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An experimental study of the large deformation of a cantilevered beam under a gravity 
tip load has been made. The beam root is rotated so that the tip load is oriented at various 
angles with respect to the beam principal axes. Static twist and bending deflections of the 
tip and bending natural frequencies have been measured as a function of tip load magnitude 
and orientation. The experimental data are compared with the results of a recently developed 
non-linear structural theory. Agreement is reasonably good when bending deflections are 
small compared to the beam span, but systematic differences occur for larger deflections. 

1. INTRODUCTION 

Hodges and Dowel1 [l] have formulated a non-linear theory of hingeless rotor blade 
(cantilever beam) dynamics which indicates that there is an important structural effect on 
rotor blade stability due to non-linear coupling between elastic flap and chordwise bending 
and torsion. Flap is bending in the more flexible direction and chordwise that in the stiffer 
direction. The purpose of the present study has been to devise a simple, non-rotating beam 
experiment to measure the predicted structural effect and compare the results with theory. 

The simplest relevant experiment would appear to be a uniform beam under a static point 
load. Measurements of the variation of static deflections in flap, chordwise bending and 
twist, and also flap and chordwise natural frequencies with static load allow an evaluation of 
the theory. Linear theory would predict a linear variation of flap and chordwise static 
deflections with load and no twist. Also linear theory would predict no change in natural 
frequencies with static load. On the other hand, the Hodges-Dowel1 non-linear theory 
predicts non-linear variations of static flap, chordwise and twist deflection with static load 
and a change in natural flap and chordwise natural frequencies with load. Hence, the proposed 
experiment does provide a critical test of the non-linear theory. 

How to provide a static point force to the beam without introducing additional dynamic 
effects is a delicate question, however. For example, if one uses a weight and gravity to 
provide the force, its inertial mass would also change directly the dynamic characteristics of 
the rotor blade. Similarly, for a spring induced static force, dynamic effects are inevitably 

t This work was supported by NASA Grant NAS 2-7615, Army Air Mobility and Research Laboratory, 
Ames Research Center. 

533 



534 E. H. DOWELL, J. TRAYBAR AND D. 1-I. HODGES 

introduced as well. In principle for a relatively long, heavy, flexible beam the mass effect may 
be made as small as desired. Conversely, for a relatively short, stiff beam and a relatively long, 
soft spring the dynamic effect of the spring may be made as small as desired. In practice 
neither option leads to beams of convenient dimensions. Hence, we have chosen to use a 
gravitational force and incorporate the inertial effects of the weight in our mathematical 
model. The latter, though quantitatively substantial, are nevertheless non-controversial and 
readily accounted for theoretically. To make the experiment as simple as possible a tip 
weight was used whose dimensions are small relative to the length of the uniform, rectangular 
cross-section beam. Hence the torsional frequency is substantially higher (greater than a 
factor of ten) than either the flap or chordwise frequencies. 

In the following, the experimental apparatus and technique are described. Next, the 
Hodges-Dowel1 theory is reviewed briefly along with earlier theoretical work, and finally, 
the experimental data are presented and compared with results from the Hodges-Dowel1 
theory. 

2. EXPERIMENTAL APPARATUS AND METHODS 

2.1. EXPERIMENTAL APPARATUS 

Photographs of the experimental apparatus are shown in Figure 1. 
In the experimental phase of the study, beams of various sized rectangular sections were 

fabricated from 7075 aluminum. Nominal beam dimensions were as follows : 

beam no. 1: length (radius) 20 in, width 1 in, thickness 8 in; 
beam no. 2 : length (radius 20 in, width 3 in, thickness Q in; 
beam no. 3 : length (radius) 30 in, width 3 in, thickness 6 in. 

Figure 1. Photograph of apparatus for frequency measurements showing steady and oscillating conditions. 
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Beams 2 and 3 were instrumented with strain gages mounted at the roots on the width and 
thickness portions of thebeam to measure flap and chordwise beam natural frequencies. 
Beam tip-end static deflection was measured as well as natural frequency. For these measure- 
ments, a simple projection on graph paper was made of the beam tip-end elastic axis and 
leading edge points as a function of applied load and pitch angle. 

