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Abstract-h Part I of this two-part paper, an aeroelastic stability analysis was presented for 
isolated hingeless, composite rotor blades in the hovering flight condition, which was based on a mixed 
finite element method. Herein, the focus is to present numerical results obtained from this analysis. 
First, certain of these results are compared with those of existing aeroelastic stability analyses for 
validation. Next, the numerical accuracy and convergence characteristics of the current approach 
are quantified. Finally, parametric studies are performed to investigate the effects of composite 
elastic coupling and thrust condition on the blade’s aeroelastic stability, especially that of the lightly 
damped lead-lag mode. The stability of some of the elastically coupled cases studied was sensitive to 
the nonclassical couplings; indeed, in one case a significant error appeared, accentuated at high thrust 
levels, when bending-shear coupling was neglected. Another significant effect stems from changes in 
the equilibrium solution for elastic twist due to extension-twist coupling. The necessity of including 
such effects in the blade model for general-purpose analysis is noted. 

1. INTRODUCTION 

In this paper, which is Part II of a two-part paper, we present and discuss certain numerical 

results obtained from the analysis developed in Part I. Our focus is on the validation of this 

analysis, examination of its accuracy and convergence properties, and generation of numerical 

results in order to study the aeroelastic stability of certain types of elastically coupled hingeless 

rotor blades. 

Older works successfully exploited the use of spring-restrained, rigid-blade models, which per- 

mitted the efficient calculation of stability trends. For instance, the effects of precone, aero- 

dynamic modeling, flap-lag, pitch-lag, and pitch-flap couplings on stability were investigated. 

Interestingly enough, it was shown that flap-lag elastic couplings, along with pitch-lag and pitch- 

flap kinematic couplings, noticeably affected stability. Positive precone, for instance, was shown 

to affect the equilibrium position, thereby modifying the pitch-lag and pitch-flap couplings and 

adversely affecting stability (but reducing equilibrium bending moments as desired) [l]. 

Little work has been done to verify that similar trends can be obtained for couplings which 

arise from laminate design rather than root hinge orientation. Rather, the specifics of the trends, 

along with the significance of composite modeling parameters, are still being investigated. In 

this section, previous results are reviewed, existing analytical capabilities are compared with the 
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current analysis, and the current work is introduced. 

One of the most recent composite stability analyses is that of (21. Unlike [3], which documented 

no validation for non-isotropic configurations, [2] performed significant validation studies for or- 

thotropic configurations. For instance, [2] compared in ‘UUCZIO results for the rotating natural 

frequencies of extension-twist and bending-twist coupled composite box beams with the exper- 

imental results of [4] and analytical results based upon the three-dimensional analysis of [5]. 
These correlations showed that the analysis of [2] generally predicted the first and second flap, 

first and second lead-lag, and first torsion rotating frequencies within five to ten percent of the 

experimental results. Although the analysis of [5] generally predicted frequencies better than [2], 

there were a few cases for which the opposite was true. Stability results for a configuration similar 

to the BO-105 hingeless rotor were calculated. The baseline configuration was a 26-ply box beam 

with no material couplings; the coupled cases were typically obtained by modifying the baseline 

configuration through the re-orientation of three of the plies. This small modification allowed the 

introduction of couplings without significantly altering the rotating natural frequencies of the ro- 

tor blades. Three “symmetric” cases (two pitch-flap and one pitch-lag) and one “antisymmetric” 
case (extension-twist) were studied. As in [3], [2] d emonstrated that a change in the material 

couplings can significantly modify the damping of the lead-lag mode. 

Another recent work was that of [6]. Although principally an investigation of tip sweep and 

anhedral effects, (61 compared their results to one bending-twist case from [3]. [6] predicted trends 

which are qualitatively similar to [3] while being quite different quantitatively. This comparison 

is the only validation study reported in [6]. 

Overall, the capabilities of the current analysis are rather similar to the analyses of [2,6]. All 

three analyses include shear deformation and model geometrically nonlinear effects. The present 

analysis, however, does not invoke a moderate deflection assumption. Unlike the present analysis 

and [2], [6] includes restrained, out-of-plane, torsional warping effects and uses the uniaxial stress 

assumption. The most obvious distinction between the current work and those of [2,6] is that 

the current analysis is based on a mixed variational formulation [7]. This new formulation gives 

the advantages of having a very sparse Jacobian, of permitting the use of simple shape functions, 

and of calculating the strains and stresses as accurately as the displacements. In addition, the 

formulation facilitates the derivation of the terms of the Jacobian and the residual in closed form. 

The equations have an orderly structure and can be written exactly in a few lines (as opposed to 

several pages of equivalent equations for a moderate-deflection-based formulation). 

