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Chapter 1

Basic Elements of Engineering

In Fig. 1.1 the basic elements of engineering are shown. In this course, all these elements
will be touched upon, but the primary emphasis will be on developing analysis tools – a sort
of “bag of tricks” that you can use to attack a wide class of engineering problems.

We should learn to think of structural dynamics from a number of perspectives. It is at
the intersection of the fields of structures and dynamics and is the basis for many aspects of
the field of aeroelasticity. It is the generalization of dynamics to include structural flexibility.
It is also the generalization of structural mechanics to include inertial forces.

The most general class of systems we will cover is the continuous elastic system; see
Fig. 1.2. Such systems are characterized by mathematical models that can be represented
in terms of partial differential equations of motion. By means of a host of approximation
techniques these can be reduced to discrete, multi-degree-of-freedom systems, mathematical
models of which are systems of ordinary differential equations. By modal reduction such
systems may in certain cases be reduced to a single-degree-of-freedom system.

The objective of this course can be summarized as follows: to give students the means
to analyze the free-vibration and forced response of structures. We will approach Fig. 1.2
from the bottom up, that is, we will first consider single-degree-of-freedom systems. Once
we treat that aspect of the field with sufficient depth, we will then proceed to deal with

Mathematical 

Model

Idealized 

System

Physical 

System

Numerical 

Results

General 

Solutions

LawsAssumptions

Design

Computations

Analysis

Figure 1.1: Basic Elements of Engineering
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Continuous elastic systems

Multi-degree-of-freedom systems

Single-degree-of-freedom system

Approximation techniques

Special case 

or modal reduction

Figure 1.2: Levels of systems under consideration

treatment of multi-degree-of-freedom systems. Finally, we will analyze the most tractable of
continuous, 1-D and 2-D elastic systems, namely, 1-D problems associated with strings and
beams, and their 2-D analogs, membranes and plates.



Chapter 2

Single-Degree-of-Freedom Systems

2.1 Building Blocks

Three basic building blocks of simple mechanical systems are depicted in Fig. 2.1. First,
consider a particle of mass m that is permitted to move in rectilinear motion and subject to
a force with magnitude a specified function of time F (t) in the direction motion is permitted,
shown at the top of the figure. Thus, according to Newton’s second law

F = mẍ (2.1)

where x describes the distance moved in an inertial (or Newtonian) frame and the dots indi-
cate differentiation with respect to the time t. A frame of reference is Newtonian if and only
if this “law of motion” is satisfied. The suitability of a frame to be regarded as Newtonian
can only be ascertained by experiments or by comparison of analytical results obtained with
those obtained by a frame that has been verified by experiments to be Newtonian. See Kane
and Levinson (1985) for further discussion of this point. Depicted in the middle part of Fig.
2.1 is a damper element. For such elements, the force through the damper is related to the
velocity change across the element, so that

F = cẋ (2.2)

Finally, the bottom part of Fig. 2.1 is a spring element, where the force through the spring
is related to the displacement change across the element, so that

F = kx (2.3)

2.2 Single-degree-of-freedom example 1: applied force

As an illustration, consider a particle of mass m shown in Fig. 2.2 restrained to the ground
(assumed to be a Newtonian frame) by a spring and a damper associated with rectilinear

3



4 Hodges and Peters

x(t)

F

FF

FF

Figure 2.1: Mechanical system components

motion in the x direction. Summing forces and setting the resultant force equal to the mass
times acceleration (Newton’s second law), one obtains

F − cẋ− kx = mẍ (2.4)

or
mẍ+ cẋ+ kx = F (2.5)

2.3 Single-degree-of-freedom example 2: specified dis-

placement

As a second illustration, consider a particle of mass m as shown in Fig. 2.3, with free-body
diagrams shown below the system schematic. From left to right, the free-body diagrams
yield:

mẍ3 =F or ẍ3 =
F

m

k(x2 − x3) =F or x2 − x3 =
F

k

c(ẋ1 − ẋ2) =F or ẋ1 − ẋ2 =
F

c

(2.6)
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Figure 2.2: Single-degree-of-freedom system – applied force
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FFF

Figure 2.3: Single-degree-of-freedom system – applied displacement
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Adding these three equations, one obtains

F̈

k
+
Ḟ

c
+
F

m
= ẍ1 (2.7)

where the (given) acceleration ẍ1(t) serves as the “forcing function” for this equation, and
the unknown is the internal force F (t).

2.4 Nonlinear system

It is possible to conduct a linearization of equations for a nonlinear system about an equilib-
rium point. To illustrate how this provides a linear equation of the same form, we consider
a nonlinear system governed by an equation of the form

ẍ+ Z(x) = F0 (2.8)

where Z(x) is a nonlinear function of x, and F0 is a constant external force. The nonlin-
ear function can represent a nonlinear spring, for example. The static equilibrium can be
represented as x, a constant, and arbitrary motion can always be written as

x(t) = x+ x̂(t) (2.9)

where x̂ is the displacement relative to the equilibrium state. Substituting Eq. (2.9) into Eq.
(2.8), one obtains

¨̂x+ Z(x+ x̂) = F0 (2.10)

Now, utilizing the Taylor series concept and dropping all terms of second degree and higher
of x̂, we get

¨̂x+ Z(x) + x̂Z ′(x) = F0 (2.11)

To analyze motion relative to the equilibrium state, one must first determine the equilibrium
state by setting x̂ = 0, so that x is governed by the nonlinear equation

Z(x) = F0 (2.12)

Then, dynamics of the system about equilibrium satisfy the equation formed by subtracting
Eq. (2.12) from Eq. (2.11), yielding

¨̂x+ x̂Z ′(x) = 0 (2.13)

where is it apparent that the (constant) stiffness coefficient (Z ′(x)) is a function of the
equilibrium state about which we have linearized.

As an example of such a system, we consider an inverted pendulum shown in Fig. 2.4.
The pendulum is comprised of a particle of mass m attached to a rigid, massless rod of length
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mg

k

l

m

θ

Figure 2.4: Inverted pendulum

l and is restrained by a light rotational spring with spring constant k such that the spring
is relaxed when the angle θ = θ0. The equation of motion is then obtained by summing
moments about the pivot and setting that sum equal to the effective moment of inertia
about the pivot times the angular acceleration (Euler’s second law), viz.,

ml2θ̈ + k(θ − θ0)−mgl sin θ = 0 (2.14)

Letting θ = θ + θ̂(t) one may write

ml2
¨̂
θ + k(θ + θ̂ − θ0)−mgl sin(θ + θ̂) = 0 (2.15)

Temporarily setting θ̂ equal to zero, one finds that the static equilibrium state is governed
by

k(θ − θ0)−mgl sin θ = 0 (2.16)

or, after introducing κ = k/(mgl)

κ(θ − θ0)− sin θ = 0 (2.17)

Now, linearizing the equations of motion, i.e. Eq. (2.15), about the equilibrium state and
subtracting Eq. (2.16) from Eq. (2.15), we may write

ml2θ̈ + kθ̂ −mglθ̂ cos θ = 0 (2.18)

Introducing ω2 = g/l, we may write the non-dimensional equation of motion as

θ̈ + ω2
(
κ− cos θ

)
θ̂ = 0 (2.19)
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-3 -2 -1 1 2 3
Θ

-2

-1

1

2

ΚHΘ-Θ0 L-sin Θ

Figure 2.5: Inverted pendulum equilibrium states, θ0 = 0.4: single-root case, κ = 0.75;
three-root case with double root, κ = 0.602733; three-distinct-root case, κ = 0.5

The equation governing the equilibrium state may have one root or three. In the three-
root case there are two sub-cases; one has a single root and a double root, and the other has
three distinct roots. These three cases are depicted in Fig. 2.5. In the case of the double
root, the stiffness term in Eq. (2.19), i.e. κ−cos θ, vanishes at the double root and is positive
(meaning the system is stable) at the other root (the largest one). In the case of three
distinct roots, the stiffness term is negative (meaning the system is unstable) at the middle
root and positive (meaning the system is stable) at the smallest and largest roots.

2.5 Standard forms of governing equations

As we’ve seen, the typical single-degree-of-freedom system is governed by a linear, second-
order, ordinary differential equation of the form

a2ẍ+ a1ẋ+ a0x = b1ẏ + b0y (2.20)

where y is an input and x is the unknown. As seen above, x may be a displacement or a
force; it may also be an angle, a moment or a coefficient in a modal expansion. If a2 is equal
to zero, the system is first-order. If the quantities a2, a1, and a0 are constants, then the
solution is easily obtained. Otherwise, the solution is much more difficult.

For the usual spring-mass-damper system, a2 = m, a1 = c, a0 = k, b1 = 0, and b0y(t) =
F (t) = kf(t), so that

mẍ+ cẋ+ kx = F = kf = mQ (2.21)
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Dividing by m, we obtain another standard form, viz.

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nf = Q (2.22)

with the natural frequency ωn =
√

k/m and the viscous damping ratio ζ = c/(2
√
km).

Introducing non-dimensional time ψ = ωnt with ( )′ = d( )/dψ, one finally obtains

x′′ + 2ζx′ + x = f (2.23)

which is the simplest form of the equation.

2.6 Basic responses

2.6.1 1st-order system (zero mass)

The equation of motion assumes the form

ẋ+ ax = 0

Note that a is the inverse of the “time constant” τ .
Unit Displacement response: x(0) = 1, x(t) ≡ e(t)

x = e−at (Note: ẋ(0) 6= 0)

Unit step response: a1ẋ+ a0x = 1, x(0) = 0

x(t) ≡ g(t) =
1

a0

(
1− e−at

)
a =

a0
a1

Standard step response: ẋ+ ax = 1, x(0) = 0

x(t) ≡ gs(t) =
1

a

(
1− e−at

)

Normalized step response: x′ + x = 1, x(0) = 0

x(t) = g(ψ) = 1− e−ψ ψ = at

2.6.2 2nd-order system

x′′ + 2ζx′ + x = f

with ( )′ = d( )/dψ and ψ = ωnt.
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Initial Displacement Response

x(0) = 1, x′(0) = 0, f = 0, x(t) ≡ e(ψ).
If ζ < 1, then

x(ψ) = e−ζψ
[

a cos
(√

1− ζ2ψ
)

+ b sin
(√

1− ζ2ψ
)]

x′(ψ) = e−ζψ
[

(b
√

1− ζ2 − ζa) cos
(√

1− ζ2ψ
)

+ (−ζb− a
√

1− ζ2) sin
(√

1− ζ2ψ
)]

x(0) = 1 =⇒ a = 1

x′(0) = 0 =⇒ b
√

1− ζ2 = ζ, b = ζ/
√

1− ζ2,

If ζ = 1, then

x = ae−ψ + bψe−ψ

x′ = (−a + b)e−ψ − bψe−ψ

x(0) = 1 =⇒ a = 1

x′(0) = 0 =⇒ a = b

e(ψ) = e−ψ + ψe−ψ

If ζ > 1, then

x = ae−(ζ−
√
ζ2−1)ψ + be−(ζ+

√
ζ2−1)ψ

x′ = −
(

ζ −
√

ζ2 − 1
)

ae−(ζ−
√
ζ2−1)ψ −

(

ζ +
√

ζ2 − 1
)

be−(ζ+
√
ζ2−1)ψ

x(0) = a+ b = 1

x′(0) = −ζ(a+ b) +
√

ζ2 − 1(a− b)

a− b = ζ/
√

ζ2 − 1

a =
1

2
+

ζ

2
√

ζ2 − 1
, b =

1

2
− ζ

2
√

ζ2 − 1

Velocity Responses

Normalized Velocity Response: x(0) = 0, x′(0) = 1, x(ψ) ≡ h(ψ). If ζ < 1

x(0) = 0 =⇒ a = 0

x′(0) = 1 =⇒ b =
1

√

1− ζ2
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If ζ = 1

x(0) = 0 =⇒ a = 0

x′(0) = 1 =⇒ b = 1

If ζ > 1

x(0) = 0 =⇒ a+ b = 0

x′(0) = 1 =⇒
√

ζ2 − 1(a− b) = 1

a− b =
1

√

ζ2 − 1

a =
1

2
√

ζ2 − 1
, b =

−1

2
√

ζ2 − 1

Unit Velocity Response: x(0) = 0, ẋ(0) = 1, x(ψ) ≡ hV (ψ),

hV (ψ) =
1

ωn
h(ψ)

Step Responses

Unit Step Response: x(0) = 0, ẋ(0) = 0, F = 1, x(t) ≡ g(t) = 1
a0
g(ψ).

Standard Step Response: x(0) = 0, ẋ(0) = 0, Q = 1, x(t) ≡ gs(t) =
1
ω2
n
g(ψ).

Normalized Step Response: x(0) = 0, x′(0) = 0, f = 1, x(t) ≡ g(t) = 1− e(ψ)

Impulse Responses

x(0) = x′(0) = 0, forcing function = δ(t).
Nondimensional Impulse Response: f = δ(ψ),

∫ +ǫ

−ǫ δ(ψ)dψ = 1, x(t) ≡ h(ψ) (same as
normalized velocity response for 2nd-order)

h(ψ) =
d

dψ
g(ψ)

Normalized Impulse Response: f = δ(t) = ωnδ(ψ),
∫ +ǫ

−ǫ δ(t)dt = 1

x(t) ≡ hN (t) = ωnh(ψ)

Standard Impulse Response: Q = δ(t)

x(t) ≡ hS(t) =
1

ωn
h(ψ) = hV (t) for 2nd order

Unit Impulse Response: F (t) = δ(t)

x(t) ≡ hi(t) =
1√
km

h(ψ) =
1

m
hV (t) =

1

a2
hV (t)
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2.6.3 Summary for 2nd-order

ζ < 1

Unit Displacement Response = e(ψ)

= e−ζψ

[

cos
(√

1− ζ2ψ
)

+
ζ

√

1− ζ2
sin
(√

1− ζ2ψ
)
]

=
1

√

1− ζ2
e−ζψ cos

(
√

1− ζ2ψ − tan−1 ζ
√

1− ζ2

)

Normalized Velocity Response = h(ψ)

=
1

√

1− ζ2
e−ζψ sin

(√

1− ζ2ψ
)

Normalized Step Response = g(ψ) = 1− e(ψ)

Note:

dg

dψ
= e−ζψ

[

ζ cos
(√

1− ζ2ψ
)

+
ζ2

√

1− ζ2
sin
(√

1− ζ2ψ
)
]

+
√

1− ζ2 sin
(√

1− ζ2ψ
)

− ζ cos
(√

1− ζ2ψ
)

= e−ζψ
sin
(√

1− ζ2ψ
)

√

1− ζ2
= h(ψ)

2.7 Laplace Transforms

Let s = σ + iω with units 1/sec (or rad/sec)

L[f(t)] = F (s) =

∫ ∞

0

e−stf(t)dt

Example: f(t) = 1, t ≥ 0 (t < 0 not applicable)

F (s) =

∫ ∞

0

e−st(1)dt =
−1

s
e−st|∞0 =

1

s

assuming σ > 0. (You may assume σ to be as large as you need.) Sometimes, however, there
is no σ big enough, e.g. f(t) = et

2

. In such situations no Laplace transform exists.

L
(
dnf(t)

dtn

)

= snF (s)− sn−1f(0)− sn−2ḟ(0)− · · · sf (n−2)(0)− f (n−1)(0)

=⇒ note f(0) =⇒ f(0−) just before t=0
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Apply to differential equation

a2ẍ+ a1ẋ+ a0x = b1ẏ + b0y

a2[s
2X(s)− sx(0)− ẋ(0)] + a1[sX(s)− x(0)] + a0X(s) = [b1s+ b0]Y (s)− b1y(0)

X(s) =
(b1s+ b0)Y (s)− b1y(0) + (a2s+ a1)x(0) + a2ẋ(0)

a2s2 + a1s+ a0

Transfer Function ≡ X(s)
Y (s)

= H(s) for all zero initial conditions

Note: for standard form of y(t), H(s) = X(s)
Q(s)

ẍ+ 2ζωnẋ+ ω2x = Q(t)

or ẋ+ ηx = Q(t)

1st order 2nd order
H(s) = 1

s+η
H(s) = 1

s2+2ζωns+ω2
n

h(t) = e−ηt h(t) = hV (t) =
1

ωn

√
1−ζ2

e−ζωnt sin
√

1− ζ2ωnt

2nd order unit displacement response, x(0) = 1, ẋ(0) = 0

E(s) =
s+ 2ζωn

s2 + 2ζωns+ ω2
n

=
(s2 + 2ζωns+ ω2

n)

s(s2 + 2ζωns+ ω2
n)

− ω2
n

s(s2 + 2ζωns+ ω2
n)

=
1

s
− 1

s

ω2
n

(s2 + 2ζωns+ ω2
n)

E(s) = L(1)−G(s) , G(s) =
ω2
n

s
HV (s)

e(t) = 1− g(t) , g(t) = ω2
n

d

dt
hV (t)

One of the tools for solving low-order systems of ordinary differential equations of the
form considered above is the Laplace Transform. In Table 2.1 are some useful Laplace
transforms.

2.7.1 Ways to Invert Laplace Transforms:

1. Ingenious use of table

2. Real partial fractions

3. Complex partial fractions

4. Contour integration

5. Convolution integral
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f(t) F (s)
1 1

s

δ(t) 1

eat 1
s−a

sin(at) a
s2+a2

cos(at) s
s2+a2

teat 1
(s−a)2

1
(n−1)!

tn−1eat 1
(s−a)n

f(t) = f(t+ τ) 1
1−e−sτ

∫ τ

0
e−stf(t)dt

f(t− a) e−asF (s)

eatf(t) F (s− a)

tf(t) − d
ds
F (s)

d
dt
f(t) sF (s)

∫ t

0
f(t)dt 1

s
F (s)

1
t
f(t)

∫∞
s
F (s)ds

lim
t→0

f(t) lim
s→∞sF (s)

f(at) 1
a
F
(
s
a

)

Table 2.1: Some useful Laplace Transforms
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2.7.2 Use of Table

Recall f(0−) = 0.

Examples:

a. F (s) = 1
(s−a)2

f(t) F (s)
1 1

s

eat(1) 1
s−a

teat − d
ds
( 1
s−a) =

1
(s−a)2

b. F (s) = 1
(s2+1)2

f(t) F (s)
sin t 1

s2+1

t sin t − d
ds
( 1
s2+1

) = 2s
(s2+1)2

1
2

∫ t

0
t sin tdt 1

2s
[ 2s
(s2+1)2

]

= 1
2
(sin t− t cos t) = 1

(s2+1)2

c. F (s) = s
s2+2ζs+1

, a =
√

1− ζ2

f(t) F (s)
sin at a

s2+a2

e−ζt sin at a
(s+ζ)2+a2

1
a
d
dt
(e−ζt sin at) s

(s+ζ)2+a2
= s

s2+2ζs+1

2.7.3 Real Partial Fractions

a. ẍ+ x = t, x(0) = ẋ(0) = 0

(s2 + 1)X(s) = 1/s2, X(s) =
1

s2(s2 + 1)

1

s2(s2 + 1)
=
As+B

s2
+
Cs+D

s2 + 1

1 = (As+B)(s2 + 1) + (Cs+D)s2

By equating coefficients
A = C = 0, B = 1, D = −1

X(s) =
1

s2
− 1

s2 + 1

x(t) = t− sin t
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b. ẍ+ x = 1, x(0) = x0, ẋ(0) = v0

X(s2 + 1) = sx(0) + v0 +
1

s

X =
1

s(s2 + 1)
+

s

s2 + 1
x0 +

1

s2 + 1
v0

1

s(s2 + 1)
=
A

s
+
Bs+ C

s2 + 1

1 = A(s2 + 1) + (Bs+ C)s

By equating coefficients
A = 1, B = −1, C = 0

1

s(s2 + 1)
=

1

s
− s

s2 + 1

x(t) = 1− cos t+ x0 cos t+ v0 sin t

2.7.4 Complex Partial Fractions

a. X(s) = s
s2+a2

= A
s+a i

+ B
s−a i , (s+ a i)(s− a i) = s2 + a2

s = A(s− a i) +B(s + a i)

1 = A+B, 0 = −a iA+ a iB

=⇒ A = B =
1

2

X(s) =
1

2

1

s+ a i
+

1

2

1

s− a i

x(t) =
1

2
e−a i t +

1

2
ea i t = cos at

b. General case, no repeated roots

X(s) =
G(s)

H(s)
=
ams

m + am−1s
m−1 + · · ·+ a1s + a0

bnsn + bn−1sn−1 + · · ·+ b1s + b0

G(s) = am(s− z1)(s− z2) · · · (s− zm) zi = zeros

H(s) = bn(s− p1)(s− p2) · · · (s− pn) pi = poles
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If m ≥ n, m− n = p

X(s) = Aps
p + Ap−1s

p−1 + · · ·+ A1s+ A0 +
B1

s− p1
+

B2

s− p2
+ · · ·+ Bn

s− pn

If m < n, delete A terms.
Multiply by common denominator

sm // am = Apbn

sm−1 // am−1 = Ap−1bn + Apbn−1

...
...

sn // an = A0bn + A1bn−1 + · · ·+ Apbn−p

sn−1 // an−1 = A0bn−1 + Apbn−1−p + bn(B1 +B2 + · · ·+Bn)

x(t) = Apδ
(p) + Ap−1δ

(p−1) + · · ·+ Anδ +B1e
r1t + · · ·+Bne

rnt

You can always find An first, subtract out of X(s), but usually all the Ai are zero anyway.
You can also always make bn = 1, by dividing top and bottom by bn.

X(s) =
G(s)

H(s)
=

G(s)

(s− p1)(s− p2) · · · (s− pn)

(

lim
s→∞

G(s)

H(s)
= 0

)

=
B1

s− p1
+

B2

s− p2
+ · · ·+ Bn

s− pn

Notice:

B1 =

[
G(s)

H(s)
(s− p1)

]

s=p1

, . . . Bn =

[
G(s)

H(s)
(s− pn)

]

s=pn

c. Repeated root

H(s) = (s− p1)
2(s− p2)(s− p3) · · · (s− pn−1)

X(s) =
B11

s− p1
+

B12

(s− p1)2
+

B2

(s− p2)
+ · · ·

B12 =

[
G(s)

H(s)
(s− p1)

2

]

s=p1

, B11 =
d

ds

[
G(s)

H(s)
(s− p1)

2

]

s=p1

H(s) = (s− p1)
r(s− p2) · · ·

X(s) =
B11

s− p1
+

B12

(s− p1)2
+ · · ·+ B1r

(s− p1)r

B1j =
1

(r − j)!

dr−j

dsr−j

[
G(s)

H(s)
(s− p1)

r

]

s=p1

j = 1, r
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In summary of complex partial fractions, ri= occurrences of pi

X(s) =
G(s)

H(s)
=

n∑

i=1

ri∑

j=1

Bij

(s− pi)j

x(t) =
n∑

i=1

ri∑

j=1

Bij

(j − 1)!
tj−1epit

Bij =
1

(ri − j)!

dri−j

dsri−j

[
G(s)

H(s)
(s− pi)

ri

]

s=pi

2.8 Contour Integration

F (s) =

∫ ∞

0

e−stf(t)dt s = σ + iω, σ > c

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds

“c” must be chosen to the right of all poles of F (s).

