivial.

To facilitate these analyses, it is now helpful to
non-dimensionalize the equations. This we do by
dividing through the total potential º#» by EAR
while simultaneously changing the meaning of cer-
tain symbols. We replace u

1
and u

2
by Ru

1
and Ru

2
,

respectively; we replace i by i/R; and we finally
let ( )@ denote d( )/d/. We also introduce the new
symbols o2"I/AR2 and j"f

2
R3/EI. All these
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operations yield, for the non-dimensional total po-
tential '"(º#»)/EAR

'"P
a

~a C
e2
2
!(1#l)o2ei#

o2i2

2

!jo2 Au2!
u2
1
2
!

u2
2
2
!u

1
u @
2BD d/, (46)

where

e"J(1#u @
1
!u

2
)2#(u @

2
#u

1
)2!1 (47)

and

i"(1#u @
1
!u

2
)(u @@

2
#u @

1
)!(u @

2
#u

1
) (uA

1
!u @

2
).

(48)

Note that h/R"O(o) , so that o2;1; for a ring
a"n.

It is helpful, before proceeding further, to rewrite
i2 in a more compact way. To do so, we note that

i2"(1#u @
1
!u

2
)2(u @@

2
#u @

1
)2

!2(u @
2
#u

1
)(uA

1
!u @

2
)(1#u @

1
!u

2
)(u @@

2
#u @

1
)

#(u @
2
#u

1
)2(uA

1
!u @

2
)2 (49)

and that

(1#e)2"(1#u @
1
!u

2
)2#(u @

2
#u

1
)2. (50)

Thus, Eq. (49) can be rearranged, making use of
Eq. (50), to obtain

i2"[(1#e)2!(u @
2
#u

1
)2](u @@

2
#u @

1
)2

#[(1#e)2!(1#u @
1
!u

2
)2](uA

1
!u @
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!2(u @
2
#u

1
) (uA

1
!u @

2
) (1#u @

1
!u
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)

](u @@
2
#u @

1
), (51)

which, in light of the fact that e@"s@@, given in
Eq. (38), simplifies to

i2"(1#e)2[(u @@
2
#u @

1
)2#(uA

1
!u @

2
)2!e@2]. (52)

When o2i2 is compared to e2, the last term in
Eq. (52) becomes negligible because o2;1. For
small strain i2 can finally be written as

i2"(u @@
2
#u @

1
)2#(uA

1
!u @

2
)2. (53)

4.1. Buckling of rings and high arches

For the first application we consider the buckling
of rings and high arches. For the buckling analysis
of high arches, we will follow the usual approach of
assuming that the boundary conditions are such
that the displacements in the prebuckled state are
the same as those for a ring with the same values of
j, l, and o. This has the effect of simplifying the
analysis of the prebuckled state, but it does not
affect the resulting bifurcation load.

4.1.1. Prebuckled state
In the prebuckled state, we note that the ring

remains circular so that all derivatives with respect
to / vanish. Denoting the prebuckled state vari-
ables with overbars and noting that uN

2
is the only

non-zero variable, we find that eN"!uN
2
, iN "0, and

the functional reduces to

'1 "P
a

~a C
uN 2
2
2
!jo2 AuN 2!

uN 2
2
2 BDd/ (54)

from which we find, upon equating the variation to
zero

uN
2
"

jo2

1#jo2
. (55)

Here, make an important observation: the strain
in the prebuckled state

eN"!uN
2
"!

jo2

1#jo2
(56)

is of the order of o2. So, for a consistent small-strain
analysis we need to ignore o2 with respect to unity.
To improve on this analysis we would not only
need to keep o2 compared to unity, we would also
have to take transverse shear into account thereby
improving on Eq. (41) so that o2 is not taken as
small compared to unity in the dimensional reduc-
tion. This would entail the calculation of the per-
turbed warping, v

i
, above, and would be much

more complicated. Furthermore, to consistently
keep o2 compared to unity would require the treat-
ment of material non-linearities, such as retention
of higher-order elastic constants of the material.
Obviously, since the ring is slender and the pre-
buckling strain is small compared to unity, these
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modifications are not necessary. This observation
leads to a great simplification in the buckling
analysis.

