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Analysis of simple system exhibiting the instability

@ Helicopters are susceptible to a catastrophic instability
called ground resonance

@ This instability is not a resonance at all but instead a
self-excited mechanical instability
o Rotor system must be soft-inplane (we’ll see why)
e Aerodynamics is not needed to capture the effect
@ The instability was avoided in older articulated rotor
systems by incorporation of dampers

o lead-lag dampers in the rotating system and
e roll/pitch dampers in the fuselage suspension system
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Figure: Catastrophic destruction from ground resonance
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https://www.youtube.com/watch?v=0FeXjhUEXIc
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@ Here we examine in detail a simple system, using it to
introduce key ingredients of rotorcraft dynamics analysis
e multi-blade coordinate transformation
e coupling of rotating and non-rotating systems
@ Consider a simple spring-mass system with a rotor added:
a body of mass mg
slides in a frictionless straight track
restrained in its translation by a light, linear spring with
spring constant K
has a rotor attached to it
rotor has b > 3 identical, equally-spaced blades
each blade has mass m
each blade hinged at the hub in lead-lag rotation
lead-lag motion restrained with identical spring constants
K
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4

Mass center

U, = Yr + G

2
b = Qt + %(k —1)
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@ For the k™ of b blades, the azimuth angle for the
undeflected blade is v, = Qt + 2% (k — 1)

@ For the k™ blade, the azimuth angle for the deflected blade
is Wy = 9k + (x where (x is the lead-lag angle

@ The unit vectors are related as
N,
N>
N;

b}
bs b =
b5

@ The angular velocity of the k™ blade is

—cosV, —sinV, O
sinWy —cosVy, O
0 0 1

wk = (Q + )bk
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@ The potential energy is simply

b
_ ?c 2:: Kxxz
@ The velocity of the body (and of its mass center) is
vB = XN,
@ The velocity of the mass center of the k™ blade is
vE =XNy + (Q + ()b x rbf

=XNi + (2 + {)rbf
=[X + (2 + &) rsin W] Ny — [(Q + Ci)r cos Wi]No
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@ Thus, the kinetic energy can written as

mp

b
. I* .
K= X2+§§ (Q+ )P+
k=1

2

m P

EZ{[X+ (Q + Ck)rsin Wi]2 + (Q + ¢k )?r? cos \IIk}
k=1

@ Letting the total system mass M = mg + bm and the
moment of inertia about the hub / = I* + mr?, one finds

sz b
Z 20y + ¢2) +mrXZ (Q + () sin Wy
k:

k=1
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@ Lagrange’s equations give us the equations of motion

[ S
diax  oX T oX
d oK 0K 0P
77_74_7:0 k=1,2,...,b
dtal,  9Ck | 0l

0

@ The body equation is
. b - .
MX + er |:<k sinWy + (Q I Ck)z cosVWy| + KxyX =0
k=1

@ The k™ blade equation is

Ik + mrXsinWy + K =0  k=1,2,....,b
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@ There are b+ 1 unknowns and b + 1 equations
@ The equations are nonlinear and require numerical solution

@ Stability of small motions about a static equilibrium state is
of practical concern and also amenable to simpler solution

@ Since X = (x = 0 satisfies the governing equations, we
may linearize about the reference state

Ik + mrXsing + K =0 k=1,2,....b

b
MX + mr Z(Ck sin Yy + ZQék CoSs Yk
k=1

—Q2Ck sin T,Dk) + Kx X =0
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@ Unfortunately, these equations, though linear, have
periodic coefficients in time (note sin vy, and cos k)

@ The multi-blade coordinate transformation can be written

(b—1)/2

Gk =Co+Ca(=1)+ D> (Cnocos mbx + s sin M)

n=1

where
e the first term, (o, is the collective mode
e the second term, ¢4(—1), is the differential collective mode
and exists only for even b
e the last two terms are the cyclic modes

&Georglaﬂmmms
el Techmelegy

Hodges Ground Resonance



Ground Resonance g

Analysis of simple system exhibiting the instability

@ One can derive the following identities

o \

b b
i 2 )
Z Gk sin Yk cs—Qcczb;cksinwk

CCB

Il MNO' Il

. o b .
ck cosgk  Co+ Qs =73 Chcosix
k=1

b
(o +206s — QP¢ = Z Ck cos Y
k

b
s — 200 — Pls = Z Ck sin 1k
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@ For our simple system, with b > 3, it can be shown that
only the n = 1 cyclic modes couple with X

@ Thus, (x = (ccos Pk + (ssin i and the X equation

becomes
mbr -

5 (s+KxX=0
@ The natural question is, how do we get the other
equation(s)?
@ Let’s look at the answer from the point of view of virtual
work

MX +
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@ Let’s write the equation for the k" blade symbolically as
Qx = /Ck I mI’XSInwk = K(Ck =0
@ The virtual rotation of the k™ blade is

dCk = 0Gc cos Pk + 0(s sin P

@ Thus, the contribution of blades to the system virtual work

is
b
> Quock
k=1
which can be written as Q:6(; + Qs6(s = 0
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@ Equations that multiply d¢p, 6¢4, etc., may be found in the
same way, but they are uncoupled from X, (¢ or (s