2.8.1 Cauchy’s Theorem

∮

G(s)ds = 2πi
∑

residues

If (s− p)rG(s) = finite 6= 0, then there is a pole of order r at p and

Residue =
1

(r − 1)!

dr−1

dsr−1

[
(s− p)rG(s)

]

s=p

For use in inverse Laplace, G(s) = estF (s)

2πi
∑

Residues =

∫ c+i∞

c−i∞
estF (s)ds+

∫

Γ

estF (s)ds

1

2πi

∫ c+i∞

c−i∞
estF (s)ds =

∑

Residues − 1

2πi

∫

Γ

estF (s)ds

︸ ︷︷ ︸

hopefully zero
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2.8.2 Checklist for inverse

1. Can appropriate “c” be found?

{
No =⇒ no inverse
Yes =⇒ go to 2

2. Does lim
s→∞

estF (s) = 0?

{
Yes =⇒ f(t) = 0
No =⇒ go to 3

3. Does lim
s→−∞

estF (s) = 0?

{
Yes =⇒ go to 4
No =⇒ must do integral directly

4. Can all singularities of estF (s) be represented as

a repeated pole ?

{
Yes =⇒ go to 5
No =⇒ must do integral directly

5. f(t) =
n∑

i=1

1

(ri − 1)!

dri−1

dsri−1
[(s− pi)

riestF (s)]s=pi

Note: Reduces to same answer as complex partial fractions method.

2.8.3 Example of Residues

F (s) =
s

(s− 2)2(s+ 1)
r1 = 2, r2 = 1, p1 = 2, p2 = −1

Residue checklist: est s
(s−2)2(s+1)

1. poles at s = 2, s = −1, so c > 2 will suffice

2. lim
s→∞

est
s

(s− 2)2(s+ 1)
=

{
0 t ≤ 0
∞ t > 0

=⇒ f(t) = 0 for negative values of t

3. lim
s→−∞

est
s

(s− 2)2(s+ 1)
= 0 for t > 0

4. All poles simple

5. f(τ) =
1

(r1 − 1)!

d

ds

[
s

s+ 1
est
]

s=p1

+
1

(r2 − 1)!

[
s

(s− 2)2
est2

]

s=p2

=

[

t
s

s+ 1
est +

1

s+ 1
est − s

(s+ 1)2
est
]

s=2

+
1

1!

[
sest

(s− 2)2

]

s=−1

=
2

3
te2t +

(
1

3
− 2

9

)

e2t +
−1

1
e−1
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f(t) =
2

3
te2t +

1

9
e2t − e−t/9

Compare with Partial Fractions method

x(t) =
d

ds

[
s

s+ 1

]

s=2

e2t +

[
s

s+ 1

]

s=2

te2t +

[
s

(s− 2)2

]

s=−1

e−1

=

(
1

3
− 2

9

)

e2t +
2

3
te2t − e−t

2.9 Convolution and Duhamel’s Integrals

2.9.1 Convolution Integral

F (s) = G(s)H(s)

L−1[G(s)] = g(t), L−1[H(s)] = h(t)

L−1[F (s)] = f(t) =

∫ t

0

g(τ)h(t− τ)dτ

=

∫ t

0

g(t− τ)h(τ)dτ

Note g(t) = h(t) = 0 for negative arguments.

2.9.2 Duhamel’s Integral

If hN (t) is impulse response of a system, g(t) = step response, and if f(t) is any forcing
function, then the response of x(t) with x(0) = 0, ẋ(0) = 0 is

x(t) =

∫ t

0

f(τ)hN (t− τ)dτ = f(0)g(t) +

∫ t

0

ḟ(τ)g(t− τ)dτ

if x(−∞) = 0 and ẋ(−∞) = 0, then we may write Duhamel’s integral

x(t) =

∫ t

−∞
f(τ)hN(t− τ)dτ

If nonzero initial conditions are present, use e(t), h(t) solution.

x(t) = x(0)e(t) + ẋ(0)hV (t) +

∫ t

0

f(τ)hN (t− τ)dτ
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2.10 Fourier Transform

2.10.1 Fourier Integral

As discussed earlier, a Fourier Series representation for a periodic function f(t) with period
T can be written as

f(t) =
∞∑

p=−∞
αpe

ipΩt

where

αp =
1

T

∫ +T
2

−T
2

f(t)e−ipΩtdt

The idea of the Fourier Integral, which leads to the Fourier Transform, is let T → ∞ and
Ω → 0 so that any function of t can be expressed, not just periodic ones.

If Ω → 0, then pΩ (i.e. the frequency of the pth harmonic) becomes a continuous variable
u = pΩ with ∆u = up+1 − up = Ω.

Now, T → ∞ ⇒ αp → 0 while Tαp remains finite. Thus,

Tαp = F (pΩ) = F (u) =

∫ +∞

−∞
f(t)e−iutdt

and

f(t) =
+∞∑

p=−∞

1

T
(Tαp)e

ipΩt =
Ω

2π

+∞∑

p=−∞
F (u)eiut

Now, with u a continuous frequency variable,

f(t) =
1

2π

∫ +∞

−∞
F (u)eiutdu

F (−u) = F ∗(u), f(t) =
1

π

∫ +∞

0

ℜ
[
F (u)eiut

]
du

f(t) =
1

π

∫ ∞

0

{ℜ[F (u)] cosut− ℑ[F (u)] sinut} du

Thus, one sees that the Fourier Integral leads to a reciprocal relationship between f(t) and
F (u), the latter being the Fourier Transform of the former.

2.10.2 Response using Fourier Transform

Consider now the standard spring-mass-damper system, subjected to an arbitrary force f(t)
and thus governed by

ẍ+ 2ζẋ+ x = f(t) =
1

2π

∫ +∞

−∞
F (u)eiutdu
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Assuming

x =
1

2π

∫ +∞

−∞
X(u)eiutdu

one finds that

ẋ =
1

2π

∫ +∞

−∞
iuX(u)eiutdu

and

ẍ =
1

2π

∫ +∞

−∞
−u2X(u)eiutdu

Thus, the governing equation becomes

1

2π

∫ +∞

−∞

[
X(u)(1− u2 + 2ζiu)− F (u)

]
eiutdu = 0

so that

X(u) =
F (u)

1− u2 + 2ζiu
= F (u)H(u)

Denoting the Fourier Transform of f(t) as F [f(t)] = F (u)

F [eait] =2πδ(u− a)

F [e−ait] =2πδ(u+ a)

so that
F [cos at] =π[δ(u+ a) + δ(u− a)]

F [sin at] =πi[−δ(u− a) + δ(u+ a)]

Also, F [δ(t)] = 1 and

h(t) =
1

2π

∫ +∞

−∞
H(u)eiutdu, H(u) =

∫ +∞

−∞
h(t)e−iutdt

2.10.3 Integral Tables Useful in Fourier Transforms
∫ ∞

0

β cos(ax)

x2 + β2
dx =

π

2
e−|aβ|sgn(β)

∫ ∞

0

x sin(ax)

x2 + β2
dx =

π

2
e−|aβ|sgn(a)

∫ ∞

0

β cos(ax)

β2 − x2
dx =

π

2
sin(aβ)sgn(a)

∫ ∞

0

x sin(ax)

β2 − x2
dx = −π

2
cos(aβ)sgn(a)
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∫ ∞

0

βγ cos(ax)

(x2 + β2)(x2 + γ2)
dx =

π

2

[ |β|e−|aγ| − |γ|e−|aβ|

β2 − γ2

]

sgn(βγ)

∫ ∞

0

x sin(ax)

(x2 + β2)(x2 + γ2)
dx =

π

2

[
e−|aβ| − e−|aγ|

γ2 − β2

]

sgn(a)

∫ ∞

0

x2 cos(ax)

(x2 + β2)(x2 + γ2)
dx =

π

2

[ |β|e−|aβ| − |γ|e−|aγ|

β2 − γ2

]

∫ ∞

0

βx2 cos(ax)

(x2 + β2)2
dx =

π

2

[
e−|aβ|] sgn(β)

∫ ∞

0

x3 sin(ax)

(x2 + β2)(x2 + γ2)
dx =

π

2

[
β2e−|aβ| − γ2e−|aγ|

β2 − γ2

]

sgn(a)

∫ ∞

0

β3 cos(ax)

(x2 + β2)2
dx =

π

4
(1 + |aβ|)e−|aβ|sgn(β)

∫ ∞

0

x sin(ax)

(x2 + β2)2
dx =

π

4

∣
∣
∣
∣

a

β

∣
∣
∣
∣
e−|aβ|sgn(a)

∫ ∞

0

(1− x2) cos(ax)

(1 + x2)2
dx =

π

2
|a|e−|a|

∫ ∞

0

1

(x2 + β)2 + c2
dx =

π

2c

B
√

β2 + c2
, B =

1

2

[√

β2 + c2 − β
]1/2

∫ ∞

0

x2 + β

(x2 + β)2 + c2
dx =

π

2

A
√

β2 + c2
, A =

1

2

[√

β2 + c2 + β
]1/2

2.10.4 Relationship Between Laplace and Fourier Transforms

We can derive the Laplace transform from the Fourier transform (and vice versa). First,
consider the Fourier transform of a function f(t) which is zero for t < 0.

F (iu) =

∫ ∞

0

f(t)e−iutdt, f(t) =
1

2π

∫ +∞

−∞
F (iu)eiutdu

Now, suppose f(t) is such that
∫ +∞
0

|f(t)|dt = ∞. Since no Fourier transform exists for f(t),
we try a Fourier transform of a modified function

f = e−ctf(t)

If we can find a c such that ∫ ∞

0

|e−ctf(t)|dt is bounded
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then we can take a Fourier transform of f(t). For example, this would work for f = tn,
f = eat; but would not work for f = eat

2

. The transform of f will now depend on the
original function f , the frequency parameter u, and the constant c that was chosen to limit
f(t).

F (iu, c) =

∫ ∞

0

f(t)e−(c+iu)tdt

We recognize c + iu as a complex variable, s. Thus, our modified transform depends on s;
and the Laplace transform of f(t) becomes

F (s) =

∫ ∞

0

f(t)e−stdt

We now turn to the inverse transform. Since c is held constant, ds = idu, and we can write
the inverse in terms of ds.

f(t) = e−ctf(t) =
1

2π

∫ c+i∞

c−i∞
F (s)eiutds/i

or

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds

This is the inverse Laplace transform introduced earlier where c must be chosen large enough
so that e−ctf(t) is bounded in the integral (c to the right of all poles).

Thus, for functions that decay on their own with f(t) = 0 for t < 0, Fourier and Laplace
are the same with s = iω.

2.11 Review of Methods Thus Far

Method f(t) limitations
Inspection 0 or constant
*Harmonic Balance (Real or Complex) Simple harmonic, transients decayed
*Fourier Series (Real or Complex) Periodic, transients decayed
Laplace Transform f(t) = 0, t < 0,

∫∞
0

−e−stf(t)dt bounded
*Fourier Transform

∫ +∞
−∞ f(t)dt bounded, all “transients”

decayed. [Includes Random]
Duhamel’s Integral zero initial conditions or transients

decayed (⇐⇒ f(t) = 0, t < 0) [Includes Random]
Note all limitations such as “transients decayed” or “zero initial conditions” can be

eliminated by superimposing inspection solutions.

*lim ζ → 0 ζ > 0
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2.12 Random Functions

1. Let us say several investigators took measurement samples of f(t).

Ensemble average: pick t1, average over all samples.

Time average: pick a sample, average over all t.

For a “stationary” process, ensemble average is independent of t.

For an “ergodic” process, time average is independent of sample.

2. Therefore, time average and ensemble average for a “stationary, ergodic” function have
same probability distribution P (x) and probability density p(x).

P (x) = probability, xs < x

p(x) =
dP

dx

Probability = P (x2)− P (x1) =

∫ x2

x1

p(x)dx

that x1 < x < x2

3. The relevant statistics of a random function

average = µ = lim
T→∞

1

T

∫ T
2

−T
2

x(t)dt = mean

Rx(τ) lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t + τ)dτ = correlation

Rx(−τ) = Rx(τ), |Rx(τ)| ≤ Rx(0)

4. Relation between probability and statistics:

1 =

∫ +∞

−∞
p(x)dx

µ =

∫ +∞

−∞
xp(x)dx

ψ2 =

∫ +∞

−∞
x2p(x)dx = mean square value = R(0)

σ2 =

∫ +∞

−∞
(x− µ)2p(x)dx = ψ2 − µ2 = variance
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5. For a “Gaussian” or “normal process”

p(x) = 1√
2πσ

exp
[

−1
2

(
x−u
σ

)2
]

, t = x−µ√
2σ

P = [erf(t) + 1]/2

6. Power Spectral Density

Sx(ω) ≡
∫ +∞

−∞
Rx(τ)e

iωτdτ = Fourier Transform of Autocorrelation (Real)

=⇒ Rx(τ) =
1

2π

∫ +∞

−∞
Sx(ω)e

iωτdω

∫ +∞

−∞
Sx(ω)dω = 2πRx(0) = 2πψ2

Sx(ω) = Sx(−ω), Sx(ω) ≥ 0

S(ω) = 2

∫ ∞

0

R(τ) cosωτdτ, R(τ) =
1

π

∫ ∞

0

S(ω) cosωτdω

R(0) = ψ2 =
1

π

∫ ∞

0

S(ω)dω, S(ω) is power at each frequency

7. Relationships between x and ẋ

Rx(τ) = lim
T→∞

1

T

∫ +T/2

−T/2
x(t)x(t + τ)dt

d2Rx

dτ 2
= lim

T→∞

1

T

∫ +T/2

−T/2
x(t)

d2

dτ 2
x(t+ τ)dt

= lim
T→∞

1

T

∫ +T/2

−T/2
x(t)

d2

dt2
x(t + τ)dt

= − lim
T→∞

1

T

∫ +T/2

−T/2

d

dt
x(t)

d

dt
x(t + τ)dt

Therefore,
R̈x(τ) = Rẋ(τ)

−R̈x(0) = Rẋ(0) = σ2
ẋ (µ = 0)

Rẋ(τ) = −R̈x(τ) = − d2

dτ 2

(
1

2π

)∫ +∞

−∞
S(ω)eiωτdω =

1

2π

∫ +∞

−∞
ω2S(ω)eiωτdω

Therefore, Sẋ(ω) = ω2Sx(ω)
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8. Number of threshold crossings (Gaussian process only)

(to be proved later)

Number of positive crossings of threshold x per unit time (average)

E[N+(x)] =
1

2π

σẋ
σx
e−

1

2
(x/σx)2 , if Gaussian µ = 0.

9. Distribution of peaks

Zero Mean (µ = 0), Gaussian, Positive Peaks only locate peaks, record number of
peaks above certain values of x

P (x) = probability that a given peak will be smaller than a given value x.

Percentage number of points at x1 = p(x1)

Percentage number of points at x2 = p(x2)

Difference must be peaks

Number of Peaks = [px(x1)− px(x2)] = −dpx
dx

dx

Probability peak < x =
total peaks < x

total peaks
= P (x)peaks

P (x)peaks =

∫ x

0
−p′dx

∫∞
0

−p′dx =
p(0)− p(x)

p(0)− p(∞)
= 1− e−x

2/2σ2

p(x)peaks = probability density =
dP

dx
=

x

σ2
e−x

2/2σ2

(Rayleigh Distribution)

2.12.1 Examples

Sinusoid with phase random from sample to sample

Here we let x(t) = a sin(ωt+ φ) where φ random from sample to sample:

p(xs < x) = 1− λ

2π
= 1− 1

2π

[

π − 2 sin−1
(x

a

)]

P (x) =
1

2
+

1

π
sin−1

(x

a

)

p(x) =
dP

dx
=

1

πa

1
√

1− x2

a2
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µ =
1

2π

∫ +π

−π
a sin(θ)dθ = 0, θ = ωt+ φ

R(τ) =
a2

2π

∫ +π

−π
sin(θ) sin(θ + ωτ)dθ

=
a2

2π
cosωτ

∫ +π

−π
sin2 θdθ +

a2

2π
sinωτ

∫ +π

−π
sin θ cos θdθ

R(τ) =
a2

2
cosωτ, R(0) =

a2

2
= ψ2

S(ω) =
a2

2
F(cosωτ) =

π

2
a2[δ(µ− a) + δ(µ+ a)]

All power in one frequency!
This is a non-Gaussian process, but we can define probability of threshold crossings and

peaks.

E[N + (x)](per unit time) =

{
ω
2π

−a < x < +a
0 |x| ≥ a

p peaks = p(x) = δ(a)

White noise

S(ω) = S0 = constant (infinite power)

R(τ) = S0δ(τ)

Band limited white noise

R(τ) =
1

π

∫ ωc

0

S0 cosωτdω =
S0

πτ
sin(ωcτ)

2.12.2 Two Random Functions

1. Probability

probability x1 < x < x2 and y1 < y < y2 simultaneously

+P (x1, y1) + P (x2, y2)− P (x1, y2)− P (x2, y1) =

∫ x2

x1

∫ y2

y1

[p(x, y)dydx

p =
∂2P

∂x∂y
, Independent (not synonymous)∗ =⇒ p(x, y) = p(x)p(y)
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2. Statistics (Cross-correlation)

Rxy(τ) = lim
T→∞

1

T

∫ +T
2

−T
2

x(t)y(t+ τ)dt

=⇒ Ryx(τ) = Rxy(−τ), |Rxy(0)| ≤
1

2
[Rxx(0) +Ryy(0)]

3. Relation between probability and statistics

Covariance = Cxy(τ) = Rxy(τ)− µxµy

Cxx(0) = Rxx(0)− µ2
x = ψ2

x − µ2
x = σ2

x(variance)

Cyy(0) = Ryy(0)− µ2
y = ψ2

y − µ2
y = σ2

y

Cxy(0) = Rxy(0)− µxµy ≡ ρxyσxσy

|ρxy| ≤ 1

ρ = correlation coefficient, ρ = 0 =⇒ uncorrelated (not synonymous)∗

Rxẋ =
d

dτ
Rxx(τ) =⇒ Rxẋ(0) = 0

{
=⇒ uncorrelated if
=⇒ not so if

4. Gaussian system

p(x, y) =
1

2πσxσy
√

1− ρ2
exp

{

−1

2(1− ρ2)

[(
x− µx

σx

)2

+

(
y − µy

σy

)2

− 2ρ
(x− µx)(y − µy

σxσy

]}

For Gaussian uncorrelated ⇐⇒ independent

For non-Gaussian independent =⇒ uncorrelated

But not vice versa

5. Cross-spectral density

Sxy(ω) =

∫ +∞

−∞
Rxy(τ)e

−iωτdτ

Rxy(τ) =
1

2π

∫ +∞

−∞
Sxy(ω)e

+iωτdω

Sxy(−ω) = Syx(ω)S
∗
xy(ω)

Sxx, Syy are real.
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6. Superposition

Rax+by = lim
T→∞

1

T

∫ +T
2

−T
2

[ax(t) + by(t)][ax(t + τ) + by(t+ τ)dt

= a2Rxx + b2Ryy + abRxy + abRyx = 〈ab〉
[
Rxx Rxy

Ryx Ryy

]{
a
b

}

Sax+by = 〈ab〉
[
Sxx Xxy

Syx Syy

]{
a
b

}

Sxy = S∗
yx =⇒ Sax+by Real

7. We are now ready for proof of the Threshold-Crossing Theorem

At a given time t, there is a magnitude x and velocity ẋ. There will be a positive crossing
of threshold value x in ∆t if:

a. x < x b. ẋ∆t > x− x c. ẋ > 0
Therefore, the expected number of crossings (positive) of x within the time ∆t is

E[N+(x)]∆t =

∫ ẋ=∞

ẋ=0

∫ x=x

x=x−ẋ∆t
p(x, ẋ)dxdẋ

lim
∆t→0

∫ x

x−ẋ∆t
p(x, ẋ)dx = p(x, ẋ)ẋ∆t

=⇒ E[N+(x)] =

∫ ∞

0

ẋp(x, ẋ)dẋ

If x and ẋ are independent =⇒ p(x, ẋ) = p(x)p(ẋ)

E[N+(x)] = p(x)

∫ ∞

0

ẋp(ẋ)dẋ = p(x) · [average of positive ẋ’s]

For Gaussian process (independent ⇐⇒ uncorrelated)

p(x) =
1√
2π

1

σx
e−

1

2
x2/σ2x

p(ẋ) = p(v) =
1√
2π

1

σv
e−

1

2
v2/σ2v

E[N+(x)] = p(x)

∫ ∞

0

v√
2πσv

e−
1

2
v2/σ2vdv

= p(x) =

∣
∣
∣
∣

[

− σv√
2π
e−

1

2
v2/σ2v

]∣
∣
∣
∣

∞

0

=
p(x)σv√

2π

E[N+(x)] =
1

2π

σẋ
σx
e−

1

2
(x/σx)2
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2.12.3 Response to Random Excitation

Correlation Function

ẍ+ 2ζẋ+ x = f(t) = random

By convolution

x(t) =

∫ t

−∞
f(λ)h(t− λ)dλ =

∫ +∞

−∞
f(λ)h(t− λ)dλ

or

x(t) =

∫ +∞

−∞
h(λ)f(t− λ)dλ =

∫ ∞

0

h(λ)f(t− λ)dλ

x(t + τ) =

∫ ∞

0

h(λ)f(t+ τ − λ)dλ

Rx(τ) = lim
T→∞

1

T

∫ +T
2

−T
2

[∫ ∞

0

h(λ1)f(t− λ1)dλ1

] [∫ ∞

0

h(λ2)f(t+ τ − λ2)dλ2

]

dt

=⇒ Rx(τ) =

∫ ∞

0

∫ ∞

0

h(λ1)h(λ2)Rf(τ + λ1 − λ2)dλ1dλ2

Power Spectral Density

Sx(ω) =

∫ +∞

−∞
R(τ)e−iωτdτ =

∫ ∞

0

∫ ∞

0

h(λ1)h(λ2)

[∫ +∞

−∞
Rf (τ + λ1 − λ2)e

−iωτdτ

]

dλ1dλ2

=

∫ ∞

0

∫ ∞

0

h(λ1)h(λ2)e
−iωλ2eiωλ1Sf(ω)dλ1dλ2 τ = τ + λ1 − λ2

Sx(ω) = H(ω)H∗(ω)Sf(ω) = |H(ω)|2Sf (ω)

Example

ẍ+ 2ζẋ+ x = f(t) , f(t) = Gaussian, White noise

H(ω) =
1

1− ω2 + 2ζiω
, h(t) =

1
√

1− ζ2
e−ζt sin

√

1− ζ2t

|H(ω)|2 = 1

(1− ω2)2 + (2ζω)2

Sx(ω) =
1

(1− ω2)2 + (2ζω)2

Rx(τ) =

∫ ∞

0

∫ ∞

0

1

1− ζ2
e−ζλ1=ζλ2 sin

√

1− ζ2λ1 sin
√

1− ζ2λ2δ(τ + λ1 − λ2)dλ2dλ1
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area under δ = 1 when λ2 = τ + λ1

Rx(τ) =

∫ ∞

0

1

1− ζ2
e−ζ(τ+λ1)e−ζλ1 sin

√

1− ζ2(τ + λ1) sin
√

1− ζ2λ1dλ1

λ2 > 0 =⇒ τ + λ1 > 0 =⇒ τ > 0

Rx(τ) =
1

4ζ
e−ζτ

[

cos
√

1− ζ2τ +
ζ

√

1− ζ2
sin
√

1− ζ2τ

]

, τ > 0

Rx(−τ) = Rx(+τ) =⇒ |τ | in formula

σ2
x = Rx(0) =

1

4ζ
, σ2

ẋ = −R̈x(0) =
1

4ζ

E[N+(xm)] =
1

2π
e−

1

2
(x2m4ζ) =

1

2π
e−2ζx2m

Zero crossings =

(
1

2π

)

/ sec independent of ζ

x = 1 crossings, ζ = 1
1

2π
e−2 = 0.02/ sec (.0215)

η = 1 probability |x| > 1
[
1− erf

√
22
]
/2 = .023

η = 1 probability peak e−2 = 0.135

> 1

Ṙx(τ) =
1

4η
e−hτ

[

1
√

1− η2
sin
√

1− η2τ

]



Chapter 3

Multi-Degree-of-Freedom Systems

3.1 Equations of Motion

3.1.1 Newton-Euler method

A. Definitions

Number of variables (i.e. displacement and rotation measures) = M
Number of spring units, damper units and sliding friction interfaces = P
Number of constraints = L
Number of unknowns = N + P + 2L = M + L+ P
Number of degrees of freedom = N =M−L (the number of coordinates required to uniquely
define the configuration of the system)

1. Draw free-body diagrams for all particles having unknown displacements and rigid
bodies having unknown mass-center displacements and rotations, and for springs and
dampers.