This new formulation has been implemented in a FORTRAN program named STAB. STAB 

has been validated against analytical, numerical, and experimental results for linear and non- 

linear static and dynamic calculations for nonrotating beams [g-11]. This paper has three main 

sections: (1) physical characteristics of models, (2) aeroelastic stability validation studies, and 

(3) parametric studies. 

2. PHYSICAL CHARACTERISTICS OF MODELS 

In later sections, results are given for various rotor configurations. Each configuration, or model, 
has certain basic characteristics such as length, distributed mass, and operational parameters such 
as rotor speed and number of blades. Since multiple sets of results have been obtained for some 

of the models, all physical characteristics for these models are presented in this section. The 
blades for all rotor configurations were spanwise uniform and initially straight and untwisted; 
all rotors were assumed to have identical blades with the airfoil’s zero-lift-line coincident with 

bz, the undeformed coordinate axis, which is horizontal when there is no precone. Each blade’s 
reference coordinate system was aligned with the principal axes. Finally, in all models, the blade 
weight was neglected. 
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The Hypothetical Rotor described in [12] was an isolated, hingeless rotor with blades which 
had no material couplings. The properties of this rotor are given in Table 1. 
description of the variables.) 

(See Table 3 for a 

Table 1. Rotor characteristics for rotors hypothetical, HC, and R2. 

Variable 

e 

e (in) 

c (in) 

p ( lb-s2 /in2) 

111 w-s2) 

was (RPM) 

poo (lb-s2/in4) 

a 

‘% 

b 

Hypothetical 

0.0 

36.0 

3.5 

4.313 x 10-s 

4.313 x 10-s 

1000 

1.146 x 1O-7 

6.28 

0.01 

2.0 

Rotor 

HC 

0.0 

254.6 

20.0 

0.001996 

2.8 x 1O-2 

250 

1.146 x 1O-7 

5.7 

0.01 

4.0 

R2 

0.0 

35.23 

2.6 

3.18 x 1O-5 

2.26 x 1O-5 

2077 

1.146 x lo-’ 

6.283 

0.0079 

2.0 

2.2. Rotor HC 

Aeroelsstic stability results were generated for four rotors with blades modeled as box beams 
and studied in [3]. For these rotors, the configuration detailed in Table 1 was used. The rotor 
speed and the polar mass moment of inertia were chosen to match the in wacuo rotating natural 
frequencies given in [3] as closely as possible. These properties yielded flap, lag, and torsion 
frequencies, nondimensionalized by the rotor speed, of wui = 1.17, wU = 1.45, and ~4 = 5.06 (as 
compared to w, = 1.15, w, = 1.5, and w+ = 5.0 from [3]). Each blade had a thin-walled box 
beam as its principal structural element, with the graphite-epoxy material properties given in 
Table 2. The four configurations include two cases which exhibit bending-twist coupling and two 
which exhibit extension-shear coupling. In each case, two opposing sides of the box have all zero 
degree plies, with the other two sides containing some angle plies. Case I has the angle plies on 
the inner half of the sides to create pitch-lag coupling, and Case II has angle plies on the inner half 
of the top and bottom to create pitch-flap coupling. Case III has plies on the inner one-eighth 
of the sides, and Case IV has plies on the inner one-eighth of the top and bottom. (Cases I 
and II are referred to as “symmetric” cases by [3]; III and IV are called “antisymmetric.“) The 
cross-sectional properties (see Tables 4 and 5) were calculated using ATWCS; TAIL was used to 
generate the nonlinear torsional stiffness coefficient (which was not available from ATWCS). 

Table 2. Material properties for the graphite-epoxy used for box HC and for the 
graphite-epoxy AS4/3501-6. 

Variable Box HC AS4/3501-6 

Eli 30.0 x lo6 psi 142.0 GPs 

&, 3.0 x lo6 psi 9.81 GPa 

G1.3 1.2 X 106psi 6.0 GPa 

G23 0.97 x lo6 psi 3.77 GPa 

ws 0.3 0.3 

v23 0.34 0.34 

tPlY 0.04375 in 0.000134 m 
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Table 3. Rotor Rl characteristics. 

Variable Description Rotor Rl 

e root offset 0.0 

e (m) rotor length 0.9615 

c (m) chord 0.0864 

P (kg/m) rotor mass/length 0.343 

111 (kg m) blade polar mass moment 

of inertia/length 2.062 x 1O-4 

~3 (RPM) rotor speed 1000.0 

pm (kg/m31 air density 1.225 

a lift-curve slope 6.283 

% coefficient of drag 0.0079 

b number of blades 2.0 

Table 4. ATWCS stiffnesses for box HC, Cases I and II. 