4.2. Buckling analysis

To further simplify the total potential, we con-
sider that the perturbations of the prebuckled state
at the onset of buckling can be regarded as arbitrar-
ily small. We need to keep all terms of power 1 and
2 in perturbations of '. Using the concept of the
Taylor series to make certain all such terms are
retained, we note that

e"eN#eL
1
#eL

2
, i"iL

1
#iL

2
. (57)

The subscripts indicate the power of the perturba-
tion displacements. Because of the non-zero value
of eN , we need both first and second order terms. For
small strain, we find
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"uL @
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2
,
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2
)(uL @@

2
#uL @

1
)#(uL @

2
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1
)(uL A

1
!uL @

2
). (58)

Now we can write the perturbations of the en-
ergy. First, keeping only the terms including first
powers of the ( ª ) quantities, we obtain

'ª
1
"P

a

~a CeN eL 1!(1#l)o2eN î
1
!jo2(1#eN )uL

2Dd/,

(59)

the variation of which is identically zero, as ex-
pected. Equating to zero the variation with respect
to uL

1
, one obtains an identity; equating to zero the

variation with respect to uL
2
, one finds an equation

that is satisfied given Eq. (55).
Now, let us consider the second-order terms

(which amounts to a second variation):
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When eN"!jo2 is substituted into Eq. (60), the
third term drops out, being O(o4) relative to the
leading term. It should be clear that all the remain-
ing terms in 'ª

2
are proportional to o2 except the

eL 2
1

term; thus, that term must be killed. Minimi-
zation of 'ª

2
with respect to uL

1
shows that

uL @
1
"uL

2
#o2l (uL @@

2
#uL

2
)#) ) ) , (61)

or alternatively
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so that
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Either uL
1

or uL
2

can be eliminated completely
from the energy using these relations. Considering
first the elimination of uL

2
, substitution of Eq. (62)

into Eq. (60), one obtains
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which simplifies to
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1
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] d/. (65)

The essential boundary conditions on uL
2

must be
transferred over as essential boundary conditions
on uL @

1
in order to make proper use of this energy

functional.
Alternatively, the variable uL

1
cannot be elimi-

nated entirely without a somewhat unusual treat-
ment of the boundary conditions. Integrating both
sides of Eq. (61) for a ring, when specialized for
o2;1, one finds

uL
1
Da
~a

"0"P
a

~a
uL
2
d/. (66)

This equation is satisfied for typical comparison
functions used in predicting ring buckling, because
whether such functions are ‘‘symmetric’’ or ‘‘anti-
symmetric’’ about /"0 is immaterial. However,
for buckling of high arches in which uL

1
($a)"0

one must be careful. Although antisymmetric func-
tions automatically satisfy this condition for high
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arches, symmetric functions do not, in general. This
condition is an essential (i.e., a displacement)
boundary condition, and it is therefore mandatory
that any admissible/comparison function satisfy it;
else, the results from Rayleigh’s method, for
example, will be wrong. Using Eq. (61), one can
write the energy functional in terms of uL

2
only as

'ª
2
"

o2

2 P
a

~a
[(uL A

2
#uL

2
)2!j (uL @2

2
!uL 2

2
)] d/ (67)

subject to

P
a

~a
uL
2
d/"0. (68)

These expressions for the second variation of the
total potential provide from henceforth very simple
treatments relative to published work. In spite of
this simplicity, the only approximation employed
was that eN;1, which, because of the prebuckling
state, is equivalent to o2;1.

Now, using either Eq. (65) or Eqs. (67) and (68)
one can derive an upper bound for the buckling
load from Rayleigh’s quotient. For example, using
the latter

j
#3
"

:a
~a

(uL @@
2
#uL

2
)2 d/

:a
~a

(uL @
2
!uL 2

2
) d/

(69)

and assuming that uL
2
"sin m/, which satisfies

Eq. (68), one finds that

j
#3
"m2!1. (70)

Since m"1 is a rigid-body mode, as shown in Ref.
[5], the critical load is then at m"2 so that

j
#3
"3 (71)

in agreement with published results [5].
High arches are often treated approximately by

allowing the boundaries to move in the prebuckling
problem, yielding a simplified prebuckling state
identical to that of the ring. For those cases de-
scribed in Ref. [5], one can quite easily verify that
Eq. (69), subject to Eq. (68), as well as its analog in
terms of uL

1
, provide upper bounds for the published

symmetric or antisymmetric buckling loads when
either symmetric or antisymmetric admissible or
comparison functions are substituted therein.