2. Give names and define positive direction for all these unknown displacements and
rotations, xn, n = 1, 2, . . . ,M .

3. Give names and define positive directions for all spring, damper and sliding friction
forces Fi, i = 1, 2, . . . , P.

4. Give names and define positive directions for all constraint forces Gj , j = 1, 2, . . . , L.

B. Equations

1. Write Newton’s and Euler’s laws for each variable from the free-body diagrams (M
equations).

33
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massless

no slipping

f(t)

y(t)

M

c m, I

K1 K2

K3

Figure 3.1: Schematic of example problem

2. Write constraint equations for each geometric constraint between variables (L equa-
tions).

3. Write spring, damper or friction law for each mechanical element (P equations):

=⇒ M + L+ P equations in M + L+ P unknowns

C. Simplification of Equations

1. Eliminate constraint forces from the Newton-Euler equations by simple algebra:

( =⇒ M + P = N + P + L equations in M + P = N + P + L unknowns )

2. Eliminate extra variables from the Newton-Euler equations by use of constraint equa-
tions.

( =⇒ N + P equations in N + P unknowns )

3. Eliminate spring, damper and sliding friction forces by use of spring, damper and
friction laws:

( =⇒ N equations in N unknowns )

4. If any of the equations are algebraic in terms of one of the degrees of freedom or its
time derivative (say x or ẋ), then that quantity may be eliminated from the equations.
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K1
K2

x1

F1
F2

F3F4

F2

F1

c
F4

K3

F3

m I,

θ

f t( )

F5

F4

G1
G1

F2

F3
F4

x2

x3

Figure 3.2: Free-body diagrams
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Example (see Figs. 3.1 and 3.2)

A1 – A4

=⇒ M = 4

=⇒ P = 5 , L = 1

=⇒ 3 degrees of freedom

B1

x1 =⇒ 0 (ẍ1) = F2 − F1

x2 =⇒ Mẍ2 = f + F4 − F2 − F5 −G1

x3 =⇒ mẍ3 = F3 − F4 +G1

θ =⇒ Iθ̈ = −G1r

B2

x3 − x2 = rθ (no slipping)

B3

F1 = K1x1

F2 = K2(x2 − x1)

F3 = K3(y − x3)

F4 = c(ẋ3 − ẋ2)

F5 = µ (M +m) g sgn(ẋ2)

C1

0 = F2 − F1

Mẍ2 = f + F4 − F2 − F5 +
I

r
θ̈

mẍ3 = F3 − F4 −
I

r
θ̈
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C2

0 = F2 − F1

Mẍ2 = f + F4 − F2 − F5 +
I

r2
(ẍ3 − ẍ2)

mẍ3 = F3 − F4 −
I

r2
(ẍ3 − ẍ2)

C3

0 = −(K1 +K2)x1 +K2x2

Mẍ2 = f + c(ẋ3 − ẋ2)−K2(x2 − x1)− µ (M +m) g sgn(ẋ2) +
I

r2
(ẍ3 − ẍ2)

mẍ3 = K3(y − x3)− c(ẋ3 − ẋ2)−
I

r2
(ẍ3 − ẍ2)

C4

x1 =
K2

K1 +K2
x2

Mẍ2 = f + c(ẋ3 − ẋ2)−K2x2

(

1− K2

K1 +K2

)

− µ (M +m) g sgn(ẋ2) +
I

r2
(ẍ3 − ẍ2)

mẍ3 = K3(y − x3)− c(ẋ3 − ẋ2)−
I

r2
(ẍ3 − ẍ2)

Standard Form
(

M +
I

r2

)

ẍ2 −
I

r2
ẍ3 + cẋ2 − cẋ3 +

K1K2

K1 +K2
x2 = f(t)− µ (M +m) g sgn(ẋ2)

(

m+
I

r2

)

ẍ3 −
I

r2
ẍ2 + cẋ3 − cẋ2 +K3x3 = K3y

Matrix Form
[
M + I

r2
− I
r2

− I
r2

m+ I
r2

]{
ẍ2
ẍ3

}

+

[
c −c
−c c

]{
ẋ2
ẋ3

}

+

[
K1K2

K1+K2
0

0 K3

]{
x2
x3

}

=

{
f(t)− µ (M +m) g sgn(ẋ2)

k3y(t)

}



38 Hodges and Peters

3.1.2 D’Alembert’s Principle

Newton’s law =⇒∑
F = mẍ, ẍ must be inertial acceleration

∑

M = Iθ̈

θ must be about principal axis through c.g. or about pivot point (pinned).
To get D’Alembert’s Principle, replace acceleration of every component with imaginary

force = mẍ in opposite direction of positive x. Replace every angular acceleration with
imaginary moment Iθ̈ (about c.g. or pivot) in opposite direction to θ. Then,

∑
F +Fimag =

0 and
∑
M +Mimag = 0 (about any point). Finally, apply Newton’s method.

Example

∑

F = 0 , =⇒ M(ẍ1 + lθ̈) + µl(ẍ1 +
l

2
θ̈) +Kx1 +K(x1 + aθ) = 0

∑

M = 0 , =⇒ M(ẍ1 + lθ̈)
l

2
+ F2(a−

l

2
) +

1

12
µl3θ̈ − F1

l

2
= 0

[

M + µl Ml + µl2

2
Ml
2

M l2

2
+ 1

12
µl3

]{
ẍ1
θ̈

}

+

[
2K Ka

Ka−K l
1

Ka2 −K al
2

]{
x1
θ

}

=

{
0
0

}

The above matrix is not symmetric, to make symmetric, first let θ changed to lθ (dimensional)

[
M + µl M + µl

2
M
2

M
2
+ 1

12
µl

]{
ẍ1
lθ̈

}

+K

[
2 a

l
a
l
− 1 a2

l2
− 1

2
a
l

]{
x1
lθ

}

=

{
0
0

}

1
2
of the first equation and then added to the second equation

[
M + µl M + µl

2

M + µl
2

M + 1
3
µl

]{
ẍ1
lθ̈

}

+K

[
2 a

l
a
l

a2

l2

]{
x1
lθ

}

=

{
0
0

}

or, alternately, just add l
2
× the first equation to the second equation

[

M + µl Ml + µl2

2

Ml + µl2

2
Ml2 + 1

3
µl3

]{
ẍ1
θ̈

}

+K

[
2 a
a a2

]{
x1
θ

}

=

{
0
0

}

3.1.3 Virtual Work

1. Use D’Alembert’s principle.

2. Move each degree of freedom a small amount δx1 and calculate the work done δW1.

3. Set δWi = 0 , i = 1, N to get equations.
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Example Let x2 = x3 = θ = 0 at same instant in time. We have four variables: x1, x2, x3, θ

2 Constraints

{
sin θ = x3

l

cos θ = 1− x2
l

=⇒ 2 degrees of freedom x1 and θ

x3
l

=

√
x2
l

(

2− x2
l

)

ẋ3 = lθ̇ cos θ

ẋ2 = lθ̇ sin θ

ẍ3 = −lθ̇2 sin θ + lθ̈ cos θ

ẍ2 = lθ̇2 cos θ + lθ̈ sin θ

a. Hold θ, move tiny x1

δW1 = δx1[K(x2 − x1)−Kx1 −mẍ1] = 0

=⇒ mẍ1 + 2Kx1 −Kx2 = 0

b. Hold x1, move δθ

δWθ = δx2[−mẍ2 −K(x2 − x1)] + δx3[−Kx3 +mg −mẍ3]

δx2 = l sin θδθ , δx3 = l cos θδθ

δWθ = −δθ[mẍ2l sin θ +K(x2 − x1)l sin θ +Kx3l cos θ +mẍ3l cos θ −mgl cos θ]

ml2θ̈ +K[sin θ − sin θ cos θ]l2 −Kx1l sin θ +Kl sin θ cos θx1 = mgl cos θ

=⇒
{
mẍ1 + 2Kx1 = Kl(1− cos θ)

ml2θ̈ −Kx1l sin θ +Kl2 sin θ = mgl cos θ

3.1.4 Lagrange’s Equations

1. Write down system kinetic energy, T .

2. Write down potential energy of every force that you know has a potential, V .

3. Write down the Rayleigh dissipation function R for all viscous dampers; R is just like
V for a spring except we replace x by ẋ and K by c.

4. Write down virtual work for all forces that are neither included in V and R nor are
constraint forces. We do not include centripetal or Coriolis forces, as these are included
automatically.

δW = F1δx1 + F2δx2 + . . . Fnδxn
d

dt

∂T

∂ẋi
− ∂T

∂xi
+
∂R

∂ẋi
+
∂V

∂xi
= Fi , i = 1, n
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The xi must be independent degrees of freedom.

Examples

1. Let’s go back to Newton example, noting that F5 = µ(m+M)g sgn(ẋ2)

T =
1

2
Mẋ22 +

1

2
mẋ23 +

1

2
I

(
ẋ3 − ẋ2

r

)2

V =
1

2
K1x

2
1 +

1

2
K2(x1 − x2)

2 +
1

2
K3(y − x3)

2

∂V

∂x1
= K1x1 +K2(x1 − x2) R =

1

2
c(ẋ3 − ẋ2)

2 ∂R

∂ẋ1
= 0

∂R

∂ẋ2
= c(ẋ2 − ẋ3)

∂V

∂x2
= K2(x2 − x1) δW = f(t)δx2 − µ(m+M)g sgn(ẋ2)δx2

∂R

∂ẋ3
= c(ẋ3 − ẋ2)

∂V

∂x3
= K3(x3 − y)

∂T

∂ẋ1
= 0 ,

∂T

∂ẋ2
=Mẋ2 +

I

r2
(ẋ2 − ẋ3)

∂T

∂ẋ3
= mẋ3 +

I

r2
(ẋ3 − ẋ2) ,

∂T

∂ẋi
= 0 , i = 1, 3

K1x1 +K2(x1 − x2) = 0

Mẍ2 +
I

r2
(ẍ2 − ẍ3) +K2(x2 − x1) + c(ẋ2 − ẋ3) = f(t)− µ(m+M)g sgn(ẋ2)

mẍ3 +
I

r2
(ẍ3 − ẍ2) +K3(x3 − y) + c(ẋ3 − ẋ2) = 0

We note two things here. First, a potential energy may not be a function of a time
derivative of any generalized coordinate. Second, if V is an explicit function of time,
then conservation of mechanical energy does not apply.

2.

T =
1

2
m(ẋ+ lθ̇)2 +

1

2
µℓ(ẋ+

l

2
θ̇)2 +

1

2

(
1

12
µl3
)

(θ̇)2

V =
1

2
Kx2 +

1

2
K(x+ aθ)2

R = 0, δW = 0
∂T

∂ẋ
= m(ẋ+ lθ̇) + µl(ẋ+

l

2
θ̇)

∂T

∂θ̇
= ml(ẋ+ lθ̇) +

µl2

2
(ẋ+

l

2
θ̇) +

1

12
µl3θ̇

(m+ µl)ẍ+ (ml +
µl2

2
)θ̈ + 2Kx1 +Kaθ = 0

ml2 +
1

3
= µl3)θ̈ + (ml +

µl2

2
)ẋ+K(x+ aθ)a

′

= 0
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same as D’Alembert’s

3.

T =
1

2
mẋ21 +

1

2
m(ẋ22 + ẋ23)

T =
1

2
mẋ21 +

1

2
m(cos2 θ + sin2 θ)θ̇2l2

V =
1

2
Kx21 +

1

2
K(x1 − l + l cos θ)2 −mgl sin θ +

1

2
K(l sin θ)2

R = 0, δW = 0

mẍ1 +Kx1 +K(x1 − l + l cos θ) = 0

ml2θ̈ +Kl(x1 − l + l cos θ)(− sin θ)−mgl cos θ +Kl2 sin θ cos θ = 0

same as Virtual Work

General Lagrange’s Equation for Linear System

In matrix form:

T =
1

2
〈ẋ〉[M ]{ẋ}+ 〈ẋ〉[Q]{x}+ 1

2
〈x〉[P ]{x}

R =
1

2
〈ẋ〉[C]{ẋ}+ 〈ẋ〉[N ]{x}

V =
1

2
〈x〉[K]{x}+ 〈x〉[G]
δW = 〈δx〉{F}

M =MT , P = P T , C = CT , K = KT
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In index notation

T =
1

2
Mij ẋiẋj +Qij ẋixj +

1

2
Pijxixj

R =
1

2
Cij ẋiẋj +Nij ẋixj

V =
1

2
Kijxixj + xiGi

δW = δxiFi
d

dt

∂T

∂ẋi
=

d

dt

(
1

2
Mij ẋj +

1

2
Mjiẋj +Qijxj

)

Mij =Mji

∂T

∂xi
= Qjiẋj +

1

2
Pijxj +

1

2
Pjixj Pij = Pji

∂R

∂ẋi
=

1

2
Cij ẋj +

1

2
Cjiẋj +Nijxj Cij = Cji

∂V

∂xi
=

1

2
Kijxj +

1

2
Kjixj +Gi Kij = Kji

Mij ẍj + (Qij −Qji)ẋj − Pijxj + Cijẋj +Nijxj +Kijxj = Fi −Gi

[M ]{ẍ}+ [C +Q−QT ]{ẋ}+ [K +N − P ]{x} = {F} − {G}

Special Case Consider a systems consisting only of springs, dampers, and masses (i.e. no
inertias, pulleys, levers, etc.). Then, Lagrange’s equations take the particularly simple form

[M ] =






. . .

mi

. . .




 mi = mass at xi

[K] =

[
K −K
−K K

]

Kij = spring constant between xi and xj

Example – see Fig. 3.3





m1 0 0
0 m2 0
0 0 m3











ẍ1
ẍ2
ẍ3






+





K1 +K2 +K5 +K6 −K2 −K6

−K2 K2 +K3 −K3

−K6 −K3 K3 +K4 +K6











x1
x2
x3






=







0
0
0






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m1

K1

K2 K3
K4

K5 m2

m3

K6

x1
x2

x3

Figure 3.3: Schematic for system of particles connected by springs

Example with non-symmetric matrix

T =
1

2
m(ẏ + ǫθ̇)2 +

1

2
mr2θ̇2

V =
1

2
(Kyy

2 +Kθθ
2)

δW = −
(
ρAv2

2
CL

)

δy = −ρAv
2

2
(2π)

[

θ +
ẏ

v

]

δy

m

[
1 ǫ
ǫ r2 + ǫ2

]{
ÿ

θ̈

}

+

[
Ky 0
0 Kθ

]{
y
θ

}

= −
{
θ + (ẏ/v)

0

}
ρAv2

2
(2π)

m

[
1 ǫ
ǫ r2 + ǫ2

]{
ÿ

θ̈

}

+

[
πρAv 0
0 0

]{
ẏ

θ̇

}

+

[
Ky πρAv2

0 Kθ

]{
y
θ

}

=

{
0
0

}

non-symmetric stiffness

aerodynamic damping

Stiffness and Flexibility Matrix

[M ]{ẍ}+ [K]{x} = {F}

Kij = Force at points i (i = 1, N) necessary for

xj = 1 all other x’s = 0

[K]−1 = [G] = flexibility matrix
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Gij = displacement at points i (i = 1, N) due to

unit load at point j

{x} = [G]{F} − [D]{ẍ}
G is measurable and K is hard to measure.

3.2 Setting up the Eigen-analysis

3.2.1 General Case

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {f(t)}
First we will look at transients, f = 0, and the following special cases:

a. M =MT , K = KT , C = 0: conservative, undamped

b. M 6=MT or K 6= KT , C = 0: nonconservative, undamped

c. M =MT , K = KT , C = CT : viscous damping

d. M =MT , K = KT , C = αM + βK: proportional viscous damping

e. M =MT , K = KT , C = −CT : conservative, gyroscopic

f. M =MT , K = KT , general C: conservative mass and stiffness

These special cases come up quite often in pratice and are much easier to handle than the
general case.

3.2.2 Matrix Notation

aij =⇒ ith row, jth column of [a]m×n i = 1, . . . , m ; j = 1, . . . , n

[a] + [b] = [c] −→ aij + bij = cij

[a]m×n[b]n×p = [c]m×p =⇒ cij =
n∑

k=1

aikbkj

[a]T = [b] =⇒ bij = aji [[a][b]]T = [b]T [a]T

[I] =⇒ δij =

{
0 i 6= j
1 i = j

[0] =⇒ aij = 0
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Inverse
[a]−1[a] = [a][a]−1 = [I] [[a][b]]−1 = [b]−1[a]−1

Eigenvalues

[a]{φ}i = λi{φ}i i = 1, . . . , n

=⇒ [a][φ] = [φ][`λ
`
]

Note that each column of [φ] is an eigenvector. We can now write [a] as

[a] = [φ][`λ
`
][φ]−1

Alternatively,

[φ]−1[a][φ] = [`λ
`
] (3.1)

Taking the transpose, one finds

[φ]T [a]T ][φ]−T = [`λ
`
]

Thus, [a]T has the same eigenvalues as [a]. Their eigenvectors are not the same, however.
Denoting [ψ] as the eigenvectors of [a]T , we obtain

[a]T {ψ}i = λi{ψ}i i = 1, . . . , n

or

[ψ]−1[a]T [ψ] = [`λ
`
] (3.2)

Comparing Eqs. (3.1) and (3.2), one sees that

[ψ]−1 = [φ]T or [φ]−1 = [ψ]T

As a side note, it is now possible to define any function of a matrix [a]:

f ([a]) = [φ][`f(λ)
`
][φ]−1

Now, we consider a symmetric matrix [a] = [a]T . Then {ψ}i can only differ by a constant
from {φ}i. Let this constant be αi for the ith eigenvector (i.e. the ith column of [φ]). Thus,

[ψ] = [φ][`α
`
]

so that
[φ]−1 = [ψ]T = [`α

`
][φ]T

and

[φ]−1[φ] = [I] = [`α
`
][φ]T [φ]
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Thus, it is clear that the original eigenvectors [φ] can always be normalized so that

[φ] = [φ][`α
1

2

`
]

yielding

[φ]T [φ] = [I]

or, in other words, [φ]−1 = [φ]T . Finally, with the normalized eigenvectors we obtain for
symmetric [a]

[φ]T [a][φ] = [`λ
`
]

3.2.3 Conservative, Undamped

[M ]{ẍ}+ [K]{x} = {0}

[M ] = [M ]T [K] = [K]T

Look for solution of the form {x} = {φ}eiωt. Thus,
[
[K]− ω2[M ]

]
{φ} = 0

Solution approaches

a. |[K]− ω2[M ]| = anλ
n + an−1λ

n−1 + . . . a1λ+ a0 = 0 with λ = ω2

Given solutions for ω, all but any one of the scalar equations represented by the matrix
equation [K]− ω2[M ] = 0 will yield [φ].

b. If [M ] nonsingular (no reducible degree of freedom)

{ẍ}+ [M ]−1[K]{x} = {0}
[
[D]− ω2[I]

]
{φ} = 0 D =M−1K λ = ω2

c. If [K] nonsingular (structure supported – i.e. no rigid-body motion)

[K]−1[M ]{ẍ}+ {x} = {0}
[

[F ]− 1

ω2
[I]

]

{φ} = {0} F = K−1M λ =
1

ω2

d. If [M ] = [I]
[
[K]− ω2[I]

]
{φ} = 0 =⇒ [φ]T [K][φ] = [`ω2

`
]
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e. If [M ] positive definite (all positive eigenvalues)

1. Find [M ]−1/2:

(a) Find φM , λM , φTM [M ]φM = λM

(b) [M ]−1/2 = [φM ][` 1√
λm`

][φM ]T

Note: [M ]−1/2[M ][M ]−1/2 = [I]

2. Make change of variable {x} = [M ]−1/2{y}

[M ][M ]−1/2{ÿ}+ [K][M ]−1/2{y} = {0}

3. Premultiply by [M ]−1/2

{ÿ}+ [M ]−1/2[K][M ]−1/2

︸ ︷︷ ︸

symmetric K

{y} = {0} (same frequencies)

4. Find [φK ], λK

[φT
K
][K][φK ] = [`λK`] ω2 = λK [φ] = [M ]−1/2[φK ]

Note:
[φ]T [M ][φ] = [φK ]

T [M ]−1/2[M ][M ]−1/2[φK ] = [I]

[φ]T [K][φ] = [φK ]
T [M ]−1/2[K][M ]−1/2[φK ] = [φK ]

T [K][φK ] = [`ω2
`
]

The ith mode can be multiplied by a constant αi, so we could have [φ] = [φ][`α
`
], and

φ
T
Mφ = [`α2

`
] = [`m

`
] φ

T
Kφ = [`ω2α2

`
] = [`k

`
]

α2
i = mi generalized masses

ω2
i α

2
i = miω

2
i = ki generalized stiffnesses

ki
mi

= ω2
i

f. Another approach for the case of [M ] positive definite (all positive eigenvalues) is to use
the Cholesky decomposition

[M ] = [L][L]T

where [L] is lower-triangular. Recall that

[M ]{ẍ}+ [K]{x} = {F}
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We write this instead as
[L][L]T {ẍ}+ [K]{x} = {F}

and make the transformation {y} = [L]T{x} or {x} = [L]−T {y} so that

[L]{ÿ}+ [K][L]−T {y} = {F}

Premultiplying by [L]−1 gives

{ÿ}+ [L]−1[K][L]−T {y} = [L]−1{F}

or
{ÿ}+ [K]{y} = [L]−1{F}

To distinguish the modal matrices, introduce [φ] for the original degrees of freedom x and
[φK ] for the transformed degrees of freedom y, so that

{y} = {φK}eiωt

and
{x} = {φ}eiωt

Thus,
[φK ] =[L]T [φ]

[φ] =[L]−T [φK ]

the former of which satisfies
[φK ]

T [K][φK ] = [`ω2
`
]

and the normalization on [φK ], viz.,

[φK ]
T [φK ] = [I]

implies also that
[φK ]

T [φK ] = [φ]T [L][L]T [φ] = [φ]T [M ][φ] = [`m
`
]

which we know must be equal to [I]! In other words, if we normalize the columns of [φK ]
such that [φK ]

T [φK ] = [I], then the generalized masses mi are unity for all i, and

[φ]T [M ][φ] = [`m
`
] = [I]

Note that this normalization also yields the result that [φ]−1 = [φ]T [M ] and shows that only
when the modes are normalized with respect to generalized masses of unity and the original
mass matrix is identity does one find that [φ]−1 = [φ]T .