Stiffness c = o” I,< = 3o” II, c = 200 

All, lb 0.1743 x 109 0.1608 x log 0.1320 x log 

Dll, lb-in2 0.1218 x 10s 0.1388 x 108 0.2081 x lo8 

D12, lb-in2 - - -0.1442 x lo* 
013, lb-in2 0.6860 x 107 - 

D22, lb-in2 0.1029 x 109 0.9986 x 10’ 0.8411 x 10s 

033, lb-in2 0.8977 x 10’ 0.7524 x 10’ 0.7418 x 109 

Table 5. ATWCS stiffnesses for box HC, Cases III and IV. 

Stiffness III, < = 300 IV, c = 3o” 

All, Ib 0.1716 x log 0.1647 x log 

Bll, lb-in 0.1013 x 107 0.5170 x 107 

Dll, lb-in2 0.1303 x 10s 0.1650 x lo8 

022, lb-in2 0.1023 x log 0.9530 x 10s 

D33, lb-in2 0.8670 x log 0.8565 x 10’ 

2.3. Rotor R2 

R2 is based upon the rotor given in [13]. Certain assumptions had to be made, however, to 
come up with a complete set of rotor properties. Specifically, the area centroidal axis for the 
structural portion of each blade was taken to be located at the quarter chord of the NACA 0012 
airfoil and was assumed to be coincident with the blade’s mass centroidal axis. The polar mass 
moment of inertia was assumed, along with the number of blades. In addition, the root offset 
was set to zero, with the rotor radius taken to equal that of [13]. The details of this soft in- 
plane configuration can be found in Table 1. The cross-sectional properties were taken directly 
from (131. 

2.4. Rotor Rl 

Rl is based upon [14] and has the properties given in Table 3. The material chosen for 
this rotor was AS4/3501-6 (see Table 2). As with R2, certain assumptions had to be made to 
come up with a complete set of rotor properties. Specifically, the area centroidal axis for the 
structural portion of each blade was taken to be located at the quarter chord of the NACA 
0012 airfoil and was assumed to be coincident with the blade’s mass centroidal axis. Rl was 
taken to have a box beam as the principal structural element. The horizontal and vertical 
dimensions of the midplane of the laminate were 0.0120m and O.O0814m, respectively. Two 
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laminates (L2e and L3e), were investigated, both being circumferentially uniform, fitting within 

the airfoil contour, and producing soft in-plane rotors. L2e had a lay-up of [02/&r], and L3e 

was the [G C - 90, C, (I - 90)2, cl 1 aminate studied in [13]. These two laminates have fundamental 

frequencies which are not strongly dependent upon the ply angle [. In general, the cross-sectional 

properties (see Tables 6 and 7) were calculated using ATWCS (which generates a 4 x 4 stiffness 

matrix); TAIL was used to generate the nonlinear torsional stiffness coefficient and to provide a 

6 x 6 stiffness matrix to study the effects that different stiffness matrices have on stability. 

Table 6. ATWCS stiffnesses for rotor RI L2e. 

Stiffness c = 00 c = 200 c = 900 

All, N 0.4599 x 107 0.3659 x lo7 0.1753 x 107 
&I, N-m 0.3187 x lo4 - 

Dll, N-m2 0.4571 x 10’ 0.9891 x 10’ 0.4571 x 10’ 

022, N-m2 0.5565 x IO2 0.3185 x IO2 0.2121 x 102 

033, N-m2 0.9979 x 102 0.5712 x lo2 0.3803 x lo2 

Table 7. ATWCS stiffnesses for rotor Rl L3e. 

Stiffness c = o” c = -200 

All, N 0.2470 x lo7 0.1938 x lo7 

&I, N-m - -0.2959 x 104 

Dll, N-m2 0.4571 x 10’ 0.1150 x 102 

D22, N-m’ 0.2989 x lo2 0.1424 x lo2 

033, N-m2 0.5360 x lo2 0.2554 x lo2 

3. AEROELASTIC STABILITY VALIDATION STUDIES 

In this section, some of the studies which were performed to validate the theory and the 

associated computer program are described. Previous validation studies can be found in [g-11]. 

The validation studies described below were divided into three sections: (1) Convergence Study, 

(2) Stability Results, and (3) Numerical Issues. 

3.1. Convergence Study 

Two plots are included to quantify the accuracy of the finite element discretization of the 

governing equations. Both are for configuration Rl L3e ([C, < - 90, <, (< - 90)2, C]) with C = 0’. 
Figure 1 shows the logarithm of the absolute value of the relative error of the equilibrium value of 

us (flap-wise deflection) at the tip for a root pitch angle of 12’. Figure 2 shows the logarithm of 

the absolute value of the relative error of the lead-lag damping for a root pitch angle of 1”. Both 

quantities are shown versus the logarithm of the number of elements; each uses the solution for 

N = 32 elements to approximate the “exact” solution. Both figures indicate that the convergence 

is quite satisfactory: the relative error varied inversely with N3 for the flapwise deflection case 
and inversely with N6 for the lead-lag modal damping case. Figure 2 shows an error for N = 16 
of approximately 0.003% for the lead-lag damping. All results, unless otherwise noted, were 
therefore generated using N = 16 elements. 