All beams were end mounted in specially fabricated end fixtures that ensured positive 
support and clamping. These beam end-fixtures were inserted into a milling machine type, 
precision, indexing-chuck that provided both a secure, stable mount and the accurate, 
repeatable angular settings required. 

2.2. EXPERIMENTAL METHODS 

Various experiments were conducted with the previously described beam specimens and 
apparatus. The principal parameters varied included blade tip load(P) and blade pitch angle 
(0). Figure 2 is a schematic showing typical loading procedures and excitation/deflection sense. 

In the static deflection experiments, the selected values of pitch angle (measured at the 
blade root end) were pre-set and locked for each run. A weight bucket was attached to a 
small machine screw (by a string) at the blade tip elastic axis point. Then, increasing loads in 
3 pound increments were applied and the beam tip elastic-axis and leading points was 
projected on graph paper. 

In the natural frequency experiments, selected tip loads were applied (as shown schematic- 
ally in Figure 2) and the beam natural frequencies were measured as functions of beam pitch 
angle (measured at the beam root end) and excitation sense. Each tip weight was rigidly 
attached to the beam tip end and the beam was excited in flapwise as well as chordwise senses 
(see Figure 2). Strain gages used as frequency transducers and their associated instrumentation 
permitted relatively accurate measurement of both the flapwise and chordwise frequencies. 
The determination of flapwise and chordwise frequencies was done in separate experiments. 
That is, the weight mounted at the tip-end was excited (by hand) in the flapwise sense so that 
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Figure 2. Schematic showing typical loading procedures and excitation/deflection sense. 
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the output trace of frequency in the flapwise sense was of acceptable amplitude, whereas 
the output trace in the chordwise sense was minimized. The same experiment was then 
repeated except that the beam was now excited in the chordwise sense with the flapwise 
motion minimized. 

For additional detail concerning the experiment, see reference [2]. All data obtained are 
presented there in tabular form. 

3. THEORETICAL MODEL 

Hodges and Dowel1 [I] have developed non-linear equations of motion for the elastic 
bending and torsion of twisted non-uniform rotor blades (rotating cantilever beams). The 
equations are valid to second order in that squares of bending slopes, torsion deformation, 
chord/length and thickness/length ratios are neglected with respect to unity. Thus, only the 
most important non-linear terms are retained in the equations. Although there have been 
other equations developed for rotor blade applications [3-51 the Hodges-Dowel1 equations 
have the structural and inertial non-linear terms correct to second order for a fully elastic 
blade. Solutions to these equations for rotor blade applications have been obtained by 
Hodges and Ormiston [6,7] using the Galerkin method. Results indicate that both structural 
and inertial non-linearities are very important in analyzing the stability of hingeless rotor 
blades. Here, only the structural non-linearities are considered. 

For a non-rotating uniform, untwisted beam without offsets between the elastic, center of 
mass, and tension axes, the equations of motion may be written, to second order, as 

EZ, v”” + (EI, - EI,)(4w”)” + mfi + Z,. = P&R - x)cosO + mgcos8, 

(EI, - E/,)(&“)” + El, w”’ + rnk + I, = P6(R - x)sinO + mgsin8, 

-GJc$” + (Ef2 - EI,) d’ t-vu + mk;, 4 + I* = 0, (1) 

where I,, I, and I, are the dynamic contributions of a tip weight of mass MTIP = P/g with 
center of mass at .Y = R. The bending stiffness constants are EI, and EI,. and the torsion 
stiffness constant GJ. The chordwise and flap bending deflections are v and w, respectively 
(see Figure 3), and the torsion deflection is 4 [I]. Note that 4 is measured with respect to the 

Figure 3. Beam 

Undeformed Deformed 

cross-section (end view); undeformed and deformed 0 is common point. 
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deformed elastic axis. Equation (1) has been derived by Hamilton’s Principle (without the 
tip weight) in reference [l]. Also shown in Figure 3 is the geometric twist angle 4 = r#~ + 
JG tr’ w”dx. See section 4 for the physical meaning of 4. (Also a list of symbols, for reference, 
is given in the Appendix.) 