The original problem is now solved by taking the modal transformation

[φ]{q} = {x}
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K

K

k

m

m

Figure 3.4: Simple system schematic

or
{q} = [φ]T [M ]{x}

so that
[`m

`
]{q̈}+ [`mω2

`
]{q} = [φ]T{F}

where with normalization such mi = 1 for all i we get instead

{q̈}+ [`ω2
`
]{q} = [φ]T{F} = {Q}

This leads to uncoupled scalar equations

q̈i + ω2
i qi =

Qi

mi

or
q̈i + ω2

i qi = Qi

when mi = 1.

Physical Meaning of Modes Consider a simple system, pictured in Fig. 3.4, the equa-
tions of motion are

[
m 0
0 m

]

︸ ︷︷ ︸

[M ]

{
ẍ1
ẍ2

}

+

[
K + k −k
−k K + k

]

︸ ︷︷ ︸

[K]

{
x1
x2

}

=

{
0
0

}

[M ]−1/2[K][M ]−1/2 =

[
Ω2

1 + Ω2
2 −Ω2

2

−Ω2
2 Ω2

1 + Ω2
2

]

= [K]
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with

Ω2
1 ≡

K

m
Ω2

2 =
k

m

Note that K is here also equal to L−1KL−T . Set |[K]− λ[I]| = 0 for eigenvalues

[
Ω2

1 + Ω2
2 − λ −Ω2

2

−Ω2
2 Ω2

1 + Ω2
2 − λ

]{
φ1

φ2

}

=

{
0
0

}

=⇒ (Ω2
1 + Ω2

2 − λ)2 − Ω4
2 = 0

Ω2
1 + Ω2

2 − λ = ±Ω2
2

λ = λ1 = ω2 = Ω2
1 and λ = λ2 = Ω2

1 + 2Ω2
2 =

K + 2k

m

For λ1 = Ω2
1 [

Ω2
1 + Ω2

2 − λ1 −Ω2
2

−Ω2
2 Ω2

1 + Ω2
2 − λ1

]{
φ11

φ21

}

=

{
0
0

}

or [
Ω2

2 −Ω2
2

−Ω2
2 Ω2

2

]{
φ11

φ21

}

=

{
0
0

}

φ11 = 1 φ21 = 1 (or times any constant)

For λ2 = Ω2
1 + 2Ω2

2

[
Ω2

1 + Ω2
2 − λ2 −Ω2

2

−Ω2
2 Ω2

1 + Ω2
2 − λ2

]{
φ12

φ22

}

=

{
0
0

}

or [
−Ω2

2 −Ω2
2

−Ω2
2 −Ω2

2

]{
φ12

φ22

}

=

{
0
0

}

φ12 = 1 φ22 = −1 (or times any constant)

Thus,

[φ] =

[
1 1
1 −1

]

or we normalize so that [φ]T [M ][φ] = [I]

[φ] =

[
1√
2m

1√
2m

1√
2m

− 1√
2m

]

The first mode has the masses moving together, while the second mode has them moving
out of phase (i.e. toward each other or apart from each other).
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3k
k3m 2m

m

x1

x2

x3

Figure 3.5: System to illustrate removal of rigid-body modes

Rigid-body Modes

If a structure is not restrained, so that it has one or more rigid-body modes, then solution
procedure c cannot be applied because [K] is singular. However, it is possible to undertake
a systematic removal of the rigid-body modes. This procedure is illustrated below. Consider
a system depicted in Fig. 3.5 with three masses connected by two springs on a frictionless
surface.

The equations of motion are





m 0 0
0 3m 0
0 0 2m











ẍ1
ẍ2
ẍ3






+





3k −3k 0
−3k 4k −k
0 −k k











x1
x2
x3






=







0
0
0






(3.3)

We can easily answer the question of whether or not a rigid-body mode exists for this
system. We could find the eigenvalues and show that one of them is zero. However, this is
unnecessary. Recalling that a rigid-body mode has zero frequencies, this means that we only
need to see if a rigid-body mode has zero potential energy. To undertake this check, we pre-
and post-multiply [K] by a rigid-body mode {xr} = x⌊1 1 1⌋T , with x being arbitrary, so
that

x2{xr}T [K]{xr} =







1
1
1







T 



3k −3k 0
−3k 4k −k
0 −k k











1
1
1






= 0 (3.4)

Because this is exactly zero, this proves the existence of a rigid-body mode. Another approach
is to see if there is at least one null-space mode for the matrix [K]. Taking the three rows
of [K], we first see that the third row shows x2 = x3. Substitution of this into the first
and second rows gives x1 = x2 and x1 = x2, which has the solution x1 = x2 = x3 = x, an
arbitrary constant. This is, of course, a rigid-body mode.

What we would like to know is the nature of all other mode shapes, i.e. the ones that are
orthogonal to the rigid-body mode. Denoting these mode shapes by {xe}, then it is clear
that

{xr}T [M ]{xe} = 0 (3.5)
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Thus,

{xr}T [M ]{x} =







1
1
1







T 



m 0 0
0 3m 0
0 0 2m











x1
x2
x3






= m(x1 + 3x2 + 2x3) = 0 (3.6)

Thus, we may pick
x1 = −3x2 − 2x3 (3.7)

for example (not the only way!). Therefore, all elastic modes have the property that

{xe} =







x1
x2
x3






=





−3 −2
1 0
0 1





{
x2
x3

}

= [χ]

{
x2
x3

}

(3.8)

where [χ] is the so-called constraint matrix. Substituting the right-hand side of Eq. (3.8) for
{x} in the equations of motion, Eq. (3.3), and premultiplying by [χ], one obtains

[χ]T [M ][χ]{¨̂x} + [χ]T [K][χ]{x̂} = 0 (3.9)

where {x̂} = ⌊x2 x3⌋T , or for this problem

m

[
12 6
6 6

]{
ẍ2
ẍ3

}

+ k

[
49 23
23 13

]{
x2
x3

}

=

{
0
0

}

(3.10)

This set of equations governs the elastic modes and has a positive definite [K] matrix.

3.2.4 Nonconservative, Undamped

[M ]{ẍ}+ [K]{x} = {0} [M ] 6= [M ]T [K] 6= [K]T

{x} = {φ}eηt
[
[M ]η2 + [K]

]
{φ} = {0}

η = λ+ iω {φ} = {u}+ i{v}

Solution methods

Methods a, b, c from above apply. The physical meaning of complex roots shows that motion
is of the form eλt sinωt or (cosωt), convergent or divergent sinusoidal oscillations depending
on the sign of λ. The physical meaning of complex modes can be explored by normalizing the
modes by x1, effectively setting x1 = 1 and all other degrees of freedom then are in general
complex. Consider any other arbitrary degree of freedom of the form, say, x2 = a+ ib. Then
it can be seen that

|x2|max

|x1|max

=
√
a2 + b2



Multi-Degree-of-Freedom Systems 53

0.5 1 1.5 2
p

-1

-0.5

0.5

1

Re(h)

Figure 3.6: Real part of η for inverted pendulum (see Fig. 2.4) subjected to a nondimensional
dead force p

and also that x2 leads x1 by

tan−1

(
b

a

)

A classification of loads and reactions, when dealing with all mechanical systems, is given
by Ziegler (1968). A system is conservative when subjected only to conservative forces. Let
us recall the simple mechanical model discussed earlier, i.e. Fig. 2.4. For θ0 = 0 and θ
restricted to be a small angle, the differential equation is

ml2θ̈ + (k −mgl)θ = 0 (3.11)

Assuming a solution of the form θ = θ̌ exp (ηt) we find the characteristic equation to be

η2 + 1− p = 0 (3.12)

where η2 = ml2η2/k and p = P/Pcr = mgl/k. In Figs. 3.6 and 3.7 one finds the real and
imaginary parts of η, respectively, versus p, showing that the real parts of both roots become
nonzero when the applied force exceeds the critical load. Since the real part for one of the
two roots is positive when p > 1, the perturbations about the static equilibrium state grow
in amplitude. However, it is also interesting to note that for p ≥ 1 the imaginary part is
identically zero. This is characteristic of all conservative systems that lose their stability
by buckling: one of the natural frequencies of oscillations about the static equilibrium state
becomes zero as the critical load is approached. This is not the case for nonconservatively
loaded systems; this difference is one of several that will be seen.

Example of nonconservative system

One example of nonconservative forces is the follower force.1 A follower force follows the
deformations of the body in some manner such that the work done by the force is path-

1Here we gratefully acknowledge a correction by Mr. Eliot Quon in Nov. 2009.
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Figure 3.7: Imaginary part of η for inverted pendulum (see Fig. 2.4) subjected to a nondi-
mensional dead force p

dependent. Consider the system in Fig. 3.8. It is easily seen that the applied force P , which
follows the orientation of the upper rod, is nonconservative. Let us consider two different
sequences of deflection away from the starting point when q1 = q2 = 0. First, the load is
applied when q1 = q2 = 0, where zero work is done. Then the system moves so that q1 = q̂1 so
that the work done is Pℓ(1−cos q̂1) ≈ Pℓq̂21/2. Finally, the system moves so that q2 = q̂2, for
which the work done is zero. So, the total work done to get in this first way from q1 = q2 = 0
to q1 = q̂1 and q2 = q̂2 is approximately Pℓq̂21/2. Now, consider a second path in which the
load is again applied when q1 = q2 = 0, where zero work is done. Then, let q2 move from zero
to q2 = q̂2. In this motion zero work is done. Then let q1 move from zero to q1 = q̂1. During
this motion, the work done by P is Pℓ(1− cos q̂1) cos q̂2 − Pℓ sin q̂1 sin q̂2 ≈ Pℓ(q̂21/2− q̂1q̂2).
So, the total work done to get in this second way from q1 = q2 = 0 to q1 = q̂1 and q2 = q̂2 is
approximately Pℓ(q̂21/2− q̂1q̂2). Now the second scenario is very similar but simply reversed
in order. Additional scenarios with still different answers for the work done are not hard
to conceive. Thus, it is quite clear that the follower force in Fig. 3.8 is nonconservative.
Another aspect of the properties of such a force is that it does not possess a potential energy
function which, when varied, will give the negative of the force’s virtual work. To put it
another way, the virtual work of the forces cannot be “integrated” to provide the negative
of the force’s potential energy. Follower forces are typically nonconservative in this sense.

As pointed out by Bolotin (1963, 1964), the study of the stability of structures under
follower force systems apparently started with work by Nikolai in the late 1920s. In addition
to the books by Bolotin and others, there are also many papers devoted to this subject; see,
for example, the work of Leipholz (1978), Celep (1979), Park (1987), Chen and Ku (1992),
and Higuchi (1994). Much of the analytical research to date has focused on the stability of
beams subjected to various types of follower forces and examination of the effects of various
physical phenomena, such as damping and transverse shear deformation.

Analytical examples of solved follower force problems help to clarify the nature of these
systems and their analysis. For example, it is now commonly understood that static analysis
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Figure 3.8: Schematic of mechanical model subjected to a follower force
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of elastic systems subjected to follower forces may erroneously show that the system is free
of instability. In order to ascertain whether a system subjected to follower forces is stable
requires a kinetic analysis. For problems that do in fact lose their stability by buckling,
the kinetic method will predict that one of the system natural frequencies will tend to zero
as the critical load is approached. However, for nonconservative systems one may also find
flutter instabilities in addition to possible buckling instabilities. By this we mean that small
perturbations about the static equilibrium state oscillate with increasing amplitude.

In Fig. 3.8 a mechanical model of a simple system loaded by a follower force is depicted.
The system is comprised of two particles of mass m joined together with massless rigid rods
of length ℓ. The rods are joined to each other with a rotational hinge, and one of the rods is
also joined to the ground with a rotational hinge. The motion of the system takes place in a
plane, and the hinges are spring-restrained and damper restrained with elastic and damping
constants equal to kα and cα, respectively, with α=1 and 2. This system is a mechanical
model that behaves in a manner similar to Beck’s column.

Here we will use Lagrange’s equations to derive equations of motion for this system. For
small angles q1 and q2, the kinetic and potential energies are

T =mℓ2q̇21 +
mℓ2

2

(
q̇22 + 2q̇1q̇2

)

V =
k

2
q21 +

k

2
(q2 − q1)

2

(3.13)

The virtual work of the nonconservative applied and damping forces is

δW = −Pℓ (q2 − q1) δq1 − [(c1 + c2) q̇1 − c2q̇2] δq1 − c2 (q̇2 − q̇1) δq2 (3.14)

Thus, the equations of motion are
[
2mℓ2 mℓ2

mℓ2 mℓ2

]{
q̈1
q̈2

}

+

[
c1 + c2 −c2
−c2 c2

]{
q̇1
q̇2

}

+

[
2k − Pℓ Pℓ− k

−k k

]{
q1
q2

}

=

{
0
0

}

(3.15)

First, we consider only the static terms in the equation, viz.,
[
2k − Pℓ Pℓ− k

−k k

]{
q1
q2

}

=

{
0
0

}

(3.16)

From this one sees that a non-trivial solution can only exist when 2k2 − Pkℓ + Pkℓ− k2 =
k2 = 0, which cannot happen for nonzero k. Thus, no matter how large a force P is applied,
the mechanism does not exhibit a static buckling instability.

To better treat the dynamic case, we introduce nondimensional variables for time, τ =
√

k/(mℓ2)t; force, P = Pℓ/k; and damping parameters, cα = cα/
√
km. Then one can write

the equations of motion more simply as
[
2 1
1 1

]{
q′′1
q′′2

}

+

[
c1 + c2 −c2
−c2 c2

]{
q′1
q′2

}

+

[
2− P P − 1
−1 1

]{
q1
q2

}

=

{
0
0

}

(3.17)
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Figure 3.9: Imaginary part of nondimensional eigenvalue η versus P for double mechanical
pendulum model without damping

where ( )′ represents the derivative with respect to τ . Letting qα = q̌α exp(ητ), we find that
a non-trivial solution only exists when

∣
∣
∣
∣

2η2 + (c1 + c2)η + 2− P η2 − c2η + P − 1
η2 − c2η − 1 η2 + c2η + 1

∣
∣
∣
∣

(3.18)

Ignoring the damping for now, the characteristic equation becomes

η4 + 2(3− P )η2 + 1 = 0 (3.19)

Notice that η = 0 is not a root, so a loss of stability by buckling (i.e., passing from a stable
system directly to a buckled one) is not possible. The quartic equation has four roots such
that

η2 = P − 3±
√

(P − 4)(P − 2) (3.20)

The first sign change of the radicand is at P = 2. If P ≤ 2 the real parts of all roots are
zero, as shown in Fig. 3.10; the real part of one root becomes positive when P > 2, which
means that there is a loss of stability. Since ℑ(η) 6= 0 when P > 2, the unstable motion is
oscillatory with increasing amplitude. This type of instability is usually referred to as flutter
in the mechanics literature and is closely related mathematically to the flutter instability of
aeroelasticity.2 When P > 4 all roots are real and there is a strong buckling instability; but
the system always first loses stability by flutter.

Let’s now look at the modeshapes for the case with the damping set equal to zero. The
governing equations are

[
η2 + 2− P η2 − P − 1
η2 − 1 η2 + 1

]{
q̌1
q̌2

}

=

{
0
0

}

2The physical connection is weak, however, in that unsteady aerodynamics are involved in the aeroelas-
ticity problem.
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Figure 3.10: Real part of nondimensional eigenvalue η versus P for double mechanical pen-
dulum model without damping
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Figure 3.11: Ratio of q̌2 to q̌1 versus P
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Figure 3.12: Real part of nondimensional eigenvalue η versus P for double mechanical pen-
dulum model with damping parameters c1 = 0.0001 and c2 = 0.1

so that

(η2 − 1)q̌1 + (η2 + 1)q̌2 = 0

or
[

P − 4±
√

(P − 4)(P − 2)
]

q̌1 +
[

P − 2±
√

(P − 4)(P − 2)
]

q̌2 = 0

Letting η21 = P−3−
√

(P − 4)(P − 2) and η22 = P−3+
√

(P − 4)(P − 2), the modal matrix
then assumes the form

[φ] =

[
1 1

√
P−4
P−2

−
√

P−4
P−2

]

When 2 < P < 4, the second row is pure imaginary; otherwise it’s real. Thus, when flutter
occurs, q̌2 leads or lags q̌1 by 90◦. The magnitude of q̌2 holding q̌1 = 1 is plotted in Fig. 3.11.

The addition of damping forces to the model of a nongyrosopic conservative system will
generally stabilize the system. Such is not the case with either gyroscopic conservative
systems or with nonconservative systems. For example, in Fig. 3.12 the real part of η is
plotted versus P and a loss of stability is observed for P > 0.401928. Such a dramatic
change in the stability boundary can lead to catastrophic failure if not properly accounted
for in the design of a system undergoing nonconservative forces. See Herrmann (1967) for
further discussion of this point.

Method of Obtaining Eigenvalues and Eigenvectors

[ A− λI ]{φ} = {0}
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1. Determinant polynomial This method is best suited for very low-order systems.

| A− λI | = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0

Solve this characteristic polynomial equation for its roots. (For symmetric case, the λ’s are
real.) For each λ, φ1 ≡ 1 leaves n equations in n − 1 unknowns φ2, φ3,. . . , φn; but one of
these equations is redundant.

2. Matrix Iteration As we will see, this method converges to the largest eigenvalues first.
Because we are generally interested in the lowest frequencies, it is best suited for finding the
eigenvalues of K−1M (which are 1/ω2). If K is singular, the rigid-body modes must first be
removed (see below).

a. Guess a {φ} = {u0} with {u0} = [φ]{β}, {β} = [φ]−1{u0} but with {β} and [φ]
unknown. This is based on the so-called expansion theorem, which shows that any

vector can be written as a linear combination of the modes. Let {u1} = [A]{u0},
{u2} = [A]{u1}, etc. Then,

{un} = [A]n{u0} = [φ][`λn
`
][φ]−1[φ]{β}

= [φ][`λn
`
]{β} =⇒ {φ1}λn1β1

where λ1 is the largest eigenvalue (so that λn1 dominates all other eigenvalues λni with
i > 1). We thus converge on {φ1} and λ1 simultaneously, with

{φ1}n+1 ÷ {φ1}n = λ1

Similarly, if [A] is not symmetric, we let {vn} =
[
AT
]n {u0}, {vn} converges to {ψ1},

the 1st row of [φ]−1.

b. To get the second mode, we must sweep out all of the first mode from our guess. Here
are two methods:

(1) Method # 1: Let {u} be the guessed mode with all φ1 removed. Then,

{u} = [φ]{β} no φ1 =⇒ β1 = 0

Thus,
{β} = [φ]−1{u} = [ψ]T{u} =⇒ β1 = {ψ1}T{u} = 0

so that

{ψ1}T{u} =
n∑

i=1

ψ1iui = 0

We can solve for any element of {u} in terms of the others. For example, let

u1 = −
n∑

i=2

ui
ψi
ψ1
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so that

{u} =













0 −ψ2

ψ1
−ψ3

ψ1
· · · · · · −ψn

ψ1

0 1 0 · · · · · · 0
0 0 1 0 · · · 0

0 0 0
. . . 0 0

0 0 0 0
. . . 0

0 0 0 · · · · · · 1













{u} ≡ [s]{u}

We must sweep out mode 1 from every iterate of mode 2. This can be generalized
to sweep out higher modes as well, and all modes less than the ith from every
iterate of the ith mode must be swept out.

(2) Method # 2: Here again we let

{u} = [φ]{β} {u} = [φ]







0
β2
...
...
βn







u = u− [φ]







β1
0
0
...
0







= {u} − {φ1}{ψ1}T{u}

{u} = [I − φiφj]{u} ≡ [s]{u}
with sweeping matrix [s] ,

{un+1} = [A]{u} = [A][s]{un}

Here [A][s] is the sweeping matrix. Note that A − λI is also a sweeping matrix.
QR, LR algorithms are based on similar ideas; see Wilkinson’s book, The Algebraic
Eigenvalue Problem.

