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Helicopters are susceptible to a catastrophic instability
called ground resonance
This instability is not a resonance at all but instead a
self-excited mechanical instability

Rotor system must be soft-inplane (we’ll see why)
Aerodynamics is not needed to capture the effect

The instability was avoided in older articulated rotor
systems by incorporation of dampers

lead-lag dampers in the rotating system and
roll/pitch dampers in the fuselage suspension system
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Figure: Catastrophic destruction from ground resonance
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Figure: Catastrophic destruction from ground resonance
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https://www.youtube.com/watch?v=0FeXjhUEXlc
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Here we examine in detail a simple system, using it to
introduce key ingredients of rotorcraft dynamics analysis

multi-blade coordinate transformation
coupling of rotating and non-rotating systems

Consider a simple spring-mass system with a rotor added:
a body of mass mB
slides in a frictionless straight track
restrained in its translation by a light, linear spring with
spring constant KX
has a rotor attached to it
rotor has b ≥ 3 identical, equally-spaced blades
each blade has mass m
each blade hinged at the hub in lead-lag rotation
lead-lag motion restrained with identical spring constants
Kζ
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For the k th of b blades, the azimuth angle for the
undeflected blade is ψk = Ωt + 2π

b (k − 1)

For the k th blade, the azimuth angle for the deflected blade
is Ψk = ψk + ζk where ζk is the lead-lag angle
The unit vectors are related as

bk
1

bk
2

bk
3

 =

− cos Ψk − sin Ψk 0
sin Ψk − cos Ψk 0

0 0 1


N1
N2
N3


The angular velocity of the k th blade is

ωk = (Ω + ζ̇k )bk
3

Hodges Ground Resonance



Daniel Guggenheim School of Aerospace Engineering

Ground Resonance
Background
Analysis of simple system exhibiting the instability

The potential energy is simply

P =
Kζ
2

b∑
k=1

ζ2
k +

KX

2
X 2

The velocity of the body (and of its mass center) is

vB = ẊN1

The velocity of the mass center of the k th blade is

vk =ẊN1 + (Ω + ζ̇k )bk
3 × rbk

1

=ẊN1 + (Ω + ζ̇k )rbk
2

=[Ẋ + (Ω + ζ̇k )r sin Ψk ]N1 − [(Ω + ζ̇k )r cos Ψk ]N2
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Thus, the kinetic energy can written as

K =
mB

2
Ẋ 2 +

I∗

2

b∑
k=1

(Ω + ζ̇k )2+

m
2

b∑
k=1

{
[Ẋ + (Ω + ζ̇k )r sin Ψk ]2 + (Ω + ζ̇k )2r2 cos2 Ψk

}
Letting the total system mass M = mB + bm and the
moment of inertia about the hub I = I∗ + mr2, one finds

K =
MẊ 2

2
+

I
2

b∑
k=1

(2Ωζ̇k + ζ̇2
k ) + mrẊ

b∑
k=1

(Ω + ζ̇k ) sin Ψk
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Lagrange’s equations give us the equations of motion

d
dt
∂K
∂Ẋ
− ∂K
∂X

+
∂P
∂X

=0

d
dt
∂K
∂ζ̇k
− ∂K
∂ζk

+
∂P
∂ζk

=0 k=1,2,. . . ,b

The body equation is

MẌ + mr
b∑

k=1

[
ζ̈k sin Ψk + (Ω + ζ̇k )2 cos Ψk

]
+ KX X = 0

The k th blade equation is

Iζ̈k + mrẌ sin Ψk + Kζζk = 0 k=1,2,. . . ,b
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There are b + 1 unknowns and b + 1 equations
The equations are nonlinear and require numerical solution
Stability of small motions about a static equilibrium state is
of practical concern and also amenable to simpler solution
Since X = ζk = 0 satisfies the governing equations, we
may linearize about the reference state

Iζ̈k + mrẌ sinψk + Kζζk =0 k=1,2,. . . ,b

MẌ + mr
b∑

k=1

(
ζ̈k sinψk + 2Ωζ̇k cosψk

−Ω2ζk sinψk
)