The convergence rate for this finite element stability analysis was shown to be very good. 

Specifically, the relative error varied inversely with N3 for the flapwise deflection of a high-thrust 
case (where N is the number of elements); the relative error varied inversely with NG for the 
lead-lag modal damping of a low-thrust case. 
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0.00001 I I 
1 10 100 

Number of Elements 
Figure 1. Absolute value of the relative error of the equilibrium value of us (flapwise 
deflection) at the tip versus number of elements for Rl L3e ([C, C - 90, C, ([ - 9O)s, C]) 
with C = 0’ and a root pitch angle of 12’. 

I 
1 10 100 

Number of Elements 
Figure 2. Absolute value of the relative error of the lead-lag damping versus number 
of elements for RI L3e ([C, C - 90, C, (C - 90)2,<]) with C = 0’ and a root pitch angle 
of lo. 

3.2. Stability Results 

To validate the stability results for the current code (STAB), results for the Hypothetical Rotor 

case [12] are compared to results generated by a previously validated stability code, PFLT [15]. 

Although PFLT used an ordering scheme to approximate the equilibrium solution, PFLT is 

sufficiently accurate to help validate the current computer code for moderate deflection results. 

In addition, results for Rotor HC are compared with results given in [3,6]. 

Figures 3 and 4 show the comparison of STAB results with those of PFLT for the Hypothetical 

Rotor. Figures 3 and 4 also give the damping and frequency versus pitch angle of the first 
lag mode for zero precone. Examination of these two figures, as well as similar figures for flap 
and torsion [ll], indicates that STAB agrees quite well with PFLT for these cases. For these 

cases, agreement between STAB and PFLT is very good except for the torsion, which still has a 

relatively good correlation. In general, the results are best for small pitch angles, becoming worse 
as the pitch angle is increased. This tendency suggests that STAB does a better job of calculating 
the larger deflections than does PFLT, since the validity of deflections STAB can treat is not 
limited by the use of an ordering scheme. The additional torsional discrepancy occurs because 
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PFLT contains torsional modeling deficiencies (due to the ordering scheme) which cause it to do 

a worse job of predicting torsional behavior than the flap and lag motions. Cases with initial 

precone show larger variations between the two codes than found for the previous cases, but the 

agreement is still quite good (see [ll]). 

-14- - -- Damping (radk), pflt - 

-12- - Damping (ratis), stab 

$-lo- 

? ._ 
2 

-8- 

$ -6- 

-;’ 
2 -4- 
s 

-2- 

0 I ’ I r I I s 
-12 -8 -4 0 4 8 12 

Pitch Angle (deg) 

Figure 3. Hypothetical rotor correlation, flPC = 0’. 

30- - -- Frequency (Hz), pflt - 

- Frequency (Hz), stab 

I 1 I ’ I I r 
-12 -8 -4 0 4 8 

Pitch Angle (deg) 

Figure 4. Hypothetical rotor correlation, & = 0’. 

Figures 5-8 show the lag damping for Cases I-IV of Rotor HC. The sign convention is such 

that < > 0 creates 01s > 0 for Case I and D 12 < 0 for Case II. < > 0 creates a nose-down 
torsional deflection in response to a tensile load for Cases III and IV. Note that although [3] 

plotted its results as a function of ply angle, Figures 5-8 are plotted versus nondimensional lift. 

Results from [3] are included for CT/~, the coefficient of thrust/rotor solidity, equal to 0.1 for 
the three-ply angles in Figures 5 and 7 and two-ply angles in Figures 6 and 8. Results from [6] 
are also included for CT/U = 0.05 and 0.1 for the three-ply angles in Figure 5. 

Two initial observations should be made. First, the large variation in the lag damping shown 
in Figure 6 for C = 20” is due to a strong coupling between the lag and flap modes. This coupling 

is enhanced because these two frequencies are very close to one another for this configuration. 
Second, there is only a small variation in results with ply angle for Cases III and IV. 
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- zeta = 30 deg. 

--- ze.ta=Odeg. 

. . . . . . . . . . . . . . . . zeb = 30 deg. 

0.051 
-0.1 0 0.1 0.2 

CT/sigma 

Figure 5. Lag damping for box HC I (pitch-lag coupling). 

- zeta = -20 deg. 