3. Successive Rotations, [A] Symmetric For a simple 2×2 example, one can see the
eigenvalue problem as seeking a rotation (i.e. a change of coordinate system) that diagonalizes
the matrix. Let

[A] =

[
a11 a12
a12 a22

]

and let {
x1
x2

}

=

[
cos θ − sin θ
sin θ cos θ

]{
x1
x2

}

≡ [φ]{x} [φ]T [φ] = [I]
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φTAφ clearly reflects a change of coordinate system by rotation, viz.,

φTAφ =

[
a11 cos

2 θ + a22 sin
2 θ + 2a12 sin θ cos θ a12(cos

2 θ − sin2 θ)− (a11 − a22) sin θ cos θ
a12(cos

2 θ − sin2 θ)− (a11 − a22) sin θ cos θ a22 cos
2 θ + a11 sin

2 θ − 2a12 sin θ cos θ

]

Now, we can see that this is just like looking for principal axes. We set the off-diagonal term
to zero, yielding

a12 cos 2θ =
sin 2θ(a11 − a22)

2
or

θ =
1

2
tan−1 2a12

(a11 − a22)

The method can be expanded for n − 1 rotations for an nth order system; see chapter 6 of
Meirovitch (1997) for exposition of several popular techniques.

3.2.5 Proportional Viscous Damping

Proportional viscous damping involves the standard form of the equations of motion, given
by

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {0}
However, the matrix [C] is restricted to be a linear combination of the mass and stiffness
matrices, viz.,

[C] = α[M ] + β[K]

where [M ] and [K] are both symmetric and positive definite. This restriction will result in
complex eigenvalues and real eigenvectors.

To proceed, we first find the natural frequencies ω and eigenvector matrix [φ] of the
undamped system. As has been shown before, when [φ] is suitably normalized, then

[φ]T [M ][φ] = [I] [φ]T [K][φ] = [`ω2
`
]

Now, make the change of variable {x} = [φ]{y} and premultiply the equations of motion by
[φ]T to obtain

{ÿ}+ [`α + βω2
`
]{ẏ}+ [`ω2

`
]{y} = {0}

Thus, each individual scalar equation will have the form

ÿi +
(
α + βω2

i

)
ẏi + ω2

i yi = 0

Special cases include:

1. mass proportional damping: β = 0 (e.g. concrete); ζi ↓ with ωi

2. stiffness proportional damping: α = 0 (e.g. structural damping); ζi ↑ with ωi
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3. modal damping can be added after the fact by picking the ζ ’s as you please (e.g. take
them 1% for all modes) and setting

[C] = [φ][`2ζiωi`][φ
T ]

Note that any system such that [φ]T [C][φ] is diagonal will also give real eigenvectors. See
Adhikari (2006) for new developments in this field.

Free-Decay Solution

The free-decay solution will then be of the form

yi = e−ζiωit cos

(√

1− ζ2i ωit

)

or e−ζiωit sin

(√

1− ζ2i ωit

)

where

ζi =
1

2

(
α

ωi
+ βωi

)

Response of Systems with Linear, Otherwise Arbitrary Damping

The standard form of the equations is

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F (t)}

Laplace Transform Taking the Laplace transform of both sides, one obtains
[
[M ]s2 + [C]s+ [K]

]
{X(s)} = {F (s)} − [M ]{ẋ(0)} − [M ]{x(0)}s− [C]{x(0)}

so that

{X(s)} =
[
Ms2 + Cs+K

]−1 {{F (s)} − [M ]{ẋ(0)} − [M ]{x(0)}s− [C]{x(0)}}

This is quite a cumbersome approach. The inverse cannot be found analytically unless
the problem is very low-order, and even then computerized symbolic manipulation may be
required.

Harmonic Excitation

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F} = {F}eiΩt

Let
{x} = {x}eiΩt

which gives

{x} =
[
[K]− [M ]Ω2 + iΩ[C]

]−1 {F}
Structural damping can be accommodated by multiplying the [K] term by (1 + ig).
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Figure 3.13: Schematic of vibration absorber
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Example Consider a vibration absorber as depicted in Fig. 3.13. The main part of the
subsystem is of mass M , and the absorber is a smaller body of mass m. The main part of
the subsystem is subjected to a harmonic force F0e

iΩt, so that the equations of motion are

[
M 0
0 m

]{
ẍ1
ẍ2

}

+

[
K + k

2
−k

2

−k
2

k

]{
x1
x2

}

=

{
F0

0

}

eiΩt

Now assume {x} = {x}eiΩt

{
x1
x2

}

=

[
K + k

2
−MΩ2 −k

2

−k
2

k −mΩ2

]−1{
F0

0

}

=
F0

(K + k
2
−MΩ2)(k −mΩ2)− k2

4

{
k −mΩ2

k
2

}

The force transmitted to the base is then

FB = Kx1 +
k

2
x2 =⇒ FB

F0
=

K(k −mΩ2) + k2

4

(K + k
2
−MΩ2)(k −mΩ2)− k2

4

Introducing the following nondimensional parameters:

Ω2

k/m
= ω2 k/m

K/M
= µ k/K = ρ

Ω2 =
k

m

(

1 +
1

4

k

K

)

one finds that the transmitted force can be written more simply as

FB

F0
=

1− ω2 + 1
4
ρ

(1 + 1
2
ρ− µω2)(1− ω2)− 1

4
ρ

We can now plot k|x1|/F0, k|x2|/F0, and |FB|/F0 for typical values of µ and ρ versus ω2.
These plots are shown, respectively, in Figs. 3.14 – 3.16. All three quantities exhibit infinite
response at the natural frequencies of the two-degree-of-freedom system. The plots of |x1|
and |FB| show zero responses at values of ω2 = 1 and ω2 = 1+ρ/4, respectively. These points
are called antiresonances. When a small amount of damping is added to the problem, the
response at the resonances becomes finite, and the response at the antiresonances becomes
nonzero. Thus, it behooves the designer of vibration absorbers to limit the amount of
damping.
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Figure 3.14: k|x1|/F0 versus ω2 for vibration absorber with µ = 0.01, ρ = 0.1
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Figure 3.15: k|x2|/F0 versus ω2 for vibration absorber with µ = 0.01, ρ = 0.1
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Figure 3.16: |FB|/F0 versus ω2 for vibration absorber with µ = 0.01, ρ = 0.1

Modal Decoupling

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F (t)}
{x(0)} = {x0} {ẋ(0)} = {v0}

Let {x} = [φ]{y} where the columns of [φ] are the mode shapes and

[φ]T [M ][φ] = [`mj`
] generalized masses, often normalized to 1

[φ]T [C][φ] = [`cj`] if we have proportional or modal damping

[φ]T [K][φ] = [`kj`] generalized stiffnesses

Thus,

ω2
j =

kj
mj

ζj =
cj

2
√
kjmj

Premultiplying equation by [φ]T and defining [φT ]{F} = {G} as the generalized forces, one
finds

mj ÿj + cj ẏj + kjyj = Gj j = 1, . . . , n

or

ÿj + 2ζjωj ẏj + ω2
jyj =

Gj

mj
j = 1, . . . , n

The initial conditions are thus expressed as

{y(0)} = [φ]−1{x0} {ẏ(0)} = [φ]−1{v0}
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Note that not all modes are required. If we truncate the displacement to m modes with
m << n, then

{x} = [φ]{y} = {φ1}y1 + {φ2}y2 + . . . {φm}ym
The elastic forces can be written as

[K]{x} = [K][φ]{y} = [φ]−T [`mω2
`
]{y} = [M ][φ][`ω2

`
]{y}

or
[K]{x} = [M ]

{
{φ1}ω2

1y1 + {φ2}ω2
2y2 + . . . {φm}ω2

mym
}

Because the frequencies are arranged from lowest to highest, one can expect to need more
modes to get accurate elastic forces than are required to get accurate displacements. When
a subset of the modes is used, the calculation of initial conditions must be approximated as
well. One way to approach this is to note that [φ]−1 = [`m

`
]−1[φ]T [M ] so that

{y(0)} = [`m
`
]−1[φ]T [M ]{x0} ≈ {{φ1}/m1 + {φ2}/m2 + . . .+ {φm}/mm} [M ]{x0}

and

{ẏ(0)} = [`m
`
]−1[φ]T [M ]{v0} ≈ {{φ1}/m1 + {φ2}/m2 + . . .+ {φm}/mm} [M ]{v0}

a. Transient Response Example First, we consider a transient response example with
F (t) = 0. Superposing the basic responses of section 2.6, we obtain

yj(t) = yj(0)e
−ζjωjt



cos
(√

1− ζ2j ωjt
)

+
ζj

√

1− ζ2j

sin
(√

1− ζ2j ωjt
)





+
ẏj(0)

ωj

√

1− ζ2j

e−ζjωjt sin
(√

1− ζ2j ωjt
)

= yj(0)ej(t) + ẏj(0)hj(t) (dimensional)

{y} = [`e(t)
`
]{y(0)}+ [`h(t)

`
]{ẏ(0)}

{x(t)} = [φ][`e(t)
`
][φ]−1{x0}+ [φ][`h(t)

`
][φ]−1{v0}

b. Harmonic Excitation Example Letting {F} = {F}eiΩt, and {g} = [φ]T{F}, one
finds the individual uncoupled scalar equations of motion as

mj ÿj + cj ẏj + kjyj = gje
iΩt

yj = yje
iΩt yj =

gj
kj −mjΩ2 + iΩcj

= gjHj(Ω)
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{x} = [φ][`H(Ω)
`
][φ]T{F}

Note, for structural damping

[M ]{ẍ}+ (1 + ig)[K]{x} = {F}eiΩt

and

Hj(Ω) =
1

kj(1 + ig)−mjΩ2

c. Convolution Integral Example

miÿi + ciẏi + kiyi = δ(t) =⇒ yi(t) = hi(t)

miÿi + ciẏi + kiyi = gi(t) yi =

∫ t

0

hi(t− τ)gi(τ)dτ

︸ ︷︷ ︸

ith degree of freedom

{x(t)} = [φ]

∫ t

0

[`h(t− τ)
`
]{g(τ)}dτ {g(τ)} = [φ]T{F (τ)}

︸ ︷︷ ︸

multi-degree of freedom

d. Periodic Excitation A specific example of this is not needed, as recall response to
periodic excitation is most easily treated by making use of Fourier series and superimposing
results for harmonic excitation.

e. Random Excitation

{f} =⇒ Rfifj(τ) known , Sfifj (ω) known
[
Rgigj

]
= [φ]T

[
Rfifj

]
[φ] ,

[
Sgigj

]
= [φ]T

[
Sfifj

]
[φ]

=⇒
[
Sxixj

]
= [φ] [H∗] [φ]T

[
Sfifj

]
[φ] [H ] [φ]T

=
[
H∗
ij

]
[Sff ] [Hij]

Ryiyj =

∫ +∞

0

∫ +∞

0

hi(λi)hj(λj)Rgigj(τ + λi − λj)dλidλj
[
Rxi,xj

]
= [φ]

[
Ryiyj

]
[φ]T

hi(t) =
1

ωimi

1
√

1− ζ2i
e−ζiωit sin

√

1− ζ2i ωit

Hij = [K − ω2M + IωG]
−1
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Figure 3.17: Schematic of simple system for numerical example

Numerical Example Consider a simple, unrestrained system as depicted in Fig. 3.17
with initial conditions given as

x1(0) = x2(0) = x3(0) = 0 ẋ1(0) = ẋ2(0) = ẋ3(0) = −v0

The equations of motion are





m 0 0
0 2m 0
0 0 m











ẍ1
ẍ2
ẍ3






+





k −k 0
−k 2k −k
0 −k k











x1
x2
x3






=







0
0
F0







Let λ = ω2m/k and {x} = {φ}eiωt. The governing equations then become an eigenvalue
problem of the form





1− λ −1 0
−1 2− 2λ −1
0 −1 1− λ











φ1

φ2

φ3






=







0
0
0







(1− λ) [(2− 2λ)(1− λ)− 1]− (1− λ) = 0

(1− λ)
[
2− 2λ− 2λ+ 2λ2 − 1− 1

]
= 0

(1− λ)(2λ2 − 4λ) = 0 λ(1− λ)(λ− 2) = 0

Thus, λ = 0, 1, and 2, and

ω2 = 0,
k

m
,
2k

m

The first eigenvector is a rigid-body mode, governed by the null space of [K]:





1 −1 0
−1 2 −1
0 −1 1











φ11

φ21

φ31






=







0
0
0







φ11 − φ21 = 0 =⇒ φ11 = φ21

−φ11 + 2φ21 − φ31 = 0 =⇒ φ11 = φ31
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−φ21 + φ31 = 0 =⇒ φ21 = φ31 (redundant)

=⇒







φ11

φ21

φ31






=







1
1
1







The second eigenvector is governed by




0 −1 0
−1 0 −1
0 −1 0











φ12

φ22

φ32






=







0
0
0







−φ22 = 0 φ12 + φ32 = 0 φ12 = −φ32







φ12

φ22

φ32






=







−1
0
1







The third eigenvector is governed by




−1 −1 0
−1 −2 −1
0 −1 −1











φ13

φ23

φ33






=







0
0
0







φ13 + φ23 = 0 φ23 + φ33 = 0







φ13

φ23

φ33






=







1
−1
1







Thus,

[φ] =





1 −1 1
1 0 −1
1 1 1





Now we transform the equations of motion into the uncoupled systems:

[φ]T [M ][φ] = m





4 0 0
0 2 0
0 0 4





[φ]T [K][φ] = k





0 0 0
0 2 0
0 0 8





[φ]T{F} = F0







1
1
1







[φ]−1{ẋ(0)} = −





1
4

1
2

1
4

−1
2

0 1
2

1
4

−1
2

1
4











1
1
1






v0 = −







1
0
0






v0
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Regarding the force as a step function at t = 0, one finds the transformed, uncoupled
equations as

4mÿ1 = F0 y1(0) = 0 ẏ1(0) = −v0
2mÿ2 + 2ky2 = F0 y2(0) = 0 ẏ2(0) = 0

4mÿ3 + 8ky3 = F0 y3(0) = 0 ẏ3(0) = 0

Take v0 = m = k = F0 = 1 for convenience, so that the solutions for yi and xi are given by

y1 =
1

8
t2 − t

y2 =
1

2
− 1

2
cos t

y3 =
1

8
− 1

8
cos

√
2t

x1 =
1

8
t2 − t− 3

8
+

1

2
cos t− 1

8
cos

√
2t

x2 =
1

8
t2 − t− 1

8
+

1

8
cos

√
2t

x3 =
1

8
t2 − t+

5

8
+

1

2
cos t− 1

8
cos

√
2t

3.2.6 General Gyroscopic/Damping Matrix

State-Variable Approach

The standard form of the governing equations now takes on the form

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {Q(t)}

with the column matrix of generalized forces denoted here by {Q}. Now, define the 2n×1
column matrix of state variables as

{y} =

{
x
ẋ

}

Then the equations can be written in various ways:

[
I 0
0 M

]

{ẏ}+
[

0 −I
K C

]

{y} =

{
0
Q

}

(3.21)

[
C M
I 0

]

{ẏ}+
[
K 0
0 −I

]

{y} =

{
Q
0

}

(3.22)
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and so forth; altogether there are four ways to write the equations. In any case they can be
expressed as

[J ]{ẏ}+ [A]{y} = {F} general form (3.23)

Now, for casting this as an eigenvalue problem, we set

{y} = {φ}eηt

so that
[ [A] + η[J ] ] {φ} = {0}

As a check on the answer, one should find that

{φ} =

{
φx
ηφx

}

where {x} = {φx}eηt.

Special Cases of Eigenvalue Problem

a. First we consider an unforced, conservative system, so that {Q} = 0, [M ] = [M ]T and
[K] = [K]T , with [M ] and [K] positive definite. Then we add a viscous damping model, such
that [C] = [C]T . Then, Eq. (3.22) can be rewritten as

[
C M
M 0

]

{ẏ}+
[
K 0
0 −M

]

{y} = {0}

or, in the form of Eq. (3.23) with [J ] = [J ]T and [A] = [A]T . If [M ] has no zero eigenvalues,
then J has no zero eigenvalues. The proof is simple: just note that

[J ]−1 =

[
0 M−1

M−1 −M−1CM−1

]

exists if and only if [M ]−1 exists. Thus, we can set

{y} = J−1/2{z}

which allows us to write the equations of motion in the form

{ż}+ [A]{z} = {0}

where [A] = [J ]−1/2[A][J ]−1/2 is symmetric and complex, i.e. [A]T = [A]. Therefore,

[φ]T [A][φ] = [`λ
`
]

where
η = −λ [φ] = [J ]−1/2[φ]
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and
[φ]T [J ][φ] = [I] [φ]T [A][φ] = −[`η

`
]

Like before, the modes are orthogonal, but with a different weighting, and unlike before both
[`η

`
] and [φ] are complex.
It should be noted that the problem can also be set up such that

[φ]H [J ][φ] = I [φ]H [A][φ] = −[`η
`
]

where the superscripted H is the Hermitian transpose (i.e. the transpose of the complex
conjugate).

b. Next we consider an unforced, conservative system, so that {Q} = 0, [M ] = [M ]T

and [K] = [K]T , with [M ] and [K] positive definite. Then we add a gyroscopic matrix
[C] = −[C]T . Then, Eq. (3.21) can be rewritten as

[
K 0
0 M

]

{ẏ}+
[

0 −K
K C

]

{y} = {0}

1. From Eq. (3.2.6) [J ] = [J ]T and [A] = −[A]T . Now, let

{y} = [J ]−1/2{z} =

[
K− 1

2 0

0 M− 1

2

]

{z}

{ż}+ [A]{z} = {0}

2. Calculate [J ]−1/2

3. Form [A] = [J ]−1/2[A][J ]−1/2 where A
T
= −[A] is real.

4. The eigenvectors of [A] are then of the form

{z} = {φ}eiωt = {{u}+ i{v}} eiωt

where the real part is
[A]{u} − ω{v} = {0}

and the imaginary part is
[A]{v}+ ω{u} = {0}

5. Combine these equations to obtain

[A]2{u}+ ω2{u} = 0

[A]2{v}+ ω2{v} = 0
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6. Because [A]2 = −[A]T [A] one finds two equations for the real and imaginary parts of
the eigenvectors:

[
[A]T [A]− ω2I

]
{u} = 0

[
[A]T [A]− ω2I

]
{v} = 0

(3.24)

We note that [A
T
A] is a symmetric real matrix, so we may use classical methods, and that

a similar approach using the Cholesky decomposition is straightforward to develop. Also,
the above form is appropriate when [K] and [M ] are both positive definite. If we weaken
this condition to say that [K] and [M ] have no zero eigenvalues, then the problem instead

turns out to be in terms of [A
H
A], which is Hermitian. The eigenvalues and eigenvectors of a

Hermitian matrix have the same properties as those of a real, symmetric matrix, so classical
methods apply here as well.

It can be shown that the eigenvalues of the real symmetric matrix 2n×2n matrix [A
T
A]

(or of the Hermitian matrix [A
H
A]) are real values of ω2. There are only n distinct values,

however, as each eigenvalue is a double root. Each double root has 2 eigenvectors {u} and
{v}. The eigenvectors of the problem are then {u± iv}; {v ∓ iu} are also eigenvectors.

c. When [M ]−1 exists but an otherwise general case, we can rewrite Eq. (3.21) as

{ẏ}+
[

0 −I
M−1K M−1C

]

{y} = {0}

so that [J ] = [I] and [A] is general. Thus,

{y} = {φ}eηt

and
[A + Iη]{φ} = {0}

or
[φ−1][A][φ] = −[`η

`
]

d. For low-order systems, one may apply the polynomial approach already discussed for
special cases, viz.,

[
Mη2 + Cη +K

]
{φ} = {0}

Rotor Dynamics Example

Consider a particle of mass m suspended by springs in a frame rotating about an axis fixed
in inertial space with angular speed Ω, as shown in Fig. 3.18. The kinetic energy is easily
found as

T =
1

2
m
[
(ẋ1 − Ωx2)

2 + (ẋ2 + Ωx1)
2
]
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x 1

x 2

ψ=Ωt

m

Figure 3.18: Spring-restrained particle in a rotating frame
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where x1 and x2 are the displacement components of the particle relative to the axis of
rotation in the directions indicated. Assuming stiffnesses K1 and K2 govern displacements
of the particle in the x1 and x2 directions, and that the springs are relaxed when the particle
is on the axis of rotation, then the potential energy is

V =
1

2
K1x

2
1 +

1

2
K2x

2
2

The equations of motion assume the form
{
ẍ1
ẍ2

}

+

[
0 −2Ω
2Ω 0

]{
ẋ1
ẋ2

}

+

[
λ21 − Ω2 0

0 λ22 − Ω2

]{
x1
x2

}

=

{
0
0

}

where

λ21 ≡
K1

m
and λ22 ≡

K2

m
This is a low-order problem, so the polynomial method is suitable. Let

{
x1
x2

}

= {φ}eiωt

Therefore, [
λ21 − Ω2 − ω2 −2Ωiω

2Ωiω λ22 − Ω2 − ω2

]{
φ1

φ2

}

=

{
0
0

}

The determinant of the coefficient matrix must vanish, so that

ω4 − ω2(λ21 + λ22 − 2Ω2 + 4Ω2) + (λ21 − Ω2)(λ22 − Ω2) = 0

The solution can be written as

ω2 =
λ21 + λ22 + 2Ω2 ±

√

(λ21 − λ22)
2 + 8Ω2(λ21 + λ22)

2

Special case In the special case that λ21 = λ22 = λ2, the solution simplifies to

ω2 = λ2 + Ω2 ± 2Ωλ = (λ± Ω)2

Thus,
ω = λ+ Ω and |λ− Ω|

The modes assume the form

ω1 = λ+ Ω

{
φ11

φ21

}

=

{
1
i

}

regressing

ω2 = λ− Ω for Ω < λ

{
φ12

φ22

}

=

{
1
−i

}

progressing

ω2 = Ω− λ for Ω > λ

{
φ12

φ22

}

=

{
1
i

}

regressing
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λ 2λ W

λ

2λ

3λ
w

R

RP

Figure 3.19: Frequencies of a rotating mass with P indicating a progressing mode and R a
regressing mode

The names are descriptive of the way the motion appears to an observer in the nonrotating
frame. A regressing mode appears as a clockwise, circular motion (opposite to the direction
of rotation). A progressing mode appears as a counterclockwise, circular motion (in the
direction of rotation). The regressing modes have x2 lagging x1 by 90◦, whereas for the
progressing mode x2 leads x1 by 90◦. See Fig. 3.19.