+ KX X =0
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Unfortunately, these equations, though linear, have
periodic coefficients in time (note sinψk and cosψk )
The multi-blade coordinate transformation can be written

ζk = ζ0 + ζd (−1)k +

(b−1)/2∑
n=1

(ζnc cos nψk + ζns sin nψk )

where
the first term, ζ0, is the collective mode
the second term, ζd (−1)k , is the differential collective mode
and exists only for even b
the last two terms are the cyclic modes
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One can derive the following identities

ζs =
2
b

b∑
k=1

ζk sinψk ζ̇s − Ωζc =
2
b

b∑
k=1

ζ̇k sinψk

ζc =
2
b

b∑
k=1

ζk cosψk ζ̇c + Ωζs =
2
b

b∑
k=1

ζ̇k cosψk

ζ̈c + 2Ωζ̇s − Ω2ζc =
2
b

b∑
k=1

ζ̈k cosψk

ζ̈s − 2Ωζ̇c − Ω2ζs =
2
b

b∑
k=1

ζ̈k sinψk
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For our simple system, with b ≥ 3, it can be shown that
only the n = 1 cyclic modes couple with X
Thus, ζk = ζc cosψk + ζs sinψk and the X equation
becomes

MẌ +
mbr

2
ζ̈s + KX X = 0

The natural question is, how do we get the other
equation(s)?
Let’s look at the answer from the point of view of virtual
work
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Let’s write the equation for the k th blade symbolically as
Qk = Iζ̈k + mrẌ sinψk + Kζζk = 0
The virtual rotation of the k th blade is

δζk = δζc cosψk + δζs sinψk

Thus, the contribution of blades to the system virtual work
is

b∑
k=1

Qkδζk

which can be written as Qcδζc + Qsδζs = 0
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Equations that multiply δζ0, δζd , etc., may be found in the
same way, but they are uncoupled from X , ζc or ζs

Since δζc and δζs are arbitrary, we may conclude that
Qc = Qs = 0 or

I(ζ̈c + 2Ωζ̇s − Ω2ζc) + Kζζc = 0

I(ζ̈s − 2Ωζ̇c − Ω2ζs) + mrẌ + Kζζs = 0

So, what are the meanings of ζs and ζc?
positive ζc shifts the rotor mass centroid laterally to the right
positive ζs shifts the rotor mass centroid longitudinally to
the front
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ζc>0 ζs>0
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To explain how the phenomenon got its name is now easy
The rotor mass centroid moves longitudinal harmonic
motion caused by time varying ζs

When that motion has a frequency that coincides with that
of the body motion X , this suggests resonance
It is not a true resonance, however, as we are not talking
about an external driving frequency
Consider uniform blades of length R, so that r = R

2 and
I = mR2

3

Introduce Ω0 as a nominal angular speed and

dimensionless frequencies ωX =
√

KX
MΩ2

0
and ωζ =

√
Kζ

IΩ2
0
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Finally, with non-dimensional displacement X = X
R and

mass ratio µ = bm
M , the governing equations become 6

µ 0 3
2

0 1 0
3
2 0 1




Ẍ
ζ̈c

ζ̈s

+

0 0 0
0 0 2Ω

0 −2Ω 0




Ẋ
ζ̇c

ζ̇s


+


6
µω

2
X 0 0

0 ω2
ζ − Ω

2 0

0 0 ω2
ζ − Ω

2




X
ζc
ζs

 =


0
0
0


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There four things about this matrix equation that need to
be noted

The gyroscopic/Coriolis matrix is antisymmetric
The gyroscopic/Coriolis terms do no work
Gyroscopic/Coriolis terms cannot destabilize a system
The stiffness matrix is not positive definite

Thus, we expect possible problems when ωζ ≤ Ω

Rotors that operate thus are called soft-inplane rotors
Articulated rotors are generally in this category and
typically have problems with ground resonance
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Figure: Modal frequencies for µ = 0.3, ωζ = 0.3, ωX = 0.4
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Figure: Modal frequency for µ = 0.3, ωζ = 0.3, ωX = 0.4
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The frequency of motions dominated by X is right around
ωX