--- zeta=Odeg. 

. . . . . . . . . . . . . . . . zeh = 20 deg. 

a 131 

-0.1 0 0.1 0.2 
CT/sigma 

Figure 6. Lag damping for box HC II (pitch-flap coupling). 

Although the correlation with [6] is fairly good, the correlation with [3] is quite poor. Even 

though the results for C = 0’ agree very well with [3], all other results drastically differ. Differences 

seem to be both quantitative and qualitative. The qualitative differences are especially apparent 

since Cases II and IV are said to exhibit a flap divergence for CT/~ = 0.10 in [3]. This divergence, 
however, did not appear when generating the current results. Although Case II did noticeably 

deform in a nose-up manner, this deformation remained statically stable for the entire CT/CT 
range plotted. This “divergence” is believed to have been caused by a divergence of the trim 

algorithm of [3] ( as supported by [16]). The quantitative differences between the codes is most 
severe for Cases III and IV. In these cases, [3] predicts a very large variation in damping with 

ply angle. This large variation, however, does not seem likely since only the inner one-eighth of 

the wall thickness was used to obtain the extension-twist coupling. 

3.3. Numerical Issues 

During the validation of the current computer code, it was found that there were three situa- 
tions for which the numerical behavior of the solution became unacceptable. All three situations 
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- zeta=-3Odeg. 

--- zeta=Odeg. 

. . . . . . . . . . . . . . . . =tp = 30 deg. 

0 131 

27 

-0.1 0 0.1 0.2 

CT/sigma 

Figure 7. Lag damping for box HC III (extension-twist coupling). 

- zeta=-30deg. 

--- zeta=Odeg. 

. . . . . . . . . . . . . . . . =tp = 30 deg. 

0 [31 
-0.35: 

0 
-0.3: 

Figure 8. 

-0.1 0 0.1 0.2 

CT/sigma 

Lag damping for box HC IV (extension-twist coupling). 

appeared only for certain ranges of physical parameters and were typically overcome by coding 
modifications. 

First, it was found that the mixed finite element formulation yields a numerically stable set 
of equations only when the length of an element is smaller than some critical length.’ In other 
words, if an element is too long the formulation can blow up. In all realistic cases studied, 
however, this critical length was longer than the blade length, meaning that even a one-element 
model was numerically stable. 

The second case occurred for certain situations during the Newton-Raphson iterations for the 
equilibrium solution. In general, results were generated by allowing the program to iterate beyond 
convergence. Some cases, however, would eventually develop a poorly conditioned Jacobian if 
allowed to iterate too many cycles beyond convergence. In practice, this was not found to be 

‘For an isotropic beam, for example, the critical element length is proportional to ((El)/(p&)) 1'4, 
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a problem since the divergence never occurred until after a well-converged solution had been 

obtained. 

The third case appeared for a certain range of root pitch angles for a rotating rotor. In this case, 

the equilibrium solution remained unaffected, but the eigensolution was found to be incorrect. 

More specifically, the solution did not converge to the “exact solution” as the number of elements 

was increased. It was discovered that this problem occurred for cases which had eigensolutions 

which were sensitive to small changes in the eigenproblem matrix. Changing the code from single 

precision to double precision (on an IEEE computer) was found to provide the accuracy needed to 

obtain accurate solutions in the sensitive region. This improvement in accuracy is demonstrated 

by Figure 9, which is a plot of the lag damping versus thrust level for rotor Rl L3e. The solid line 

is a double precision result with N = 16. The dotted and short dashed lines are single precisions 

results for N = 16 and N = 32, respectively. 

- zeta = -20 deg. 

- - - zeta = 0 deg. 

-0.04 
. . . . . . . . . . . . 

-0.035 
zeta = -20 deg. (sp, N=16) 

-0.03 - - - - zeta = -20 deg. (sp, N=32) 

0.01 { 
-0.2 -0.1 0 0.1 

CT/sigma 

Figure 9. Plot of the eigenproblem solution’s sensitivity to machine precision for a 
certain range of operating conditions for Rl L3e. 

4. PARAMETRIC STUDIES 

This section contains parametric studies of Rotors R2 and Rl. Results include frequencies, 

dampings, and strains. Investigations of the importance of various modeling parameters are 

made for these extension-twist coupled rotors. 

