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1 Extended Galerkin Method

The Galerkin method is derived from the partial differential equation(s) of motion and
boundary conditions. It does not require the use of energy at all. Given an equation and
boundary conditions, the Galerkin method requires a set of basis functions (note that the trial
functions and test functions are the same) which satisfy all the boundary conditions. That
is, they must be comparison functions. When defined this way, the relationship between
the Galerkin method and the Rayleigh-Ritz method is simple. If the partial differential
equations of motion are derived from an energy/virtual work principle and the basis functions
are identical, then the two methods will yield exactly the same set of ordinary differential
equations.

Given the difficulties associated with finding comparison functions, the generalized Galerkin
method, which allows the use of admissible functions, should be of interest to structural dy-
namicists. Basically, the method requires the boundary conditions to be weighted with the
test function (or a derivative thereof). In its most general form for a beam, for example, we
can express the standard Galerkin method as

∫ ℓ

0

[(EIv′′)′′ +mv̈ − f ]ψidx = 0 (1)

where the test function is ψi. A way to write the extended version is

∫ ℓ

0

[(EIv′′)′′ +mv̈ − f ]ψidx+ Mbcψ
′

i|
ℓ

0
+ Vbcψi|

ℓ

0
= 0 (2)

where the added terms are of the form of the moment boundary conditions (Mbc) and force
boundary conditions (Vbc) at the ends of the beam. One can, by integration by parts, show
that the weak form of the governing equations can be recovered from Eq. (2).
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2 Example Showing Equivalence of the Galerkin and

Rayleigh-Ritz Methods

Consider a cantilevered beam with its free end restrained by a rotational spring of spring
constant k so that the partial differential equation of motion is

(EIv′′)′′ +mv̈ − f = 0 (3)

and the boundary conditions are

x = 0 v = 0
v′ = 0

x = ℓ EIv′′ + kv′ = 0 =Mbc

−(EIv′′)′ = 0 = Vbc

(4)

Thus, ∫ ℓ

0

[(EIv′′)′′ +mv̈ − f ]ψidx+ (EIv′′ + kv′)ψ′

i|ℓ − (EIv′′)′ψi|ℓ = 0 (5)

where v =
∑

j Vjψj . Integration by parts shows that this is equivalent to the weak form

∫ ℓ

0

[EIv′′ψ′′

i + (mv̈ − f)ψi] dx+ kv′ψ′

i|ℓ = 0 (6)

which, if
δv =

∑
i

δViψi

is exactly that which one gets for the ith equation from the application of the Rayleigh-Ritz
method.
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