State-Variable Method on Rotating Mass Here we illustrate the state-variable ap-
proach with the same example:

J =







λ21 − Ω2 0 0 0
0 λ22 − Ω2 0 0
0 0 1 0
0 0 0 1







A =







0 0 −(λ21 − Ω2) 0
0 0 0 −(λ22 − Ω2)

(λ21 − Ω2) 0 0 −2Ω
0 (λ22 − Ω2) 2Ω 0







Assume λ21 > Ω2. Then,

J−1/2 A J−1/2 =








0 0 −
√

λ21 − Ω2 0

0 0 0 −
√

λ22 − Ω2
√

λ21 − Ω2 0 0 −2Ω

0
√

λ22 − Ω2 2Ω 0







= A
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A
2
= −AT

A =








λ21 − Ω2 0 0 −2Ω
√

λ21 − Ω2

0 λ22 − Ω2 2Ω
√

λ22 − Ω2 0

0 2Ω
√

λ22 − Ω2 λ21 + 3Ω2 0

−2Ω
√

λ21 − Ω2 0 0 λ22 + 3Ω2








Both the first and second of Eqs. (3.24) yield

ω4 − ω2(λ21 + λ22 − 2Ω2) + (λ21 − Ω2)(λ22 − Ω2) = 0

which is the same as the polynomial method.

View from the nonrotating system If we introduce displacement components in the
nonrotating frame, denoting them as y1 and y2, the equations of motion become

{
ÿ1
ÿ2

}

+

[
λ21 cos

2 ψ + λ22 sin
2 ψ (λ22 − λ21) sinψ cosψ

(λ22 − λ21) sinψ cosψ λ21 sin
2 ψ + λ22 cos

2 ψ

]{
y1
y2

}

=

{
0
0

}

These equations are much more complex, possessing temporally periodic coefficients. The
solution requires methodology beyond the scope of these notes and involves such techniques
as Floquet-Lyapunov theory. To avoid this problem, we can consider only the case of isotropic
stiffnesses, so that

λ1 = λ2 ω2
1 = λ2 ω1 = λ

which may be progressing or regressing.

3.2.7 Stability Information

Looking directly at eigenvalues

1. {ẍ}+ [D]{x} = {0} , λ are eigenvalues of D .

[D] symmetric =⇒ stable if λ = ω2 > 0

unstable if λ = ω2 < 0

displacement unstable and velocity stable if λ = ω2 = 0

Reason:

e±iωt =⇒ e±at if ω = ia

q̈ = 0 =⇒ q = q0 + q̇0t , q̇ = q̇0

2. [D] not symmetric, distinct roots

q = eηt η2 = −λ
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=⇒ λ positive real, stable

λ negative real, unstable

λ complex, unstable

λ zero =⇒ displacement unstable, velocity stable

3. [D] not symmetric, repeated root

distinct eigenvectors =⇒ same as 2

only one eigenvector =⇒ unstable

Looking at eigenvalues of [M ], [C], [K]

[M ] = [M ]T [K] = [K]T

[C] = [D] + [G] [D] = [D]T [G] = −[G]T

[D] ≡ 1

2
([C] + [C]T ) [G] ≡ 1

2
([C]− [C]T )

[M ]{ẍ}+ [D]{ẋ}+ [G]{ẋ}+ [K]{x} = {0}
Mij ẍj +Dij ẋj +Gijẋj +Kijxj = 0

Multiply by ẋi
Mij ẋiẍj +Dijẋiẋj +Gijẋiẋj +Kij ẋixj = 0

Now, using symmetry properties and interchanging names of i and j, one finds that

Mij ẋj ẍi +Dijẋiẋj −Gijẋiẋj +Kijxiẋj = 0

Adding these two equations and summing over i gives

Mij
d

dt
(ẋiẋj) +Dij(2ẋiẋj) +Kij

d

dt
(xixj) = 0

Finally, integrating and multiplying by 1/2, we get a work-energy balance of the form

1

2
{ẋ}T [M ]{ẋ}+ 1

2
{x}[K]{x} = −

∫ t

0

{ẋ}T [D]{ẋ}dt

Let
[φM ]T [M ][φM ] = [`α

`
] {x} = [φM ]{u}

[φK ]
T [K][φK ] = [`β

`
] {x} = [φK ]{v}

[φTD][D][φD] = [`γ
`
] {x} = [φD]{w}

1

2

n∑

i=1

(

αiu̇
2
i

︸︷︷︸

kinetic

+ βiv
2
i

︸︷︷︸

potential

+ 2γi

∫ t

0

ẇ2
i dt

︸ ︷︷ ︸

dissipated

)

= 0

Note: if αi > 0, βi > 0, and γi > 0, the system must be stable. If γi < 0, the system may be
unstable. Finally, if αiβi < 0, the system may be divergent. (↑ u ↓ v )
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Kelvin-Tait-Chetaev Theorem

1. If [M ] = [M ]T , [K] = [K]T and all eigenvalues of [D] and [M ] are positive, then the
system is stable if and only if all eigenvalues of [K] are > 0. The number of unstable
roots equals the number of negative eigenvalues of [K].

2. If [M ] and [K] have positive eigenvalues, then a necessary (but not sufficient) condition
for instability is that [D] have a negative eigenvalue.

Example: Rotor Dynamics with Damping If we add damping to the above example,
we can put the theorem to the test. The equations of motion take on the form

{
ẍ1
ẍ2

}

+

[
2ζ1λ1 −2Ω
2Ω 2ζ2λ2

]{
ẋ1
ẋ2

}

+

[
λ21 − Ω2 0

0 λ22 − Ω2

]{
x1
x2

}

=

{
0
0

}

where ζ1 and ζ2 are the damping ratios for the two degrees of freedom.
The K-T-C theory implies that, for λ1 = λ2 = λ and ζ1 = ζ2 = ζ , there are two negative

eigenvalues of the [K] matrix when Ω > λ; thus, there are two unstable roots when the
eigenvalues of the [D] matrix are positive. For positive definite [K] (i.e. when Ω < λ), one
can have instability only when ζ < 0.

3.2.8 Random excitation

[
Syiyj

]
= [φ]

[

[`
1

−iω − η`
]

]

[φ]−1
[
SFiFj

]
[φ]−T

[

[`
1

iω − η`
]

]

[φ]T

= H∗ [SFiFj

]
HT

Note if {F} = [B]{f}
[
SFiFj

]
= [B]

[
Sfifj

]
[B]T

Rgigj = [φ]−1[B]
[
Rfifj

]
[B]T [φ]−T

Rqiqj =

∫ ∞

0

∫ ∞

0

eηiλieηjλjRgigj(τ + λi − λj)dλidλj
[
Rxixj

]
= [φ]

[
Rqiqj

]
[φ]T

H = [iωI + A]−1 = [φ]

[

[`
1

iω − η`
]

]

[φ]−1

H∗ = [−iωI + A]−1 = [φ]

[

[`
1

−iω − η`
]

]

[φ]−1

= [φ∗]

[

[`
1

−iω − η∗`
]

]

[φ∗]−1
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Chapter 4

Continuous Systems

4.1 Classical approach: Newtonian or force method

4.1.1 Example: Vibrating String

F = ma =⇒
(

T +
1

2

∂T

∂x
dx

)(
∂y

∂x
+

1

2

∂2y

∂x2
dx

)

−
(

T − 1

2

∂T

∂x
dx

)(
∂y

∂x
− 1

2

∂2y

∂x2
dx

)

+ fdx = (µdx)
∂2y

∂t2

∂T

∂x

∂y

∂x
+ T

∂2y

∂x2
+ f =

(

µ
∂2y

∂t2

)

µ
∂2y

∂t2
− ∂

∂x

(

T
∂y

∂x

)

= f

y(0, t) = y(l, t) = 0 =⇒ fixed ends

T
∂y

∂x
(0, t) = 0 =⇒ no vertical force, free left end

T
∂y

∂x
(l, t) = 0 =⇒ no vertical force, free right end

4.1.2 Example: Longitudinal vibrations of rods

strain ǫ =
∂u

∂x
, σ = E

∂u

∂x
, F = Aσ = AE

∂u

∂x

gdx+

[

AE
∂u

∂x
+

1

2

∂

∂x

(

AE
∂u

∂x

)

dx

]

−
[

AE
∂u

∂x
− 1

2

∂

∂x

(

AE
∂u

∂x

)

dx

]

= µ
∂2u

∂t2

µ
∂2u

∂t2
− ∂

∂x

(

AE
∂u

∂x

)

= g

{
u (0 or l) = 0 =⇒ fixed
AE ∂u/∂x (0 or l) = 0 =⇒ free

83
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Similarly, for torsion we have

ρJ ∂2θ

∂t2
− ∂

∂x

(

GJ
∂θ

∂x

)

=M

{
θ = 0 =⇒ fixed end
GJθ′ = 0 =⇒ free end

For uniform mass and uniform tension (or AE) and no forcing function, above equations
become

∂2u

∂x2
=

1

c2
∂2u

∂t2
wave equation

Same equation as for longitudinal sound waves in tube

sound wave velocity v = ∂φ
∂x

∂2φ

∂x2
=

1

c2
∂2φ

∂t2

{
∂φ
∂x

= v = 0 closed end
φ = 0 open end

4.1.3 Example: Beam

Vertical equilibrium:

µdxv̈ =

(

V +
∂V

∂x

dx

2

)

−
(

V − ∂V

∂x

dx

2

)

+ fdx

µv̈ − ∂V

∂x
= f

Rotational equilibrium:

(

M +
∂M

∂x

dx

2

)

−
(

M − ∂M

∂x

dx

2

)

+ V dx = 0

−V =
∂M

∂x
=

∂

∂x

(

EI
∂2v

∂x2

)

=⇒ µ
∂2v

∂t2
+

∂2

∂x2

(

EI
∂2v

∂x2

)

= f (µv̈ + EIv′′′′ = f if uniform)

Boundary Conditions:

a. End fixed in translation v = 0

b. End fixed in rotation v′ = 0

c. End free in translation V = − ∂
∂x

(

EI ∂
2v
∂x2

)

= 0

d. End free in rotation M = EI ∂
2v
∂x2

= 0
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Both 4.1.3 and 4.1.3 are geometric boundary conditions; 4.1.3 and 4.1.3 are natural
boundary conditions.

Fixed end =⇒ (a) & (b) Free end =⇒ (c) & (d)

Pinned end =⇒ (a) & (d) Roller end =⇒ (b) & (c)

16 possible cases, 10 of which are independent.

4.1.4 Flexibility Method

Let G(x, ξ) be the displacement w(x) due to a unit load at x = ξ. Thus,

w(x, t) =

∫ 1

0

G(x, ξ)[f(ξ)− ẅ(ξ, t)µ]dξ

This is like a matrix equation of the form

{w} = [G]{f} − [G][µ(x)]{ẅ}

Note that G(x, ξ) also called Green’s function.

Example

String:

T (θ1 + θ2) = 1 lb

wT

(
ξ

L
+

(L− ξ)

L

)

= 1 lb

w =
1

T

ξ(L− ξ)

L
, wT

(
1

ξ
+

1

L− ξ

)

= 1

G(x, ξ) =

{
x
L
(L− ξ) 1

T
x ≤ ξ

L−x
L

ξ
T

x > ξ

w(x, t) =

∫ x

0

ξ

T

(
L− x

L

)

[f − µẅ] dξ +

∫ L

x

L− ξ

T

(x

L

)

[f − µẅ]dξ
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4.2 Energy method (Calculus of Variations)

4.2.1 Review Discrete Systems

Lagrangian = L = T − V , δW = fδq

d

dt

∂L

∂q̇
− ∂L

∂q
= f

(
∂V

∂q̇
= 0

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

J =

∫ t2

t1

L(t, q, q̇)dt , δA ≡
∫ t2

t1

δW dt− pδq|t2t1

δJ =

∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)

dt , δA =

∫ t2

t1

fδq dt− pδq|t2t1

Integrating by parts

δJ + δA =

∫ t2

t1

[

f +
∂L

∂q
− d

dt

∂L

∂q̇

]

δq dt +
∂L

∂q̇
δq|t2t1 = 0

− pδq|t2t1

t1, t2 arbitrary

=⇒ ∂L

∂q
− d

dt

∂L

∂q̇
= −f ; p =

∂L

∂q̇

4.2.2 Lagrange’s equations

Lagrange’s equations form an extremum of T − V . Similarly, for spatial variable (potential
energy only)

L = −
∫ l

0

V (x, y,
dy

dx
)dx

where V is potential energy per unit length.

δL+ δW =

∫ l

0

[

f − ∂V

∂y
+

d

dx

∂V

∂y′

]

δydx− ∂V

∂y′
δy|l0 + Fiδy|L0 = 0
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Continuous system: space and time variable

L = T − V =

∫ l

0

F (t, x, u, u̇, u′)dx

u̇ =
∂u

∂t
, u′ =

∂u

∂x
, δW =

∫ l

0

f(x)δu dx

∫ t2

t1

∫ l

0

[

f +
∂F

∂u
− ∂

∂u̇
− ∂

∂x

∂F

∂u′

]

δu dx dt+

∫ t2

t1

∂F

∂u′
δu|l0 dt = 0

+

∫ t2

t1

Fiδu|ℓ0dt+
∫ ℓ

0

(
∂F

∂u̇
− p

)

δu dx|t2t1

=⇒ ∂F

∂u
− d

dt

∂F

∂u̇
− d

dx

∂F

∂u′
= −f Euler’s equation of motion

∂F
∂u′

(0) = 0 or u(0) = 0
∂F
∂u′

(l) = 0 or u(l) = 0

}

Boundary conditions

Example: Vibrating String

T =
1

2

∫ l

0

µ

(
dy

dt

)2

dx , V =

∫ l

0

T



1−
√

1−
(
dy

dx

)2


 dx

V ≈
∫ l

0

1

2
T

(
dy

dx

)2

dx , L =
1

2

∫ l

0

T

[

µ

(
dy

dx

)2

− T

(
dy

dx

)2
]

dx

∂F

∂y
= 0 ,

∂F

∂ẏ
= µ

∂y

∂t
,
∂F

∂y′
= −T ∂y

∂x

− ∂

∂t

(

µ
∂y

∂t

)

− ∂

∂x

(

−T ∂y
∂x

)

= −f

µ
∂2y

∂t2
− ∂

∂x

(

T
∂y

∂x

)

= f

It is noted that µ is not a function of time. If it is, Lagrange’s equation is not applicable.

T
∂y

∂x
= 0 or y = 0 at ends

Example: Longitudinal Vibration of Rods

T =
1

2

∫ l

0

µ

(
∂u

∂t

)2

, V =
1

2

∫ l

0

EA

(
∂u

∂x

)2

dx

=⇒ EA
∂u

∂x
= 0 or u = 0 at boundaries
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Extensions

1. More dependent variables F (t, x, ui, u̇i, u
′
i)

δW

∫ l

0

∑

fiδuidx

∂F

∂ui
− ∂

∂t

∂F

∂u̇i
− ∂

∂x

∂F

∂u′i
= −fi

2. More derivatives F (t, x, u, u̇, u̇′, u′, u′′, u′′′)

∂F

∂u
− ∂

∂t

∂F

∂u̇
− ∂

∂x

∂F

∂u′
+

∂2

∂x∂t

∂F

∂u̇′
+

∂2

∂x2
∂F

∂u′′
− ∂3

∂x3
∂F

∂u′′′
= −f

Boundary conditions at x = 0, l

[
∂F

∂u′
− ∂

∂t

∂F

∂u̇′
− ∂

∂x

∂F

∂u′′
+

∂2

∂x2
∂F

∂u′′′

]

δu = 0

[
∂F

∂u′′
− ∂

∂x

∂F

∂u̇′′′

]

δu′ = 0 ,

[
∂F

∂u′′′

]

δu′′ = 0

3. More independent variables F (t, x, y, z, u, u̇, ux, uy, uz)

f +
∂F

∂u
− ∂

∂t

∂F

∂u̇
− ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂uy
− ∂

∂z

∂F

∂uz
= 0

Normal derivatives
(
∂F
∂un

)

δu = 0 on surface (edge).

4. Discrete potential and kinetic energy sources at boundaries.

L =

∫ l

0

F (t, x, u̇, u′, u′′)dx

+ G[u(0, t), u̇(0, t), u′(0, t), u̇′(0, t), u(l, t), u̇(l, t), u′(l, t), u̇′(l, t)]

J =

∫ t

0

L dt

δW =

∫ l

0

f(x)δu dx+ fl δu(l, t) +ml δu
′(l, t) + f0 δu(0, t) +m0 δu

′(0, t)
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δJ + δA =

∫ t2

t1

{∫ l

0

[

δuf +
∂F

∂u
δu+

∂F

∂u̇
δu̇+

∂F

∂u′
δu′ +

∂F

∂u′′
δu′′
]

dx

+
∂G

∂u0
δu0 +

∂G

∂u̇0
δu̇0 +

∂G

∂u̇′0
δu̇′0 +

∂G

∂u′0
δu′0

+
∂G

∂ul
δul +

∂G

∂u̇l
δu̇l +

∂G

∂u̇′l
δu̇′l +

∂G

∂u′l
δu′l

+ flδul +mlδu
′
l + f0δu0 +m0 δu

′
0} dt

Integration by parts yields (trailing time-terms dropped)

∫ l

0

[

f +
∂F

∂u
− ∂

∂t

∂F

∂u̇
− ∂

∂x

∂F

∂u′

]

δu dx

+

[
∂F

∂u′l
− ∂

∂t

∂F

∂u̇′l
− ∂

∂x

∂F

∂u′′l
+
∂G

∂ul
− d

dt

∂G

∂u̇′l
+ fl

]

δul

+

[
∂F

∂u′′l
+
∂G

∂u′l
− d

dt

∂G

∂u̇′l
+ml

]

δu′l

−
[
∂F

∂u′0
− ∂

∂t

∂F

∂u̇′0
− ∂

∂x

∂F

∂u′′0
− ∂G

∂u0
+
d

dt

∂G

∂u̇′0
− f0

]

δu0

−
[
∂F

∂u′′0
+
∂G

∂u′0
+
d

dt

∂G

∂u̇′0
−m0

]

δu′0 = 0

Boundary conditions become equations of motion.

Examples of Extensions

1. More independent variables

String in 2-dimensions

Te =
1

2

∫ l

0

ρ [u̇2 + v̇2] dx

V =
1

2

∫ l

0

T [(u′)2 + (v′)2] dx

F =
1

2
ρ(u̇2 + v̇2)− 1

2
T [(u′)2 + (v′)2]

∂F

∂u
− d

dt

∂F

∂u̇
− ∂

∂x

∂F

∂u′
= 0 =⇒ ρü = (Tu′)′

∂F

∂v
− d

dt

∂F

∂v̇
− ∂

∂x

∂F

∂v′
= 0 =⇒ ρv̈ = (Tv′)′
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2. More derivatives: vibrating beam

Te =
1

2

∫ l

0

ρ

(
∂w

∂t

)2

dx

V =
1

2

∫ l

0

EI

(
∂2w

∂x2

)2

dx

F =
1

2

[

ρ

(
∂w

∂t

)2

− EI

(
∂2w

∂x2

)2
]

− F (t, x, w, wt, wxx)

∂F

∂w
− ∂

∂t

∂F

∂wt
− ∂

∂x

∂F

∂wx
︸ ︷︷ ︸

=0

+
∂2

∂x2
∂F

∂wxx
+ f = 0

ρ
∂2w

∂t2
+

∂2

∂x2

(

EI
∂2w

∂x2

)

= f

Boundary conditions:

fℓδw +

(
∂F

∂w′ −
∂

∂x

∂F

∂w′′

)

δw = 0 and
∂F

∂w′′ δw
′ +mℓδw

′ = 0

fℓδw +
∂

∂x

(

EI
∂2w

∂x2

)

δw = 0 ,−EI ∂
2w

∂x2
δw′ +mℓδw

′ = 0

=⇒ Shear Force = 0 (free in w) or w = 0 (fixed in w)

and moment = 0 (free in slope) or w′ = 0 (fixed slope)

(EIw′′)′ = 0 , EIw′′ = 0 free end

(EIw′′)′ = 0 , w′ = 0 roller end

w = 0 , EIw′′ = 0 pinned end

w = 0 , w′ = 0 built-in or fixed end

3. More independent variables: vibrating square membrane

Te =
1

2

∫ b

0

∫ a

0

ρ

(
∂u

∂t

)2

dx dy

V =
1

2

∫ b

0

∫ a

0

T

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]

dx dy

F =
1

2

[

ρ

(
∂u

∂t

)2

− T

(
∂u

∂x

)2

− T

(
∂u

∂y

)2
]

= F (t, x, y, u, ut, ux, uy)
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For δJ + δA = 0

∂F

∂u
− ∂

∂t

∂F

∂ut
− ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂uy
+ f = 0

ρ
∂2u

∂t2
− ∂

∂x

(

T
∂u

∂x

)

− ∂

∂y

(

T
∂u

∂y

)

= f

For T = constant, f = 0

1

c2
∂2u

∂t2
= ▽2u wave equation

B.C.