For R2, which has a lay-up of [-20”, 70”, -2O”, 7O”s, -2O”], the nondimensional fundamental 

frequencies (in wacuo) are 0.76, 1.06, and 3.21 for lead-lag, flap, and torsion, respectively. Here 

and throughout this section, a positive fiber angle, c, is one which causes a unidirectional lay-up 
to have positive extension-twist coupling; this positive coupling causes the beam to develop a 

negative (nose-down) twist in response to a resultant tensile load acting on the beam. In addition, 

all frequencies and dampings plotted in this section have been normalized by the rotor speed. 
Figure 10 gives the frequencies of the first four modes of this rotor. Note that the first two 

modes, lead-lag and flap, are highly coupled. Although this coupling promises to generate in- 
teresting behaviors, the fact that the lightly damped lead-lag mode crosses the once-per-rev line 

indicates that something potentially dangerous is occurring. 

Figure 11 shows the predicted magnitudes of the lead-lag and the flap dampings with and 

without bending-shear coupling. A look at this figure shows that the coupled lead-lag and flap 
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modes do in fact prove interesting. The dampings indicate that the flap mode is sacrificing 

some of its damping for the lead-lag mode. This exchange, in fact, produces a relatively large 

lead-lag damping at the once-per-rev frequency crossover. In addition, the figure shows that 

bending-shear coupling can be important for the accurate prediction of damping. 

3.5 

c 2.0- 
8 : 
5 : 
2 1.5 
Lr : 

- 1st Lead-Lag 

--- 1st Flap 

---- 2ndFlap 

-.-.- 1stTorsion 

0.5 

0.0-r 
-12 -8 -4 0 4 8 12 

Pitch Angle, deg. 

Figure 10. Normalized frequencies for rotor R2. 

- Lead-Lag 

--- Lead-Lag, No Bending-Shear 

- - - - Flap 

-. - - - Flap, No Bending-Shear 

-O.45J.-.-._ _ - - _ _:-_‘__._ 
-0.40; . :-.‘_. . -. *. -.., 
-0.35 - *. ., 

*. -.., 
*\ 

-0.30: ‘. 
-.-.____ 

*. 
-.-._._, 

a-_____---_____ 
~-0.25: 

‘F-0.20- 

d -0.15: 

-12 -8 -4 0 4 8 12 
Pitch Angle, deg. 

Figure 11. Normalized damping for rotor R2, with and without bending-shear cou- 

pling. 

In conclusion, this rotor displays interesting, complex behavior which is only captured when 
the effects of bending-shear coupling is included in the analysis. This rotor, however, is spinning 

at a very high speed relative to the experimental rotor of similar dimensions described in [14]. 

An obvious issue, then, is whether or not this rotor will fail under the given operating conditions. 
Examination of the displacements shows that the maximum vertical tip displacement is approx- 
imately 30% of the blade length. Moreover, the strain levels at the root are quite high. In fact, 
the maximum axial strain experienced by this rotor is approximately twice the allowable for this 

ncn 18:3/4-D 
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material, even when compared to the maximum strain allowed in the fiber direction. For this 

reason, this rotor is not considered to be realistic for the given operating conditions. 

For each laminate of Rl, plots are shown for the nondimensional lead-lag damping as a function 

of the blade’s root pitch angle, where a positive pitch angle leads to positive lift for a rigid blade. 

Each plot includes results obtained for multiple values of C. Although ATWCS [17] was used for 

calculating the stiffnesses of L2e and L3e, the analysis of [18] was used to calculate the nonlinear 

torsional stiffness coefficient. 

Figure 12 gives the lead-lag damping for laminate L2e. When looking at this figure, one of the 

most obvious realizations is that the cases with extension-twist coupling (i.e., 0” < < < 90”) are 

different from the orthotropic cases in that the coupled cases are not symmetric about zero pitch 

angle. The basic factor which generates this behavior is the new equilibrium position caused by 

the coupling. 

- zeta = -20 deg. 

- - - zeta = 0 deg. 

. . . . . . . . . . . . . zeta = 20 deg. 

_o.04~ - - - - zeta = 90deg. 

0.011 
-20 -15 -10 -5 0 5 10 15 20 

Pitch Angle, deg. 

Figure 12. Normalized lag damping for [Oz/C4] b ox beam (L2e) for rotor RI with 
various values of C. 

When extension-twist coupling is present, the centrifugally produced extension of the blade 

generates twist. This twist, a term due to the constitutive properties of the cross-section, changes 

sign when C changes sign. This sign change explains the drastic difference seen between the result 

for C = -20” and < = 20”. Each of these two results, however, are simply a shift of the basic 

uncoupled response to the left (as for < = -20”) or to the right (as for < = 20”). 

For example, consider the < = -20” curve. For this case, the extension-twist coupling causes 

the blade to develop positive twist (nose-up) in response to the centrifugal load. This twist causes 

the geometric angle of attack to be greater than that obtained without this coupling, so that at 

a root pitch angle of O”, for example, the outboard sections of the blade are actually at larger, 

positive pitch angles. 