@ Since §(; and d(s are arbitrary, we may conclude that
Qc = Qs =0or

I(Ce +2Q¢s — Q3¢c) + KeCe =0
I(¢s — 296 — Q%Cs) + mrX + Kc(s =0

@ So, what are the meanings of (s and (;?

e positive (. shifts the rotor mass centroid laterally to the right
@ positive (s shifts the rotor mass centroid longitudinally to
the front

Georgial
el Techmelegy

Hodges Ground Resonance



Ground Resonance g

Analysis of simple system exhibiting the instability

¢ >0 (>0
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@ To explain how the phenomenon got its name is now easy

@ The rotor mass centroid moves longitudinal harmonic
motion caused by time varying (s

@ When that motion has a frequency that coincides with that
of the body motion X, this suggests resonance

@ ltis not a true resonance, however, as we are not talking
about an external driving frequency

@ Consider uniform blades of length R, so that r = g and
[l = mR?

3
@ Introduce Qg as a nominal angular speed and

: . . | K.
dimensionless frequencies wy = , /A%Q and w; = m—g
0 0
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@ Finally, with non dimensional displacement X = 5 X and
mass ratio u = M , the governing equations become

€0 1 (x] [0 o o](x
0 1 0[gép+ |0 0 2Q|¢
30 1] (¢ 0 —2Q 0] (¢

%w)z( 0 ) 0 X 0
+] 0 w2-Q 0 v =40
0 0 wg—ﬁz (s 0
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@ There four things about this matrix equation that need to
be noted

The gyroscopic/Coriolis matrix is antisymmetric

The gyroscopic/Coriolis terms do no work

Gyroscopic/Coriolis terms cannot destabilize a system

e The stiffness matrix is not positive definite

@ Thus, we expect possible problems when w, < Q
@ Rotors that operate thus are called soft-inplane rotors

@ Articulated rotors are generally in this category and
typically have problems with ground resonance
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Figure: Modal frequencies for i = 0.3, w; = 0.3, wx = 0.4 [—
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Figure: Modal frequency for y = 0.3, we = 0.3, wx = 0.4
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@ The frequency of motions dominated by X is right around
wx
@ The leag-lag motions are the most interesting
e The largest values on the plot of 3(s) are close to Q + w,
referred to as the progressing mode
e The line w; — Q decreases to zero at Q = w,
e The line Q — w, increases from zero at Q = we, referred to
as the regressing mode
e Lead-lag is hardly affected by X for stiff-inplane rotors (i.e.
to the left of the point where Q = w¢
o Lead-lag locks onto X for soft-inplane rotors (i.e. to the right
of the point where Q = w,
e The plot of the R(s) shows a sudden instability coincident
with the region where X and ¢ motions are locked onto
each other
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@ The strength of the instability is a function of the system
parameters

@ The instability may be eliminated by including damping in
both the fixed system, i.e. on X, and in the rotating system,
i.e. on each blade

@ Classical work of Coleman and Feingold showed that the
product of the two damping constants must exceed a
certain threshold value determined by other system
parameters to overpower the instability

@ Articulated rotor helicopters are soft-inplane and thus must
have both lead-lag and fixed-system dampers

@ Rotor modes are referred to as progressing and regressing
(or backward whirl and forward whirl)
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@ The equations with damping can be shown to be

X] [8x 0 07(Xx
50 aF 0 CC 26 C-C

és 0 —2Q C¢ Cs

%w)z( 0 . 0 X 0
0 —ﬁCC w? — 52 CS 0

@ We now consider two cases with the same product
CxC; = 0.0125

— O Nw
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Figure: Modal frequency for = 0.3, w; = 0.3, wx = 0.4, cx = 0.025,
Cc = 0.5
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Figure: Modal damping for = 0.3, we = 0.3, wx = 0.4, cx = 0.025,
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Figure: Modal frequency for 4 = 0.3, we = 0.3, wx = 0.4, cx = 0.05,
Cc = 0.25
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Figure: Modal damping for 4 = 0.3, we = 0.3, wx = 0.4, cx = 0.05,
Cc = 0.25
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@ Two-bladed rotors have a fundamentally different behavior
@ They possess periodic coefficients in time

@ There is no transformation that will eliminate them as long
as the support is nonisotropic

@ Rotor modes are (¢ = (1 +and (s =¢1 — (o
e (. is called the collective mode
@ does not shift the rotor center of mass
@ would couple with dynamics of the drive train, were it
modeled, and rotor shaft torsion
e (s is called the differential collective mode
@ shifts the rotor center of mass laterally and longitudinally
@ would couple with any degree of freedom involving lateral or
longitudinal hub motion (such as lateral translations, pitch or
roll rotations)
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@ Therefore, for our simple model

@ (. is uncoupled
@ (s is inertially coupled to X

@ The two equations of motion are then
ICs +2mrXsinQt + K:¢s = 0

MX + mr[({s — Q3¢s) sin Qt 4 2Q¢s cos Qt] + KxX =0
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@ These equations may be solved by Floquet theory (to be
covered later by Prof. Prasad)

e We first find a numerical solution for periodic motion such
that X(0) = X(T), X(0) = X(T), ¢s(0) = ¢s(T) and
¢s(0) = ¢s(T) with T =27/Q

e We then find the transition matrix at the end of one period
whent=T

e Then we find its (complex) eigenvalues

e The system is unstable if its eigenvalues lie outside the unit
circle in the complex plane
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