For determining dynamic stability of a rotor blade under the influence of aerodynamic 
loads, the angle C$ is generally approximated as 4 in the structural terms, but not in the aero- 
dynamic terms [6, 71. However, for static instability at 8 = 0 (lateral buckling) Hodges and 
Peters [8] have shown that including the geometric effect, the integral in the expression for 4, 
in the structural terms can change the lateral buckling load modestly. Since equation (1) does 
not contain this effect we should expect a small error in lateral buckling load prediction [8]. 
More significantly, since the theory ignores u”, w” and 4’ with respect to unity, we should 
observe a deterioration of the accuracy of the theory when the largest of these quantities (in 
our case ~‘3 is no longer small with respect to unity. 

The major static loading effect from the tip weight is represented here as a point load by a 
Dirac delta function times the magnitude P of the tip weight. The tip weight is assumed to be a 
flat disc of diameter D and thickness 1. Thus, the kinetic energy from the tip weight motion is 

(2) 

From TM, the inertial terms I,, Z, and I@ may be deduced by variational methods. Alterna- 
tively, one may substitute assumed mode shape functions into equation (2) and equation (1) 
to obtain ordinary differential equations in terms of generalized co-ordinates without ex- 
plicitly writing I,, I,,, and 4. Standard non-rotating cantilever beam normal mode shape 
functions are used in all theoretical calculations in this paper. Thus 

fi = 2 V,(r) $,@), fl = 2 W,(r) $,(Q (3) 
J-1 I-1 

9 = ,:I @I(T) Q,(Q, 

where (-) indicates non-dimensionalization with respect to the beam span, R, z is dimension- 
less time tZ/(g/R), and 

I/I, = cash (fil 2) - cos (/I., 2) - a,[sinh (/I, 2) - sin (/I, $1, Oj = dsin(y,f). (4) 

The constants aj and /?, are tabulated in reference [9] and y, is given by x(j - 3). Letting 

V, = vo, + A V,(T), W, = W,, + A W,(z), 0, = %, + A Q,(7), (5) 
one may obtain two sets of equations-one for the static equilibrium position of the beam 
and the other for (small perturbation) motions about that equilibrium. The equilibrium 
equations consist of 3N non-linear algebraic equations in V,,,, Wo, and Go, which are 
solved by iteration using the Newton-Raphson method. The dynamic equations may be 
linearized for small motions about the equilibrium shape. They then become 3N linear 
constant coefficient ordinary differential equations in AV,, A W, and A@,, solvable with 
a standard eigenvalue algorithm. The coefficients are functions of V,,,, W,, and Gal. The 
equilibrium equations are 

,t PB: 6,, ?‘o, + (A - B) iI K,,, O,, Wok] = ~&OS 0(-l)‘+’ + Ai cos 0, 

,5I [(A - B) !I K,kl QrO, V,, + &.?f &, Wo, ] = 2Psin f3(-l)*+’ + At sin 8, 

Cr: 6~ @oJ + (A - B) x KU, VOJ Wo, 1 =o, i= I,2 ,..., N, (6) 
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A = E12/mgR3, B = EII/mgR3, C = GJlmgR3, P = PlmgR, 

Ai= /$@, Kijk = j Of I&’ $; dx, dij = Kronecker delta. (7) 
0 0 

The perturbation equations may be expressed as a matrix equation from which natural 
frequencies may be calculated in the usual way, 

[M]{x} + [Kl{Jf) = 0, (8) 
where [M] is the mass matrix, [K] is the stiffness matrix, and 

r 6,j +P(B,j + EC(j) 0 0 
1 

[Ml= 
0 

1 0 

6,j +P(B,j + aC’,j) 

0 

WI = 

where 

_ 

AB; 6, (A - B) $ Kkji @ok (A - B) I? Kjki Wok 

(A - B) 2 Kk,i @Ok 

k=l 

Bpj” 6ij 

k=l 

(A - B) 5 Kjkt VOk 
k=l k=l 

(A - B) % K,jk wOk (A - B) kil Kijk vOk Q’ 6*j 
k=l 

Bij = If+{ $jlj=l = 4(-l)if’, Cij = $~$j*lr=l = 4(-l)i+jaiaj/Iij?j, B = DIR, 

a = (3b2 + 4i2)/48, i= I/R, rt,,, = k,lR. 

For additional details of the calculation procedure, see references [6] and [7]. 