Unfortunately, however, this insight is very possibly one of the few significant facts discernible 

from this type of a plot. This conclusion is based upon the fact that comparing the damping 

for two different material configurations operating at the same root pitch angle is not completely 

valid-the large variation in torsional deformation can lead to noticeably different thrust condi- 

tions from one case to the next. 

Figure 13 is similar to Figure 12 except that this new plot is for laminate L3e. As can be 

seen, the larger extension-twist coupling available from L3e permits a larger variation in the lag 
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damping with pitch angle. In addition, the zero damping cross-over is moved outside of the range 

of pitch angles plotted. With regards to the large damping obtained for < = -2O”, note that this 

level of damping might not actually be obtainable since it is associated with angles of attack of 

approximately 11’ and 16” at midspan and near the blade’s tip, respectively. 

-0.05 1 - zeta = -20 deg. 

0.011 
-12 -8 -4 0 4 8 12 

Pitch Angle, deg. 

Figure 13. Normalized lag damping for [C, C - 90, C, (< - 9O)z, C] box beam (L3e) for 
rotor Rl with two values of <. 

In addition, caution should be used before accepting these designs as structurally sound from 

a materials failure perspective. Initial maximum strain failure analysis has indicated that the 

< = 90” case in Figure 12 has failed at a pitch angle of 12” if dynamic loads are approximated as 

increasing the equilibrium strain levels by a factor of 1.5. Additional preliminary failure checks 

indicate that these structures tend to be near failure for these operating conditions, but additional 

checks will need to be made in order to better understand how close the structures are to failure. 

Next, consider plotting the lag damping of L3e versus a nondimensionalized thrust. Figure 14 

shows that plotting versus CT/~ (coefficient of thrust/rotor solidity) is indeed better for judging 

the damping variation at a given thrust condition due to ply angle changes. This new plot 

demonstrates that there is less of an advantage to using the coupled configuration for positive 

thrust conditions than is implied by Figure 13. In fact, Figure 14 indicates that the damping for 

the coupled configuration becomes small for a slightly negative thrust level, with the configuration 

eventually becoming unstable for sufficiently large negative thrust. 

Figure 14 also includes results which used TAIL stiffnesses as input (in addition to ATWCS 

stiffnesses), where both the full 6 x 6 TAIL stiffness matrix was used and an approximate 6 x 6 

stiffness matrix which neglected the bending-shear coupling. Figure 14 indicates that results 

based on the 4 x 4 stiffness matrix ATWCS agree well with those based on TAIL for this config- 

uration. In addition, it shows that the omission of bending-shear coupling causes little error for 

this case. Figure 15 is similar to Figure 14 except that the laminate is now L2e ([02/&r]) instead 

of L3e (I<, C - 90, <, (< - 9O)z, (1). Note th e severity of the instability is decreased, but the stable 

regime exhibits essentially the same margin of stability as the unidirectional blade. 

Now, consider the effect of 2.5” of precone for Rl L3e ([<, < - 90, C, (C - 90)2, [I). Figure 16 

shows that this amount of precone has a negligible effect on the lag damping for this configuration. 

Figures 17 and 18 show the effect that this precone level has on the beam’s extensional strain and 

the flapwise bending curvature for CT ju = 0.21 and a ply angle C = -20”. The extensional strain, 

which is dominated by centrifugal force, is practically unaffected by this small precone angle. The 

flapwise curvature, however, is noticeably reduced at the root by the precone. This reduction is 

as expected and contributes towards lowering the large axial strain levels on the bottom of the 
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box beam. Note that yii and ~2 are unknowns in the present analysis and therefore calculated 

directly by the current code without the need of differentiating displacement variables. 

- zeta = -20 deg. 

--- zeta=Odeg. 

_0.02- ..........‘..... zeta = -20 deg. (TAIL) 

-0.015: - - - - 
zeta = -20 deg. (no bending-shear) 

0.01 
-0.1 

I ’ ’ - ’ I 
0 0.1 

CT/sigma 

Figure 14. Normalized lag damping for [<, 6 - 90, <, (C - 90)2, C] box beam (L3e) for 
rotor Rl for two values of <. 
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--- zeta=Odeg. 
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_ _ _ - zeta = -20 deg. (no bending-shear) 
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Figure 15. Normalized lag damping for [O,/<d] box beam (L2e) for rotor Rl with 
various values of C. 

5. DISCUSSION, CONCLUDING REMARKS, 
AND RECOMMENDATIONS 

In Part I of this two-part paper, an aeroelastic stability analysis was presented for isolated 

hingeless, composite rotor blades in the hovering flight condition, which was based on a geo- 
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- zeta = -20 deg. 

--- zeta=Odeg. 