4.3. Analysis of in-plane deformation

The stretch—bending elastic coupling term which
was found as a correction to the classical 1-D strain
energy, i.e., the underlined term in Eq. (41), does not
affect the above buckling analysis at all. This is
clearly revealed since the functional Eq. (69) does
not depend on l. Due to similarity of the present
equations for analysis of curved beams and those
contained in published work for shell analysis [13],
it is quite likely that when DeD<oDiD'0 one must
retain the full expression for the strain energy in
Eq. (41). This hypothesis is examined presently.

Recall that the derivation only assumes that the
strain is small compared to unity (e;1) and that
o2;1. For in-plane deformation subject to the
external pressure specified by the parameter j, the
Euler—Lagrange equations and boundary condi-
tions for u

1
and u

2
can be obtained by taking the

variation of Eq. (46) and executing appropriate
integrations by parts. These equations are non-lin-
ear and quite lengthy, and they need not be written
here. One can simplify the resulting analysis
immensely by making the following changes of
variable:

u
1
"o2uN

1
,

u
2
"o2(j#uN @

1
)#o4 (z!j2). (72)

and ignoring o2 compared to unity. Doing so, one
finds that the u

1
equation becomes
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1
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and the u
2

equation simplifies to allow one to solve
for z, so that

z"
(uN @@

1
#uN

1
)2

2
!(1#l#j)uN @
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!(2#l#j)uN @@@
1
!uN 7

1
. (74)

After eliminating z from Eq. (73) and after a re-
markable series of cancellations, one finds that

uN 7*
1
#(2#j)uN *7

1
#(1#j)uN @@

1
"0, (75)

which is independent of Poisson’s ratio. For a
curved beam with !a)/)a, the boundary
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conditions at /"$a are

uN
1
"0,

uN @
1
#j"0 or uN *7

1
#(1#j)uN @@

1
"0,

uN @@
1
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1
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1
#j(1#l)"0, (76)

which are not independent of Poisson’s ratio.
The expressions needed for recovery of the radial

displacement u
2
, rotation h

3
, curvature i, bending

moment M, and shear force » are
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It should be noted that the above boundary-
value problem can also be posed as the minimi-
zation of a functional

'
0
"1

2P
a

~a
[2j(1#l)uN @@@

1
#(uN @@@
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#uN @

1
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!j(uN @@2
1
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subject to uN
1
"0 at both ends. This functional, as

well as the corresponding boundary-value problem,
is valid only when o2uN

1
;1. Relaxation of this

restriction would allow the treatment of postbuck-
ling deflections within the same framework.

Obviously, Poisson’s ratio will affect the pre-
buckling deflections to a non-negligible extent
whenever the bending moment is prescribed at
either end. Although the deflections are not affected
by Poisson’s ratio when the rotation is fixed, the
resulting bending moment (and thus calculation of
prebuckling stress) is affected. It is interesting to
note that the quadratic terms in '

0
are of the same

form as Eq. (65). Thus, the bifurcation loads are the
same for rings and high arches as would be pre-
dicted by the buckling analysis in the previous
section. It is the presence of the linear term that
affects prebuckling deflections (through non-

homogeneous boundary conditions), however, and
one can observe a variety of situations. As exam-
ples, high arches with five sets of boundary condi-
tions are considered.

4.3.1. Roller—roller (rr) case
Ignoring o2 compared to unity, for the

roller—roller case (Case rr) one obtains the follow-
ing boundary conditions, applied at both ends,
/"$a:

uN
1
"uN @@

1
"uN *7

1
"0. (79)

Here both ends are clamped to rollers (i.e., so that
there is zero rotation, shear force, and tangential
displacement). Case rr has only homogeneous
boundary conditions, so there is zero prebuckling
deflection u

1
and curvature i. However, again ig-

noring o2 compared to unity, the radial deflection
and bending moment are constants given by

u
2
"jo2,

M

EAR
"jo4 (1#l). (80)

Although the bending moment is small, it is not
zero unless l"!1 (which is the same as if the
Poisson effect is neglected from the strain energy in
Eq. (41)). Thus, predicted prebuckling bending
stresses are completely different (for almost all ma-
terials) from what they would be without the
stretching—bending coupling term in the strain en-
ergy. The bifurcation load is easily found to be
j
#3
"n2/(4a2)!1 for a'n/2.