The leag-lag motions are the most interesting
The largest values on the plot of =(s) are close to Ω + ωζ ,
referred to as the progressing mode
The line ωζ − Ω decreases to zero at Ω = ωζ

The line Ω− ωζ increases from zero at Ω = ωζ , referred to
as the regressing mode
Lead-lag is hardly affected by X for stiff-inplane rotors (i.e.
to the left of the point where Ω = ωζ

Lead-lag locks onto X for soft-inplane rotors (i.e. to the right
of the point where Ω = ωζ

The plot of the <(s) shows a sudden instability coincident
with the region where X and ζ motions are locked onto
each other
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The strength of the instability is a function of the system
parameters
The instability may be eliminated by including damping in
both the fixed system, i.e. on X , and in the rotating system,
i.e. on each blade
Classical work of Coleman and Feingold showed that the
product of the two damping constants must exceed a
certain threshold value determined by other system
parameters to overpower the instability
Articulated rotor helicopters are soft-inplane and thus must
have both lead-lag and fixed-system dampers
Rotor modes are referred to as progressing and regressing
(or backward whirl and forward whirl)
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The equations with damping can be shown to be 6
µ 0 3

2
0 1 0
3
2 0 1




Ẍ
ζ̈c

ζ̈s

+

 6
µcX 0 0
0 cζ 2Ω

0 −2Ω cζ




Ẋ
ζ̇c

ζ̇s


+


6
µω

2
X 0 0

0 ω2
ζ − Ω

2
Ωcζ

0 −Ωcζ ω2
ζ − Ω

2




X
ζc
ζs

 =


0
0
0


We now consider two cases with the same product
cX cζ = 0.0125
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Figure: Modal frequency for µ = 0.3, ωζ = 0.3, ωX = 0.4, cX = 0.025,
cζ = 0.5
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Figure: Modal damping for µ = 0.3, ωζ = 0.3, ωX = 0.4, cX = 0.025,
cζ = 0.5

Hodges Ground Resonance



Daniel Guggenheim School of Aerospace Engineering

Ground Resonance
Background
Analysis of simple system exhibiting the instability

0.0 0.2 0.4 0.6 0.8 1.0
W

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ImHsL

Figure: Modal frequency for µ = 0.3, ωζ = 0.3, ωX = 0.4, cX = 0.05,
cζ = 0.25
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Figure: Modal damping for µ = 0.3, ωζ = 0.3, ωX = 0.4, cX = 0.05,
cζ = 0.25
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Two-bladed rotors have a fundamentally different behavior
They possess periodic coefficients in time
There is no transformation that will eliminate them as long
as the support is nonisotropic
Rotor modes are ζc = ζ1 + ζ2 and ζs = ζ1 − ζ2

ζc is called the collective mode
does not shift the rotor center of mass
would couple with dynamics of the drive train, were it
modeled, and rotor shaft torsion

ζs is called the differential collective mode
shifts the rotor center of mass laterally and longitudinally
would couple with any degree of freedom involving lateral or
longitudinal hub motion (such as lateral translations, pitch or
roll rotations)
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Therefore, for our simple model
ζc is uncoupled
ζs is inertially coupled to X

The two equations of motion are then

Iζ̈s + 2mrẊ sin Ωt + Kζζs = 0

MẌ + mr [(ζ̈s − Ω2ζs) sin Ωt + 2Ωζ̇s cos Ωt ] + KX X = 0
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These equations may be solved by Floquet theory (to be
covered later by Prof. Prasad)

We first find a numerical solution for periodic motion such
that X (0) = X (T ), Ẋ (0) = Ẋ (T ), ζs(0) = ζs(T ) and
ζ̇s(0) = ζ̇s(T ) with T = 2π/Ω
We then find the transition matrix at the end of one period
when t = T
Then we find its (complex) eigenvalues
The system is unstable if its eigenvalues lie outside the unit
circle in the complex plane
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