(9) 

(10) 

(11) 

(12) 

4. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY 

4.1. STATIC DEFLECTIONS 

Results were obtained for two beams, one of _4 in x + in cross-section, the other of 1 in x i) in, 
and both 20 in in length [2]. The data discussed below are for the former. The static experi- 
mental loading is a simple tip weight with the beam rotated to achieve various loading angles. 
Measurements of flap and chordwise bending deflection at the beam (free end) tip, W,,, and 
V TIP, as well as twist, c&,~, have been obtained for 0 = 0” + 90” and for P = 0 + 5#. 4 is 
the angle determined by the projection of the elastic axis and leading edge of the cross-section 
at the beam tip on a plane perpendicular to the undeformed cross-section. Intermediate values 
of W, V and 6 along the beam span were also obtained [2]. 

The most sensitive indicator of the difference between the linear and non-linear theoretical 
models is the twist as it is identically zero in the linear model. Theoretical results are for the 
non-linear model unless otherwise stated. In Figures 4(a)-(e) results for static tip twist are 
presented for various loading angles, 0, as a function of the magnitude of the load, P. For 
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Figure 4. Static twist vs. load. (a) ~9 = 15”; (b) ~9 = 30”; (c) 0 = 45”; (d) 0 = 60”; (e) 0 = 75”. -, Theory. 
I, experiment. 

8 = 0” and 90” theory predicts no twist and, within the accuracy of the experimental measure- 
ment, there was none. There is reasonable agreement for any 0 and sufficiently small P (and 
hence 6). As 0 increases, the range of P for which there is reasonable agreement becomes 
smaller. This is thought to be associated with the larger static flap deflections (for a given P) 
as 0 --t 90”. In the Hodges-Dowel1 theory, terms of the order of the square of the flap deflcc- 
tion, w, divided by beam span R, are neglected with respect to unity [l]. 
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0 I5 30 45 60 75 90 

Pitch angle, 8 (degrees) 

Figure 5. Static twist vs. pitch angle; various loads. -, Theory. Experiment: I, P = 3 # ; 1, P = 2 # ; 
l,P= l#. 

A cross-plot of the data in terms of 4 versus 0 for various P is given in Figure 5. In Figures 
6 and 7, the flap and chordwise tip deflections are plotted in the same format. As mentioned 
above, for large P, say P B 3 #, and 8 + 90”, the flap deflections are such that (HJ/R)~ is no 
longer negligible compared to unity. Where the theoretical curves are terminated, the 
theoretical Newton-Raphson solution procedure failed to converge or there was a change in 
sign of 6 or VTiP, indicating a jump from one equilibrium configuration to another. Again, 
this occurs for large (w/R)~ and the theoretical results under such conditions cannot be 
regarded as reliable. Multi-mode calculations were carried out using the Newton-Raphson 
method to ensure modal convergence. Five modes for each of flapwise, chordwise and twist 
deflections were used to achieve well-converged modal solutions. 

Figure 6. Static flap deflection US. pitch angle; various loads. -, Theory. Experiment: I, P= 3#; 
[,P=2#,$,P=l#. 
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8 (degrees) 

Figure 7. Static lag or chordwise deflection vs. pitch angle; various loads. -, Theory. Experiment: I, 
P=3#;&P=2#; X,P= l#. 

4.2. NATURAL FREQUENCIES 

Results were obtained for two beams, one 20 in long and the other 30 in, and both of cross- 
section 3 in x 4 in [2]. The data discussed below are for the former. Measurements of flap 
and lag frequencies have been obtained for 8 = 0” + 90” and P up to lO# for 8 = 0” [2]. 
In Figures 8(a)-(d) experimental results are shown for P = 1 and 2 # over a range of 0. 
Non-linear theoretical results for the same conditions are also shown. Linear theory would 
predict no change in frequency with 8 (the lag results being those for 8 = 0” and the flap 
results those for 0 = 90”). The dead weight load per se has (theoretically) no effect on the 
flapwise mode for 0 = 90” or the chordwise mode for 0 = 0”. The weight still contributes a 
dynamic mass effect, of course. 

The trends of the theoretical and experimental data are broadly similar for P = 1 #. 
However, systematic deviations occur for P = 2#, particularly in the flap mode. This is 
attributed to the static flap deflection becoming a significant fraction of beam span under these 
conditions. 