4.3.2. Clamped—clamped (cc) case
In the clamped—clamped case (Case cc) we con-

sider these boundary conditions

uN
1
"uN @

1
#j"uN @@

1
"0, (81)

at both ends, /"$a. Here both ends of the arch
are fixed to the ground and rotation is constrained
to be zero. The prebuckling deflections u

2
are sym-

metric about /"0; thus, without any non-sym-
metric imperfections, the lowest bifurcation load,
which has an antisymmetric mode, is not picked up.
The formulae for prebuckling deflections and cur-
vature are somewhat lengthy and are not given
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Fig. 2. Normalized prebuckling curvature i for Case pp, j"5,
a"1; the solid line is for the case with the stretch—bending
coupling term (l"1

3
); the dashed line is for the case without the

stretch—bending coupling term (l"!1).

Fig. 3. Normalized prebuckling bending moment M for Case
pp, j"5, a"1; the solid line is for the case with the
stretch—bending coupling term (l"1

3
); the dashed line is for the

case without the stretch—bending coupling term (l"!1).

here, but they can be easily developed using
Mathematica [14], as described above. The preb-
uckling deflections and curvature u

1
, u

2
, and i,

respectively, are not functions of l, but the prebuck-
ling bending moment M does depend on l and is
given by

M

EAR

"jo4

]
[k2a (1#l) cos(a)!jl sin(a)] sin(ka)

[k2a cos(a)!j sin(a)] sin(ka)!ka cos(ka) sin(a)

!

ka[(1#l) cos(ka)#j cos(k/)] sin(a)

[k2a cos(a)!j sin(a)] sin(ka)!ka cos(ka) sin(a)
,

(82)

where k"J1#j. The extent to which l changes
the prebuckling bending moment is dependent on
a and j. It it noted that the characteristic equation
can be found by equating the denominator to zero.
Results for the bifurcation load are in agreement
with those of Ref. [5].

4.3.3. Pinned—pinned (pp) case
In the pinned—pinned case (Case pp) we consider

boundary conditions of the form

uN
1
"uN @

1
#j"uN @@@

1
#jl"0, (83)

at both ends, /"$a. Here the ends of the arch are
fixed to the ground and rotation is unconstrained.
The antisymmetric bifurcation load is the critical
one, and the value is j

#3
"n2/a2!1 for a'n, in

agreement with Ref. [5]. As in Case cc, the prebuck-
ling deflections u

2
are symmetric about /"0; thus,

without any non-symmetric imperfections, the
lowest bifurcation load, which has an antisymmet-
ric mode, is not picked up. Like Case cc, the lengthy
prebuckling deflection, curvature, and bending
moment formulae can be easily developed using
Mathematica [14]. However, unlike Case cc, the
prebuckling deflections u

1
and u

2
as well as the

curvature and bending moment are significantly
affected by l; see, for example, Figs. 2 and 3. Note
that the magnitude of the bending moment is off by
a factor of two without the stretch-bending coup-
ling term in Eq. (41).

4.3.4. Free—free ( ff) case
In Case ff we consider as boundary conditions

uN
1
"uN @@@

1
#uN @

1
#j (1#l)

"uN *7
1
#(j#1)uN @@

1
"0, (84)

in which case both ends, /"$a, are pinned to
rollers (i.e., so that there is zero bending moment
and shear force with zero tangential displacement).
The solutions for the prebuckling deflections,
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Fig. 4. Normalized prebuckling displacement u
2

for Case ff,
j"2, a"1; the solid line is for the case with the
stretch—bending coupling term (l"1

3
); the dashed line is for the

case without the stretch—bending coupling term (l"!1).

curvature, and bending moment are simple. The
deflections are given by

u
1
"jo2(1#l)

a sin(k/)!/ sin(ka)

jka cos(ka)#sin(ka)
,

u
2
"jo2

ka[(1#l) cos(k/)#j cos(ka)]!l sin(ka)
jka cos(ka)# sin(ka)

.