T
∂u

∂n
δu = 0 on boundary

=⇒ T
∂u

∂n
= 0 , or u = 0 on boundary

4. Lumped spring mass

Equation of motion:

ρ
∂2w

∂t2
+

∂2

∂x2

(

EI
∂2w

∂x2

)

= 0 (same as before)

G =
1

2
Mẇ(l)2 +

1

2
Iẇ′(l)2 − 1

2
Kθw

′(0)2 − 1

2
Kww(l)

2

B.C. =⇒ ∂F

∂w′ δw|
l
0 +

∂F

∂w′′ δw
′|l0 −

∂

∂x

∂F

∂w′′ δw|
l
0

+
∂G

∂wl
δwl +

∂G

∂w′
0

δw′
0 −

d

dt

∂G

∂ẇl
δwl −

d

dt

∂G

∂ẇ′
l

δw′
l = 0

at x = 0

{
δw = 0 (pinned) =⇒ w(0, t) = 0
δw′ coeff. = 0 =⇒ EIw′′(0, t) = Kθw

′(0, t)

at x = l







δw coeff. = 0 =⇒ Mẅ(l, t) +Kww(l, t) = [EIw′′]′(l, t)

δw′ coeff. = 0 =⇒ Iẅ′(l, t) = −EIw′′(l, t)

These boundary conditions can also be obtained from the force method.
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4.2.3 Classical Solution of Continuous Systems

Example: Uniform string, transient vibrations

1

c2
∂2u

∂t2
=
∂2u

∂x2
, u(0) = u(l) = 0

Initial conditions: u(x, 0) = u0(x) , u̇(x, 0) = u̇0(x)
Mathematically, any function f(x± ct) is a solution; but when boundary conditions are

present, the use of this fact (called method of characteristics) is not always convenient. A
more viable approach is “separation of variables.”

u(x, t) = φ(x)q(t)
1

c2
φ(x)q̈(t)− φ′′(x)q(t) = 0

φ(0) = φ(l) = 0

Before solving for transient response, we look for natural frequencies. So we look for q(t) =
qeiωt

=⇒ q[φ′′(x) +
ω2

c2
φ(x)] = 0 eigenvalue problem

for q 6= 0 , φ′′ +
ω2

c2
φ(x) = 0

φ = a cos
(ωx

c

)

+ b sin
(ωx

c

)

φ(0) = 0 =⇒ a = 0

φ(l) = 0 =⇒ b sin

(
ωl

c

)

= 0 =⇒ ωl

c
= nπ , n = 1, 2, 3 . . .

ωn =
nπc

l
, n = 1, 2, 3 . . .

Comments:

1. This eigenvalue problem has infinite number of frequencies ωn and mode shapes
b sin(nπx/l) = φn.

2. Note arbitrary multiplier on modes.

3. Modes often normalized so that
∫ l

0
φ2
ndx = 1 =⇒ b =

√

2/l

4. When modes normalized
∫ l

0
φiφjdx =

{
0 i 6= j orthogonal
1 i = j

just like big identity matrix.

5. Modes complete: only f(x) =
∑
αiφi(x) on interval 0 → l.

Other boundary conditions





longitudinal vibrations
torsional vibrations
sound waves







Continuous Systems 93

Free-Free

φ′(0) = φ′(l) = 0 , φ′ =
−ω
c
a sin

(ωx

c

)

+
ω

c
b cos

(ωx

c

)

=⇒ b = 0 ,
ωl

c
= nπ , n = 0, 1, 2, 3 . . .

ωn =
nπc

l
, φ0 =

1√
l
, φn =

√

2

l
cos
(nπx

l

)

, n ≥ 1

Fixed-Free or Free-Fixed

φ(0) = 0 , φ′(l) = 0 =⇒ ωl

c
=
nπ

2
, n = 1, 3, 5, 7 . . .

ωn =
nπc

2l
, n = 1, 3, 5, 7 . . . φn =

√

2/l sin
(nπx

2l

)

Uniform Beam

ρ
∂2u

∂t2
+ EI

∂4u

∂x4
= 0

Separation of variables: u(x, t) = w(x)q(t) , q = eiωt

=⇒ EI
d4w

dx4
− ρω2w = 0 =⇒ d4w

dx4
− β4w = 0 , β = ·4

√

ρω2

EI
w = eαx =⇒ α4 − β4 = 0 , α = ±β , ±iβ
w = γ1e

βx + γ2e
−βx + γ3e

iβx + γ4e
−βx

or

w = a cosh βx+ b cos βx+ c sinh βx+ d sin βx

Ten possible boundary condition pairs:
1. fixed-fixed 6. pinned-roller
2. fixed-pinned 7. pinned-free
3. fixed-roller 8. roller-roller
4. fixed-free 9. roller-free
5. pinned-pinned 10. free-free

w′ = β(a sinh βx− b sin βx+ c cosh βx+ d cosβx)

w′′ = β2(a cosh βx− b cos βx+ c sinh βx− d sin βx)

w′′′ = β3(a sinh βx+ b sin βx+ c cosh βx− d cosβx)

w′′′′ = β4(a cosh βx+ b cos βx+ c sinh βx+ d sinβx) = β4w



94 Hodges and Peters

Example: Fixed-free beam (cantilever)

w(0) = w′(0) = 0 geometric

w′′(l) = w′′′(l) = 0 natural

w(0) = 0 =⇒ a+ b = 0 , a = −b
w′(0) = 0 =⇒ c+ d = 0 , c = −d

w = a(cosh βx− cos βx) + c(sinh βx− sin βx)

w′′(l) = β2a(cosh βl + cos βl) + β2c(sinh βl + sin βl) = 0

w′′′(l) = β3a(sinh βl − sin βl) + β3c(cosh βl + cos βl) = 0

Det = 0 =⇒ cosh2 βl + cos2 βl + 2 cosh βl cos βl − sinh2 βl + sin2 βl = 0

2(1 + cosh βl cos βl) = 0 , cos βl = −1/ cosh βl

lβ1 = 1.875

lβ2 = 4.694

lβn ≈ 2n− 1

2
π n > 2

4.3 Timoshenko Beam Theory

Historically, it was noted that Euler-Bernoulli beam theory predicts an infinite wave speed.
Any disturbance is “felt” throughout the beam the instant it occurs. Moreover, studies of
wave propagation through an elastic body showed that there was a branch of high-frequency
response which Euler-Bernoulli theory completely misses. This led to the development of
an improved beam theory by Timoshenko. In this handout we will derive both theories,
specialized for homogeneous, isotropic, prismatic beams.

4.3.1 3-D Strain Energy

The 3-D strain and stress can be written as

ǫ = ⌊ǫ11 ǫ22 ǫ33 2ǫ23 2ǫ31 2ǫ12⌋T (4.1)

and

σ = ⌊σ11 σ22 σ33 σ23 σ31 σ12⌋T (4.2)

respectively. The 3-D strain energy per unit volume is thus

Ψ =
1

2
ǫTDǫ (4.3)
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where D for isotropic materials is

D =












E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

0 0 0
Eν

(1+ν)(1−2ν)
E(1−ν)

(1+ν)(1−2ν)
Eν

(1+ν)(1−2ν)
0 0 0

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν)

0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G












(4.4)

with constitutive law as
σ = Dǫ (4.5)

The Bernoulli hypothesis assumes that stress components in the plane of the cross section
are very small relative to others, because of the slenderness of the beam geometry. Thus,
one can set σ22 = σ23 = σ33 = 0, which allows these equations to be simplified significantly
to 





σ11
σ12
σ13






=





E 0 0
0 G 0
0 0 G











ǫ11
2ǫ12
2ǫ13






(4.6)

and the strain energy is simply

Ψ =
1

2







ǫ11
2ǫ12
2ǫ13







T 



E 0 0
0 G 0
0 0 G











ǫ11
2ǫ12
2ǫ13






(4.7)

The cross-sectional strains ǫ22, ǫ23, and ǫ33 do not appear in the strain energy. Thus, the
nonzero in-plane distortion caused by the Poisson effect does not appear explicitly in the
strain energy, but it can be recovered. It is important to not that we are not assuming the
cross section to be rigid in its own plane! In fact

ǫ23 = 0 ǫ22 = ǫ33 = −νǫ11 (4.8)

The nonzero values of strains ǫ22 and ǫ33 show that the cross section is distorting.

4.3.2 Kinematics

The position vector to any material point in a prismatic, undeformed beam can be written
as

r = xiâi (4.9)

where the unit vectors âi are along corresponding Cartesian axes xi for i=1, 2, and 3; x1 is
along the beam axis, and x2 and x3 are cross-sectional coordinate axes. Assuming that the
cross-sectional plane displaces by an amount u such that

u = u1(x1, t)â1 + u2(x1, t)â2 + u3(x1, t)â3 (4.10)
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and rotates by the small angles θi(x1, t) about âi during deformation such that the unit
vectors fixed in the cross-sectional frame B̂i become

B̂1 = â1 + θ3â2 − θ2â3

B̂2 = −θ3â1 + â2 + θ1â3

B̂3 = θ2â1 − θ1â2 + â3

(4.11)

one can then write the position vector to the same material point as

R = (x1 + u1)â1 + u2â2 + u3â3 + x2B̂2 + x3B̂3 + Λ(x2, x3)θ
′
1B̂1 (4.12)

The last term is the out-of-plane Saint-Venant warping caused by torsion. Note that we
are here ignoring the out-of-plane Saint-Venant warping caused by transverse shearing for
the sake of simplicity. We will take it into account approximately below by introduction of
shear-correction factors.

Defining Gi = ∂R/∂xi and using the engineering strain definitions

ǫij =
1

2

(

B̂i ·Gj + B̂j ·Gi

)

− δij (4.13)

we can find

ǫ11 = B̂1 ·G1 − 1 = u′1 − x2θ
′
3 + x3θ

′
2 + Λθ′′1

2ǫ12 = B̂1 ·G2 + B̂2 ·G1 = u′2 − θ3 + (Λ2 − x3) θ
′
1

2ǫ13 = B̂1 ·G3 + B̂3 ·G1 = u′3 + θ2 + (Λ3 + x2) θ
′
1

(4.14)

where Λ2 and Λ3 are the partial derivatives of Λ with respect to x2 and x3, respectively. The
term involving θ′′1 can be ignored for cases other than thin-walled beams with open cross
sections.

Making use of the angular velocity of the cross-sectional frame, given by

ω = θ̇1â1 + θ̇2â2 + θ̇3â3 (4.15)

the above displacement field (excluding the torsional warping) can be used to find the velocity
field, yielding the velocity of an arbitrary material point as v = v1â1 + v2â2 + v3â3 where

v1 = u̇1 − x2θ̇3 + x3θ̇2

v2 = u̇2 − x3θ̇1

v3 = u̇3 + x2θ̇1

(4.16)
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4.3.3 Strain and Kinetic Energy

The kinetic energy is most easily developed, so we’ll write that one first. The kinetic energy
per unit volume is just ρv · v/2, or

τ =
1

2
ρ
(
v21 + v22 + v23

)
(4.17)

where ρ is the material density. The integral over the cross-sectional plane yields a total
kinetic energy per unit length as

T =
1

2







u̇1
u̇2
u̇3
θ̇1
θ̇2
θ̇3







T 









m 0 0 0 mx3 −mx2
0 m 0 −mx3 0 0
0 0 m mx2 0 0
0 −mx3 mx2 ρ(I2 + I3) 0 0

mx3 0 0 0 ρI2 ρI23
−mx2 0 0 0 ρI23 ρI3

















u̇1
u̇2
u̇3
θ̇1
θ̇2
θ̇3







(4.18)

Here m is the mass per unit length, I2 and I3 are area moments of inertia for the cross
section, I23 is the cross-sectional product of inertia, and x2 and x3 are the coordinates of the
cross-sectional centroid. Note that ρ(I2 + I3) is the torsional inertia.

The strain energy per unit length also involves integration over the cross-sectional plane
of the 3-D strain energy. If the Saint-Venant warping function is known, we can evaluate the
resulting cross-sectional integrals. This function is determined by solution of an appropriate
cross-sectional boundary-value problem. The resulting strain energy per unit length is

U =
1

2







u′1
u′2 − θ3
u′3 + θ2
θ′1
θ′2
θ′3







T 









EA 0 0 0 EAx3 −EAx2
0 GA2 0 −GA2s3 0 0
0 0 GA3 GA3s2 0 0
0 −GA2s3 GA3s2 GJ 0 0

EAx3 0 0 0 EI2 EI23
−EAx2 0 0 0 EI23 EI3

















u′1
u′2 − θ3
u′3 + θ2
θ′1
θ′2
θ′3







(4.19)
where s2 and s3 are the coordinates of the shear center, defined here as

GA3s2 =G

∫

A

(Λ3 + x2)dA

−GA2s3 =G

∫

A

(Λ2 − x3)dA

(4.20)

It is important to note that without the warping caused by torsion, the shear center is at
the centroid. Also, without the warping caused by transverse shearing, GA2 = GA3 = GA.
However, when transverse shearing is taken into account, A2 and A3 are less than A, often
written as kA where k is a nondimensional constant known as the shear correction factor. The
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value of k is a function of the cross-sectional geometry and Poisson’s ratio for homogeneous
isotropic beams. For homogeneous, isotropic beams with rectangular cross sections, k ≈ 5/6
and is a function of the aspect ratio and Poisson’s ratio. For other sections it may assume
values much smaller but hardly ever any larger.

4.3.4 Euler-Bernoulli Theory

To obtain Euler-Bernoulli theory, one need only take the locus of shear centers as the x1 axis,
thus setting s2 and s3 equal to zero, and minimize the strain energy density from Timoshenko
theory with respect to shear strain measures u′2−θ3 and u′3+θ2. Because there is no coupling
between bending and shear for isotropic beams, this in effect sets θ2 = −u′3 and θ3 = u′2.
Thus, the strain energy simplifies to

U =
1

2







u′1
θ′1
u′′2
u′′3







T 





EA 0 −EAx2 −EAx3
0 GJ 0 0

−EAx2 0 EI3 −EI23
−EAx3 0 −EI23 EI2













u′1
θ′1
u′′2
u′′3







(4.21)

and the kinetic energy is simplified by ignoring the rotary inertia terms connected with
bending, so that

T =
1

2







u̇1
u̇2
u̇3
θ̇1
u̇′2
u̇′3







T 









m 0 0 0 −mx2 −mx3
0 m 0 −mx3 0 0
0 0 m mx2 0 0
0 −mx3 mx2 ρ(I2 + I3) 0 0

−mx2 0 0 0 0 0
−mx3 0 0 0 0 0

















u̇1
u̇2
u̇3
θ̇1
u̇′2
u̇′3







(4.22)

It should be noted that for the Euler-Bernoulli theory the cross-sectional integrals are with
respect to the shear center, whereas for the Timoshenko theory they are for the point at
which the x1 axis passes through the section, which is arbitrary.

4.3.5 Simplifications for Planar Deformation

For bending and shearing deformation in the 1-2 plane we can simplify the theory consider-
ably to obtain

U =
1

2

∫ ℓ

0

[

EIθ′3
2
+GAk(u′2 − θ3)

2
]

dx1 (4.23)

where EI = EI3 and GAk = GA2. The first term is the strain energy due to bending. The
physical phenomenon of transverse shearing deformation is seen in the second term, and its
effect compared to the first term is of the order of h2/L2 compared to unity, where L is the
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wavelength of the deformation (i.e., L ≈ ℓ/n where n is the number of waves over the span
of the beam).

The kinetic energy from the Timoshenko theory reduces to

T =
1

2

∫ ℓ

0

(mu̇22 + ρIθ̇23)dx1 (4.24)

where m = ρA and I = I3. The first term is the same as from Euler-Bernoulli theory. The
second is the rotary inertia term, and its effect compared to the first term is also of the order
of h2/L2 compared to unity.

We may invoke Hamilton’s principle to derive the governing equations and boundary
conditions. The statement of Hamilton’s principle for this problem is

δ

∫ t2

t1

1

2

∫ ℓ

0

[

mu̇22 + ρIθ̇23 − EIθ′3
2 −GkA(u′2 − θ3)

2
]

dx1dt = 0 (4.25)

Carrying out the variation, integrating by parts in time, and assuming that the variations
of u2 and θ3 vanish at the times t1 and t2, one obtains the weak form

∫ ℓ

0

[

EIθ′3δθ
′
3 +GAk(u′2 − θ3)(δu

′
2 − δθ3) +mü2δu2 + ρIθ̈3δθ3

]

dx1 = 0 (4.26)

Since the highest spatial derivative is 1, the essential boundary conditions affect only
the functions u2 and θ3. Spatial integration by parts shows that at both ends either u2 or
the shear force V = GAk(u′2 − θ3) must vanish; similarly, either θ3 or the bending moment
M = EIθ′3 must vanish. The resulting Euler-Lagrange equations are

ρIθ̈3 − (EIθ′3)
′ −GAk(u′2 − θ3) =0

mü2 − [GAk(u′2 − θ3)]
′ =0

(4.27)

From the equations of motion, the reduction to Euler-Bernoulli theory is straightforward.
First, we note from the weak form that if GAk tends to infinity, then θ3 = u′2. The simplified
weak form is then ∫ ℓ

0

(EIu′′2δu
′′
2 +mü2δu2 + ρIü′2δu

′
2) dx1 = 0 (4.28)

The last term can be discarded, because Euler-Bernoulli theory assumes that h2 << L2. It
is noted that one cannot get the moment equation of motion, i.e., the first of the Timoshenko
Euler-Lagrange equations, from the Euler-Bernoulli energy.

To undertake this reduction from the Euler-Lagrange equations, first, we note that for
finite V and infinite GAk, θ3 = u′2. Next, we ignore the rotary inertia term in the first of
Eqs. (4.27). Finally, solving that equation for V , one finds that V = −M ′ which, when
substituted into the second of Eqs. (4.27), yields

mü2 + (EIu′′2)
′′ = 0 (4.29)

The boundary conditions transform in a similar way.
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4.4 Solution for Uniform, Simply-Supported Beam

The governing equations for a uniform beam are

ρIθ̈3 −EIθ′′3 −GAk(u′2 − θ3) =0

mü2 −GAk(u′2 − θ3)
′ =0

(4.30)

and the boundary conditions for the simply-supported case are simply that u2(0, t) =
u2(ℓ, t) = 0 and M(0, t) =M(ℓ, t) = 0.

4.4.1 General Solution

For convenience, let us nondimensionalize the governing equations and boundary conditions.
Let

u2 = ℓv exp(iωt) θ3 = θ exp(iωt) x1 = ℓx (4.31)

and introduce the nondimensional parameters

e =
E

Gk
σ2 =

I

Aℓ2
Ω2 =

mω2ℓ4

EI
(4.32)

Note here that σ plays the role of a slenderness parameter of the order of h/ℓ. With these
substitutions, one can show that Eqs. (4.30) become

θ′′ +
1

σ2e
(v′ − θ) + σ2Ω2θ =0

σ2Ω2ev + v′′ − θ′ =0
(4.33)

To solve these equations, we let v = v exp(βx) and θ = θ exp(βx). In order for a non-
trivial solution of this form to exist, one must have

∣
∣
∣
∣

β2 − 1
σ2e

+ σ2Ω2 1
σ2e
β

−β σ2Ω2e+ β2

∣
∣
∣
∣
= 0 (4.34)

so that
β4 + σ2Ω2(1 + e)β2 + σ4Ω4e− Ω2 = 0 (4.35)

This biquadratic has the solution

β2 = −σ
2Ω2(1 + e)

2
± Ω

√

1 +
σ4Ω2

4
(1− e)2 (4.36)

Since the radicand is > 0, we will always have at least two imaginary roots. These are
obained by taking the minus and letting µ2 = −β2

− to obtain

µ2 =
σ2Ω2(1 + e)

2
+ Ω

√

1 +
σ4Ω2

4
(1− e)2 (4.37)
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Taking the plus, one finds that two situations can arise concerning the nature of the other
two roots. One can either have β2

+ > 0 or β2
+ < 0. The determining factor for which of these

cases is true can be found by setting β2
+ = 0 so that

σ2Ω2(1 + e)

2
= Ω

√

1 +
σ4Ω2

4
(1− e)2 (4.38)

Simplifying the above expression, one finds that β2
+ > 0 if

Ω2 <
1

eσ4
(4.39)

We call this the “low-frequency branch” because it corresponds to the Euler-Bernoulli solu-
tion, albeit with slightly different results. The solution for v becomes

v = a sin(µx) + b cos(µx) + c sinh(β+x) + d cosh(β+x) (4.40)

The other root is for the case when β2
+ < 0 for which

Ω2 >
1

eσ4
(4.41)

This is the so-called “high-frequency” branch, which has no counterpart in the Euler-
Bernoulli theory. For this case, we define γ2 = −β2

+ so that

γ2 =
σ2Ω2(1 + e)

2
− Ω

√

1 +
σ4Ω2

4
(1− e)2 (4.42)

and the solution for v is

v = a sin(µx) + b cos(µx) + c sin(γx) + d cos(γx) (4.43)

Notice the completely different form of the solution. The borderline case, for which Ω2 = 1
eσ4

gives v = 0 and θ = θ(t). This is the so-called “pure shear” mode, which does not exist for
all boundary conditions.

4.4.2 Application of Boundary Conditions

The boundary conditions on v and θ are simply that v(0) = v(1) = 0 and θ′(0) = θ′(1) = 0.
We note that once v is known, one can find θ by using the second of Eqs. (4.33) which yields
θ′ = v′′ + σ2Ω2ev. Thus, θ′(0) = v′′(0) and θ′(1) = v′′(1).
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Low-Frequency Branch

Considering the low-frequency branch, Eq. (4.40), the boundary conditions at x = 0 give
b+ d = 0 and dβ2− bµ2 = 0. Since µ2+β2 > 0, this leads to b = d = 0. Thus, the boundary
conditions at x = 1 give

v(1) =a sin µ+ c sinh β = 0

v′′(1) =− aµ2 sinµ+ cβ2 sinh β = 0
(4.44)

The determinant of the coefficients must vanish, yielding

(β2 + µ2) sinµ sinh β = 0 (4.45)

Since µ2 + β2 > 0 and β does not vanish, we must have sinµ = 0 so that µ = nπ and c = 0.
Therefore,

v = a sin(nπx) (4.46)

Putting the solution µ = nπ back into its definition and simplifying, one obtains

σ4Ω4
ne− Ω2

n[1 + (nπ)2σ2Ω2
n(1 + e)] + (nπ)4 = 0 (4.47)

The smaller root is given by

Ω2
n =

1 + (nπ)2σ2(1 + e)−
√

1 + 2(nπ)2σ2(1 + e) + (nπ)4σ4(1− e)2

2eσ4
n = 1, 2, . . .

(4.48)
Recognizing that the Euler-Bernoulli solution is Ω2

n = (nπ)4, we can normalize the above
to get a better idea of the effect of the correction on the low-frequency branch. Letting
λn = Ωn/(nπ)

2, one finds that

λ2n =
1 + (nπ)2σ2(1 + e)−

√

1 + 2(nπ)2σ2(1 + e) + (nπ)4σ4(1− e)2

2e(nπ)4σ4
n = 1, 2, . . .

=1− (1 + e)(nπ)2σ2 +O(σ4) n = 1, 2, . . .
(4.49)

The series approximation shows that as long as σ is a small parameter, the correction to the
frequency for the lowest mode (n=1) is not significant. However, as shown in Fig. 4.1 the
correction becomes more significant as any one of these parameters become larger: the mode
number n, the slenderness parameter σ, or the stiffness ratio e. Moreover, the correction to
the frequency is clearly O(h2/L2) as expected.