It is of interest to examine the special case 8 = 0” for large P. For 8 = 0”, no static flap 
deflection will occur until the beam laterally buckles. The buckling load is that value of P for 
which the flap frequency goes to zero. The pre-buckling static lag deflection is always small 
compared to the beam span and hence well satisfies the assumptions of the non-linear theory. 
Experimental as well as linear and non-linear theoretical results are shown in Figure 9. 
Linear theory is in poor agreement with the experimental data for large tip weights and, in 
particular, does not predict any buckling at all. In the linear model, the decrease in flap 
frequency is solely due to the maSS of the tip weight. On the other hand, the non-linear theory 
is in good agreement with the experimental data up to and including the buckling load. Also 
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8 (degrees) 

Figure 8. Flap frequency vs. pitch angle. (a) P = 1 # ; (b) P = 2 #, lag frequency VS. pitch angle; (c)P = 1# ; 
(d) P = 2 # . o, Experiment ; +, theory. 

shown for reference is the buckling load calculated from the more accurate Hodges-Peters 
theory [S].? 

Results were also obtained for the chordwise frequency; there were no systematic differ- 
ences, for the range of parameters studied, among the linear and non-linear theoretical results 
and experimental results [2] for 6 = 0”. 

In all theoretical calculations the following beam parameters were used : 

E = 10.576 x lo6 lb/in2, G = 4.0383 x IO6 lb/in2, v = O-31, p = 0*1014#/in3; 
Ii, I2 = ct “112, tc3/ 12, J = 0.2807ct 3, where c = O-4999 in, t = O-1 25 1 in and R = 19.985 in. 

The values of c, t, R and p were measured directly. The values of Z,, Z2 and J are the accepted 
theoretical values in terms of c and t. The values of E, G and v, although close to the usual 
“handbook values”, were determined as follows : E was inferred by requiring the theoretical 
and experimental values of flap bending frequency to be equal for the unloaded beam. G was 
inferred by requiring the theoretical (Hodges-Peters [S]) and experimental lateral buckling 
loads to be equal. v was calculated from G = E/2(1 + v). However, it should be noted that even 
if one used instead the accepted “handbook” values of E = 10.5 x lo6 lb/in2 and v = 0.3-033 
there would be little change in the theoretical results. 

As an independent check on the beam parameters employed, the torsional frequency of the 
beam was measured and compared to the value calculated by using the above parameters. 
The results were as follows : 

experimental, ~~~~~~~~ = 673.9 Hz; 
theoretical, WrORSION = 688 Hz. 

The agreement is within approximately 2 %. 

‘/’ Corrected for non-zero warping rigidity [lo]. 
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Figure 9. Flap frequency vs. load; 8 = 0”. 0, Experiment; ---, linear theory; -, non-linear theory. 

5. CONCLUDING REMARKS 

From the correlation of theory and experiment, we see there is reasonably good agreement 
for the linear and initial non-linear behavior. As the tip deflections reach a significant fraction 
of beam span, there are systematic differences between theory and experiment. This is 
consistent with the basic assumption of the Hodges-Dowel1 theory in which squares of 
bending slopes are neglected compared to one. 
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APPENDIX: LIST OF SYMBOLS 

dimensionless bending and tension stiffness constants 
Galerkin integrals 
beam width 
modulus of elasticity 
frequency 
shear modulus 
gravitational constant 
flap, chordwise area moments; cr3/12, rc3/12 
symbolic notation for dynamic contributions of the tip weight 
torsion stiffness constant, 0.2807ct3 for t/c z l/4 
beam mass radius of gyration 
stiffness matrix 
mass matrix 
tip mass 
gravity tip load; =MTIpg 
beam span 
beam thickness 
kinetic energy of tip weight motion 
chordwise bending deflection; also called lag 
flap bending deflection perpendicular to v 
generalized co-ordinates for bending and torsion 
position co-ordinate along beam span 
=x/R 
tip weight inertia 
Kronecker delta 
Dirac delta function 
perturbation quantity 
twist about deformed elastic axis 
projected twist angle (see section 4) 
angle between beam chord and vertical (pitch angle) at beam root 
beam mass per unit length 
dimensionless variable, with respect to R for lengths and mgR for weight 
equilibrium quantity 
derivative with respect to x 

( )* derivative with respect to k 