(85)

The curvature is

i"!jo2 (1#l)
jka cos(k/)#sin(ka)

jka cos(ka)#sin(ka)
(86)

and the bending moment is

M

EAR
"!(1#l) kaj2o4

cos(k/)!cos(ka)

jka cos(ka)#sin(ka)
.

(87)

The shear force is identically zero through O(o4).
Note that the tangential displacement u

1
, the cur-

vature i, and the bending moment M are all identi-
cally zero for l"!1, which corresponds to the
result when the stretch—bending coupling term is
not present in the strain energy. When l assumes
any other value, one sees significant changes, both
qualitative and quantitative, in all prebuckling
quantities; for example, in Fig. 4 note the large
effect for the radial displacement.

For this case, the characteristic equation reduces
to

jka cos(ka)#sin(ka)"0, (88)

which, not surprisingly, tends to yield critical loads
lower than the for the other sets of boundary condi-
tions considered. What is somewhat unusual is that
the critical load corresponds to a mode which is
symmetric in u

2
. That is, the bifurcation load for

the symmetric mode is lower than that of the anti-
symmetric mode.

4.3.5. Pinned—free (pf ) case
Finally, we consider a non-symmetric case, the

pinned—free case (Case pf ). The boundary condi-
tions are written as

uN
1
(!a)"uN @

1
(!a)#j"uN @@@

1
(!a)#jl"0,

uN
1
(a)"uN @@@

1
(a)#uN @

1
(a)#j (1#l)"uN *7

1
(a)

#(j#1)uN @@
1
(a)"0. (89)

For this case the characteristic equation reduces to

sin(ka)M2kaj cos[(k!2)a]#2kaj cos[(k#2)a]

#(k3#2) sin[(k!2)a]

!(k3!2) sin[(k#2)a]N"0, (90)

where the bracketed quantity vanishes at a lower
value of j than does the sin(ka) term outside the
brackets for determination of the critical bifurca-
tion load. What is of most interest for the present,
however, is the profound impact of the
stretch—bending coupling term of the refined the-
ory. In Fig. 5, for example, one sees the qualitatively
different results for the prebuckling radial displace-
ment with and without the coupling term.

Realistic arches, of course, have imperfections;
the boundary conditions are not purely symmetric,
nor is it possible for the displacements or rotations
to be held exactly to zero values. This means that in
general one must have the stretch—bending coup-
ling which depends on the initial radius of curva-
ture and Poisson’s ratio in order to accurately
predict prebuckling deflections, bending moment
and shear force.
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Fig. 5. Normalized prebuckling displacement u
2

for Case pf,
j"1.5, a"1; the solid line is for the case with the
stretch—bending coupling term (l"1

3
); the dashed line is for the

case without the stretch—bending coupling term (l"!1).

5. Concluding remarks

The present paper considers homogeneous iso-
tropic beams with cross sections that are symmetric
about the plane in which the undeformed beam
exhibits constant initial curvature. A theory is de-
rived from geometrically non-linear 3-D elasti-
city for deformation of such beams in the plane of
their symmetry. The dimensional reduction is per-
formed via the variational-asymptotic method of
Berdichevsky [6]. The resulting theory is subject
only to the restrictions that the strain and the ratio
o2"I/(AR2) are small compared to unity. The
theory contains a term in the 1-D strain energy
which couples stretching and bending and which
depends on the initial radius of curvature and Pois-
son’s ratio.

When applied to the buckling of rings (and of
high arches when one uses a somewhat artificial
treatment of the boundary conditions so that the
prebuckling state is the same as that for rings), the
theory shows that the prebuckling strain is of the
order of o2. This means that there is really only one
restriction on the theory for this application, that of
prebuckling strain being small compared to unity.
The buckling analysis which follows is quite simple,

boiling down to the minimization of a simple func-
tional. This buckling analysis follows from a theory
which has fewer restrictions, and exhibits a con-
siderably simpler final form, than those typically
found in textbooks. Finally, it has been shown that
when non-trivial prebuckling deflections, curva-
ture, and bending moment of high arches exist, they
are impossible to calculate accurately without the
stretching—bending coupling term in the strain en-
ergy which depends on the initial radius of curva-
ture and Poisson’s ratio.
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