4-J&2_ . . . . . . . . . . . . . . . . zeta = -20 deg., precone = 2.5 deg. 
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Figure 16. Variation in lag damping with the addition of 2.5” of precone for config- 
uration RI L3e ([C,C - 90, C,(C - 9O)z,C]). 
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Figure 17. Plot of 711 (extensional strain) for two different values of precone for 
C&-/a = 0.21 for Rl L3e ([I, 6 - 90, <, (C - 90)2, c]) with C = -20”. 

metrically exact, mixed finite element method. The formulation is comprised of separate, but 

compatible, cross-sectional (two-dimensional) and global or beam (one-dimensional) equations. 

Herein, the focus was to present numerical results obtained from this analysis. A FORTRAN 

program called STAB was developed based on the analysis of Part I. Through previous publica- 
tions and this paper, STAB was thoroughly validated against analytical and existing experimental 
results for equilibrium, dynamic, and stability calculations. The validations encompassed both 
small and large equilibrium deflections. In addition, extensive correlations were performed against 

experimental composite results, including both static and dynamic cases. These studies indicate 
that the current approach accurately represents large static deflections and linearized dynamics 
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Figure 18 Plot of ~2 (flapwise bending curvature) for two different values 
for CT /fl = 0.21 for Rl L3e ([C,C - 90,<,(< - 90)2,(‘]) with C = -20’. 

- precone = 0 deg. 

_ _ _ precone = 2.5 deg. 

-1.2 , q , c ’ , c ’ , c c c , 
0 20 40 60 80 100 
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of precone 

about equilibrium of composite beams quite well. The aeroelastic effects are only as accurate as 

the aerodynamic modeling. 

Comparisons of current results with the lead-lag damping results from [3] illuminated large 

discrepancies between the two analyses but seemed to reproduce results obtained by [6] for the 

same cases. 

The accuracy of the composite predictions, of course, depends on the quality of the cross- 

sectional stiffnesses. The two-dimensional cross-sectional analyses used herein, however, gave 

nearly identical results for many cases; this is believed to be due to their high quality. The 

performance of “classical” stiffnesses (which ignore all shear deformation effects), however, was 

poor for several cases, in agreement with [9]. Although the stability cases studied were not 

typically very sensitive to the nonclassical couplings, there are cases for which a significant error 

is exhibited when bending-shear coupling is neglected. This indicates that for general purpose 

analysis, one needs to include this phenomenon. 

Validation studies demonstrated that the current approach, though generally quite robust, has 

difficulties for some groupings of physical parameters. First, the method was found to require 

elements to be shorter than a maximum length for numerical stability. This critical length 

exceeded the blade length for physically meaningful problems, so that even a one-element model 

was numerically stable. Second, the Newton-Raphson iterations used in obtaining the equilibrium 

solution were sometimes found to diverge from the solution if the algorithm was allowed to iterate 

for too many (i.e., unnecessary) cycles; in practice, this was not found to be a problem since the 

divergence never occurred until after a well-converged solution had been obtained. Third, the 

current method exhibited sensitivity to numerical precision in the eigensolution phase, which was 

overcome by using double precision (IEEE) arithmetic. 

The convergence rate for this finite element stability analysis was shown to be very good. 
Specifically, the relative error varied inversely with N3 for the flapwise deflection of a high-thrust 

case (where N is the number of elements); the relative error varied inversely with NG for the 

lead-lag modal damping of a low-thrust case. 

The fact that a reduced 4 x 4 stiffness matrix (reduced as pointed out in [9] by minimization of 

the strain energy with respect to the transverse shear parameters) does a good job of representing 

a complete 6 x 6 stiffness matrix for many cases suggests that current rotor aeroelastic analyses 

based on “classical theory” (which completely neglects shear deformation) such as GRASP [19] 

can be modified to incorporate certain composite effects without having to introduce additional 

unknowns and equations. Any new code, however, should use a complete 6 x 6 matrix for 
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generality. In fact, an important extension to this work would be to incorporate the effects of 

restrained warping, which may require the stiffness matrix to be expanded beyond 6 x 6. 

Other reasonable extensions to the present work include the addition of multiple load path 

capabilities (for bearingless rotors) and additional rotor configuration parameters such as initial 

curvature and spanwise varying cross-sections. The accommodation of manufacturing and failure 

issues would also provide interesting and important extensions to this work. Other new directions 

for this work could be found by developing an analysis for forward flight or by adding body degrees 

of freedom. Finally, nonlinear lifting theories and dynamic inflow effects would noticeably increase 

the realism of the aerodynamic modeling. In addition to extensions to the analysis, there is still 

plenty of room for learning more about composite stability results with the present methodology, 

such as through study of more realistic rotor-blade cross-sections with general-purpose numerical 

cross-sectional analyses. 
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