High-Frequency Branch

Considering the high-frequency branch, Eq. (4.43), the boundary conditions show that b+d =
0 and bµ2 + dγ2 = 0. Thus, b = d = 0 since µ2 − γ2 6= 0. The frequency determinant shows
that γ = nπ and a = 0 so that

v = c sin(nπx) (4.50)
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Figure 4.1: Plot of the ratios of the first four frequencies of the classical branch relative to
their Euler-Bernoulli counterparts for e = 3 (lower modes at top); note that the slenderer
the beam or the lower the mode number, the closer the result is to unity

and, using the same arguments as above,

Ω2
n =

1 + (nπ)2σ2(1 + e) +
√

1 + 2(nπ)2σ2(1 + e) + (nπ)4σ4(1− e)2

2eσ4
≥ 1

eσ4
n = 0, 1, 2, . . .

(4.51)

Thus, there is an infinite number of high-frequency modes approaching 1/(eσ4) as n
becomes small. The n = 0 mode is the “pure shear” mode, which does not exist for all
boundary conditions but does for the simply-supported case. (The reader should verify this
by substitution into the governing equations and boundary conditions.) The frequencies of
the other modes of the high-frequency branch increase slightly above the pure shear mode
as the mode number increases. Introducing ν2n = eσ4Ω2

n, one can plot the various values of
ν2n versus 1/σ, as in Fig. 4.2. Notice that as the beam becomes slenderer, all the frequencies
tend to “pile up” on that of the pure shear mode.

For slender beams, frequencies of these modes may be much larger than those of the
classical branch. Note, however, that when the formulae for the frequencies are evaluated
in a straightforward manner, there may be overlap between the frequencies of the two types
of modes for beams that are not so slender. Indeed, the overlapping area shows the two
sets of frequencies mingling; see Fig. 4.3. This happens when frequencies from the classical
branch exceed the lowest frequency of the high-frequency branch, which is 1/(eσ4) for the
pinned-pinned beam. This frequency is sometimes called the cut-off frequency. Table 4.4.2
shows the first 16 normalized natural frequencies (Ωn) from Timoshenko theory along with
Euler-Bernoulli frequencies for modes that correspond to the low-frequency branch.
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Figure 4.2: Plot of the ratios of the first four frequencies of the high-frequency branch
multiplied by eσ4, e = 3 (lower modes at bottom); note that the slenderer the beam or the
lower the mode number, the closer the result is to unity
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Figure 4.3: Plot of the first five frequencies of the classical and high-frequency branches for
e = 3
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Euler-Bernoulli Timoshenko
9.86960 9.42302
39.4784 33.6856
88.8264 66.0906
157.914 102.297
246.740 140.160
355.306 178.672
483.611 217.361

– 230.940
– 241.885

631.655 256.008
– 270.654

799.438 294.517
– 310.386

986.960 332.850
– 356.496

1194.22 371.001

Table 4.1: Exact normalized frequencies (Ωn) from Euler-Bernoulli and Timoshenko beam
theories for e = 3 and σ = 0.05

Analysis of Mode Shapes

For both regimes, the solution has the form

vn =an sin(nπx)

θn =an cos(nπx)

(

nπ − σ2Ω2
ne

nπ

)
(4.52)

In the “classical” branch, Ω2
n = O(n4π4) so that

θn ≈ annπ cos(nπx)
[
1− eσ2(nπ)2

]
(4.53)

which means that the transverse shear strain, proportional to Γ = v′ − θ, is of the form

Γ = v′ − θ ≈ aneσ
2(nπ)3 cos(nπx) (4.54)

Thus, a direct way to compare the mode shape from Timoshenko theory with that from the
Euler-Bernoulli theory is to normalize all results for maximum bending θ′ of unity and look
at Γ. The larger n becomes, the more shear there is in the mode shape and thus the more
inaccuracy is present in the Euler-Bernoulli analysis. The error is also proportional to eσ2.
For the isotropic case, e is of the order of 3, but σ can vary significantly depending on the
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Figure 4.4: Bending and transverse shear (normalized to unit bending amplitude) in classical
branch for an = 1, n = 1, e = 3, and σ = 0.05

slenderness of the beam. The slenderer the beam, the less transverse shear is present in the
modes of the classical branch. Figs. 4.4 – 4.6 show this progression. Note that increasing σ
from 0.05 to 0.2 increases the magnitude of shear by a factor of about 15, while increasing
n from 1 to 2 increases the magnitude of shear by a factor of about 2.

For the high-frequency branch, Ω2
n = O(e−1σ−4). Thus, the transverse shear is propor-

tional to

Γ = v′ − θ ≈ an cos(nπx)

nπσ2
(4.55)

Thus, the amount of transverse shear present in the modes of the high-frequency branch
increases for slenderer beams and decreases as mode number increases, just the opposite as
in the classical branch. Figs. 4.7 – 4.9 show this trend. First note that the magnitude of the
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Figure 4.5: Bending and transverse shear (normalized to unit bending amplitude) in classical
branch for an = 1, n = 1, e = 3, and σ = 0.2
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Figure 4.6: Bending and transverse shear (normalized to unit bending amplitude) in classical
branch for an = 1, n = 2, e = 3, and σ = 0.05
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shear is much larger in these modes than in those of the classical branch. Second, note that
making the beam slenderer or raising the mode number both tend to reduce the magnitude
of the transverse shear in the vibration modes. Consistent with this trend is the fact that
the mode for n = 0 has no bending in it whatsoever; it is a pure shear mode with frequency
equal to Ω0 = 1/(

√
eσ2).

4.5 Membranes and Plates

The resulting theory for membranes and plates is pretty standard in textbooks, but the
underlying foundations are not so well known. Here is one point of view for how to get
there.

4.5.1 Derivation of Strain Energy

3-D Strain Energy/Constitutive Relations

As with the earlier discussion of the beam, we start with the 3-D strain energy per unit
volume for an isotropic material, in a form suitable for use with Cartesian coordinates

2U3 =







Γ11

Γ22

Γ33

2Γ23

2Γ31

2Γ12







T











(1−ν)E
(1+ν)(1−2ν)

νE
(1+ν)(1−2ν)

νE
(1+ν)(1−2ν)

0 0 0
νE

(1+ν)(1−2ν)
(1−ν)E

(1+ν)(1−2ν)
νE

(1+ν)(1−2ν)
0 0 0

νE
(1+ν)(1−2ν)

νE
(1+ν)(1−2ν)

(1−ν)E
(1+ν)(1−2ν)

0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G


















Γ11

Γ22

Γ33

2Γ23

2Γ31

2Γ12







(4.56)

where the Γij terms are the strain components, E is the Young’s modulus, G = E
2(1+ν)

is the
shear modulus, and ν is Poisson’s ratio. It is well known that the stress components, σij , in
the same Cartesian frame are




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σ11
σ22
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σ23
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
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(4.57)

For membranes and plates, one may safely assume that stresses through the thickness
are much smaller than others. For a coordinate system with x3 through the thickness, this
means that

σ33 = σ23 = σ31 = 0 (4.58)
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Figure 4.7: Bending and transverse shear (normalized to unit bending amplitude) in high-
frequency branch for an = 1, n = 1, e = 3, and σ = 0.05
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Figure 4.8: Bending and transverse shear (normalized to unit bending amplitude) in high-
frequency branch for an = 1, n = 1, e = 3, and σ = 0.2
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Figure 4.9: Bending and transverse shear (normalized to unit bending amplitude) in high-
frequency branch for an = 1, n = 2, e = 3, and σ = 0.05
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After substitution of Eq. (4.58) into Eq. (4.57), one obtains






σ11
σ22
σ12






=





E
1−ν2

Eν
1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 G











Γ11

Γ22

2Γ12






(4.59)

Both membrane and thin-plate theories may be derived from this reduced form of Hooke’s
law, sometimes referred to as the plane-stress-reduced form. The corresponding strain energy
per unit volume can then be written as

2U∗
3 =







Γ11

Γ22

2Γ12







T 



E
1−ν2

Eν
1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 G











Γ11

Γ22

2Γ12






(4.60)

2-D Strain Energy/Constitutive Relations

The position vector to any point in a flat plate or membrane can be written as

r = x1a1 + x2a2 + x3a3 = xiai (4.61)

where xi are the Cartesian coordinates, and ai are unit vectors in those respective directions.
The position vector to the same point in the deformed plate or membrane may be written

as
R = xαaα + ui(x1, x2)ai + x3B3(x1, x2) + wi(x1, x2, x3)Bi(x1, x2) (4.62)

where Bi is a triad associated with the deformed plate such that the normal to the deformed
plate middle surface is B3, and wi is the warping of a line element that prior to deformation
is perpendicular to the undeformed plate. As before, there is an implied summation of
repeated indices over their range. This expression exhibits that most of the deformation in
the plate is captured by displacements of the middle surface (ui) and rotation of the normal
B3. The remainder is found in wi, which can be shown to be O(hε) where h is the thickness
of the plate and ε is the order of the maximum strain in the plate.

The covariant basis vectors for the deformed state are

Gα =R,α = (δαβ + uβ,α)aβ + u3,αa3 + x3B3,α +O

(
h

ℓ
ε, ε2

)

G3 =R,3 = B3 + wi,3Bi

(4.63)

where (•),i = ∂(•)/∂xi and where Greek indices only vary from 1 to 2. The neglected terms
in Gα stem from the order of the warping and the introduction of the fact that wi,α = O(wi

ℓ
)

with ℓ being the wavelength of the deformation in the plate or membrane. To calculate the
strain energy for a plate or membrane, then, we can introduce the membrane strains as ǫαβ
and the bending/twisting strains as καβ where

(δαi + ui,α)ai = (δαβ + ǫαβ)Bβ (4.64)
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and
B3,α = καβBβ (4.65)

subject to
ǫαβ =ǫβα

καβ =κβα
(4.66)

The 3-D strains can be found from the definition of Green-Lagrange strain components,
given by

2Γαβ = Gα ·Gβ − δαβ (4.67)

which, in light of the above, become

Γαβ = ǫαβ + x3καβ (4.68)

Substituting Eq. (4.68) into Eq. (4.60) and integrating through the thickness yields an ex-
pression for the strain energy per unit area of the plate or membrane of the form

2U2 =


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(4.69)

It is clear from Eq. (4.69) that the membrane energy and the bending/twist energy are
decoupled for this problem. There are three things that will introduce coupling terms: (1)
accounting for anisotropy of materials, such as in laminated plate theory; (2) initial curvature,
as in shell theory; and (3) large in-plane forces, such as in Von Kármán theory.

4.5.2 2-D Strain-Displacement Relations

For the linear theory,
B3 = −u3,1a1 − u3,2a2 + a3 (4.70)

(This effectively locks out transverse shear deformation, but one can derive a theory that
contains this effect by introducing independent rotation variables just as was done for the
beam.) With Eq. (4.70) one finds the membrane and bending/twist strain measures to be

ǫ11 =u1,1

ǫ22 =u2,2

2ǫ12 =u1,2 + u2,1

κ11 =− u3,11

κ22 =− u3,22

2κ12 =− 2u3,12

(4.71)
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For dealing with membranes, which are under large in-plane forces but without bending
(so that only the terms in the strain energy, Eq. 4.69, which involve ǫ are kept), we must use
nonlinear strain-displacement relations for the membrane terms. This can also be a way of
deriving the Von Kármán theory. These relations can be found as

ǫ11 =u1,1 +
u23,1
2

ǫ22 =u2,2 +
u23,2
2

2ǫ12 =u1,2 + u2,1 + u3,1u3,2

(4.72)

and follow directly from the direction cosine matrix which relates the triad Bi to ai, viz.
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




(4.73)

and Eq. (4.64).

4.5.3 Membranes

Recalling our strategy for the string, let us consider the static behavior first, so as to derive a
simple potential energy function suitable for small deflections of a taut membrane. Consider
a rectangular membrane under tension forces applied uniformly around the edges. Let the
Cartesian system be x = x1 and y = x2 with displacements u = u1, v = u2, and w = u3.

Strain Energy

The strain energy can be written as

U =
1

2

∫ ∫

A

{

Eh

1− ν2

[(

ux +
w2
x

2

)2

+ ν

(

ux +
w2
x

2

)(

vy +
w2
y

2

)

+

(

vy +
w2
y

2

)2
]

+G(uy + vx + wxwy)
2

}

dxdy

(4.74)

Here (•)x = ∂(•)/∂x and similarly for y.

Inplane Forces

The virtual work of the edge forces is

δW = T

∫ ∫

A

(δux + δvy) dxdy (4.75)
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for constant force for unit length T . Thus, the potential of the applied forces is

V = −T
∫ ∫

A

(ux + vy) dxdy (4.76)

Taking the variation of the total potential U + V , one finds the equilibrium equations
and boundary conditions, which yield simply that

Nxx =
∂U

∂ǫxx
=

Eh

1− ν2
(ǫxx + νǫyy) = T

Nxy =
∂U

∂ǫxy
= 2Gǫxy = 0

Nyy =
∂U

∂ǫyy
=

Eh

1− ν2
(ǫyy + νǫxx) = T

(4.77)

Therefore membrane strains can be seen to be O( T
Eh

) << 1. Thus, we can set ǫxx ≈ 0 and
ǫyy ≈ 0, so that

ux =− w2
x

2

vy =−
w2
y

2

(4.78)

Substitution of Eq. (4.78) into the strain energy, Eq. (4.74) yields only higher-order terms.
On the other hand, when Eq. (4.78) is substituted into the potential energy, Eq. (4.76), the
resulting total potential energy is then

U + V = V =
T

2

∫ ∫

A

(
w2
x + w2

y

)
dxdy (4.79)

Thus, as with the tensile forces in a string, the inplane forces in a flat, taut membrane serve
to contribute to the potential energy in a simple way.

Kinetic Energy

To complete the theory of vibration for taut membranes, we need the kinetic energy. As
with the string, the in-plane displacements u and v are very small relative to the transverse
displacement w so that for a membrane with constant mass per unit area µ = ρh, the kinetic
energy is

K =
µ

2

∫ ∫

A

ẇ2dxdy (4.80)
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Equations of Motion and Boundary Conditions

Substitution of these energy expressions into Hamilton’s principle for a membrane of arbi-
trary shape shows that the equation of motion is a 2-D wave equation

1

c2
∂2w

∂t2
= ∇2w (4.81)

where c =
√

T
µ
. The boundary conditions show that on the boundary either w = 0 or

T∂w/∂n = 0, where a partial with respect to n means the partial with respect to a direction
in the plane of the undeformed membrane normal to the edge.

Solutions for Rectangular Case

For a rectangular membrane, with 0 < x < a and 0 < y < b, we can solve the equation of
motion by separation of variables

w(x, y, t) = φ(x)ψ(y)q(t) (4.82)

where q = qeiωt. This yields
φxx
φ

+
ψyy
ψ

+
ω2

c2
= 0 (4.83)

The first term is a function only of x, and the second term of y only. These can all be
satisfied only by introducing two separation constants α2 and β2 so that

φxx = −α2φ ψyy = −β2ψ α2 + β2 =
ω2

c2
(4.84)

The solutions are
φ =a1 cos(αx) + b1 sin(αx)

ψ =a2 cos(βy) + b2 sin(βy)
(4.85)

For a membrane fixed on all boundaries

φ(0) =φ(a) = 0

ψ(0) =ψ(b) = 0
(4.86)

so that
φ = sin(αx) αa = nπ n = 1, 2, . . .
ψ = sin(βy) βb = mπ m = 1, 2, . . .

(4.87)

Thus,
ω2

c2
= α2 + β2 =

n2π2

a2
+
m2π2

b2
(4.88)

so that

ω = cπ

√

n2

a2
+
m2

b2
= ωmn (4.89)
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n m ωnma
cπ

description of mode

1 1
√
2 single bump, no nodal lines

1 2
√
5 2 bumps, one nodal line

2 1
√
5 2 bumps, one nodal line

2 2 2
√
2 4 bumps, two nodal lines

Table 4.2: Lowest frequencies and modes for square membrane with a = b

The solution is then

w(x, y, t) =
∞∑

n=1

∞∑

m=1

Amn sin
(nπx

a

)

sin
(mπy

b

)

eiωmnt (4.90)

Consider a square membrane with a = b. The lowest natural frequencies and their
corresponding modes are described in Table 4.2. See Meirovitch (1997) for some other
solved problems, including circular membranes.

4.5.4 Plates

First, we introduce the symbols

D =
Eh3

12(1− ν2)
µ = ρh (4.91)

Strain and Kinetic Energies

Now, for the problem of a flat, rectangular, isotropic plate, with membrane forces equal to
zero, the strain energy is given by

U =
1

2

∫ a

0

∫ b

0

D
[
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

]
dydx (4.92)

The kinetic energy is

K =
1

2

∫ a

0

∫ b

0

µẇ2dydx (4.93)

Equation of Motion and Boundary Conditions

Hamilton’s principle requires that

0 =

∫ t2

t1

∫ a

0

∫ b

0

[µẇδẇ −Dwxxδwxx −Dwyyδwyy −Dνwxxδwyy

−Dνwyyδwxx − 2D(1− ν)wxyδwxy]dydxdt

(4.94)
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which, upon integration by parts over t, x, and y, yields

0 =

∫ t2

t1

∫ a

0

∫ b

0

{−µẅδw + [D(wxx + νwyy)]xδwx + [D(wyy + νwxx)]yδwy

+ 2[D(1− ν)wxy]xδwy}dydxdt

+

∫ a

0

∫ b

0

µẇδwdydx|t2t1 −
∫ t2

t1

∫ b

0

D(wxx + νwyy)δwxdydt|a0

−
∫ t2

t1

∫ a

0

D(wyy + νwxx)δwydxdt|b0

− 2

∫ t2

t1

∫ b

0

D(1− ν)wxyδwydydt|a0

(4.95)

Setting to zero the variations of all quantities at the ends of the time interval and integrating
by parts a second time in space we get

0 =

∫ t2

t1

∫ a

0

∫ b

0

{−µẅ − [D(wxx + νwyy)]xx − [D(wyy + νwxx)]yy

− 2[D(1− ν)wxy]xy}δwdydxdt

−
∫ t2

t1

∫ b

0

D(wxx + νwyy)δwxdydt|a0 −
∫ t2

t1

∫ a

0

D(wyy + νwxx)δwydxdt|b0

+

∫ t2

t1

∫ b

0

[D(wxx + νwyy)]xδwdydt|a0 +
∫ t2

t1

∫ a

0

[D(wyy + νwxx)]yδwdxdt|b0

+ 2

∫ t2

t1

∫ b

0

[D(1− ν)wxy]yδwdydt|a0 + 2

∫ t2

t1

∫ a

0

[D(1− ν)wxy]xδwdxdt|b0

− 2

∫ t2

t1

D(1− ν)wxyδwdt|a0|b0

(4.96)

Finally, collecting terms, removing the time integration, and changing the sign, we obtain

0 =

∫ a

0

∫ b

0

{µẅ + [D(wxx + νwyy)]xx + [D(wyy + νwxx)]yy

+ 2[D(1− ν)wxy]xy}δwdydx

+

∫ b

0

D(wxx + νwyy)δwxdy|a0 +
∫ a

0

D(wyy + νwxx)δwydx|b0

−
∫ b

0

{[D(wxx + νwyy)]x + 2[D(1− ν)wxy]y}δwdy|a0

−
∫ a

0

{[D(wyy + νwxx)]y + 2[D(1− ν)wxy]x}δwdx|b0
+ 2D(1− ν)wxyδw|a0|b0

(4.97)



120 Hodges and Peters

For uniform plates, then, the Euler-Lagrange equation becomes

µẅ +D(wxxxx + 2wxxyy + wyyyy) = 0 (4.98)

with boundary conditions involving the following quantities

wxx + νwyy = 0 zero moment if x boundary is free or simply supported
(reverse x and y for y boundary)

wxxx + (2− ν)wyyx = 0 zero shear force if x boundary is free or roller
(reverse x and y for y boundary)

wxy = 0 zero twisting moment at free corner
wy = 0 zero slope on x boundary

(reverse x and y for y boundary)
w = 0 zero deflection

(4.99)
For the free corner case, δw is not zero and wxy must be zero at that point; there the
boundary condition reduces to φxψy|corner = 0.

Various Solution Cases

We again consider separation of variables so that

w = qeiωtφ(x)ψ(y) (4.100)

The equation of motion becomes

D(φ′′′′ψ + 2φ′′ψ′′ + φψ′′′′)− ω2µφψ = 0 (4.101)

or
φ′′′′

φ
+ 2

φ′′

φ

ψ′′

ψ
+
ψ′′′′

ψ
=
ω2µ

D
(4.102)

Now consider four types of edges: free, simply-supported, roller, and clamped.

Free Edge:

φxxψ + νφψyy = 0 for all y (φxx = 0 and φ = 0 possible)
φxxxψ + (2− ν)φxψyy = 0 for all y (φxxx = 0 and φx = 0 possible)

(4.103)

Pinned Edge:

φ = 0 φxxψ + νφψyy = 0 for all y (φxx = 0 and φ = 0 possible) (4.104)

Roller Edge:

φx = 0 φxxx + (2− ν)φxψyy = 0 for all y (φxxx = 0 and φx = 0 possible) (4.105)
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Clamped Edge:

φ = 0 φx = 0 (4.106)

Table of Solutions for Rectangular Case

Below are some known exact solutions. The convention for the four sequential letters is that
the first letter is for the condition at x = a, the second for y = b, the third for x = 0, and
the fourth for y = 0; “p” is for pinned, and “r” is for roller. For many other combinations of
boundary conditions, especially those which involve clamped and free edges, exact solutions
are not known, because separation of variables is not possible. See the text for some other
solved problems, including circular plates.

p-p-p-p

φ = sin
(nπx

a

)

n = 1, 2, 3, 4, . . .

ψ = sin
(mπy

b

)

m = 1, 2, 3, 4, . . .

ωmn =

(
n2

a2
+
m2

b2

)

π2

√

D

µ

(4.107)

r-p-p-p

φ = sin
(pπx

2a

)

p = 1, 3, 5, 7, . . .

ψ = sin
(mπy

b

)

m = 1, 2, 3, 4, . . .

ωmp =

(
p2

4a2
+
m2

b2

)

π2

√

D

µ

(4.108)

r-p-r-p

φ = cos
(nπx

a

)

n = 0, 1, 2, 3, . . .

ψ = sin
(mπy

b

)

m = 1, 2, 3, 4, . . .

ωmn =

(
n2

a2
+
m2

b2

)

π2

√

D

µ

(4.109)
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r-r-p-p

φ = sin
(pπx

2a

)

p = 1, 3, 5, 7, . . .

ψ = sin
(qπy

2b

)

q = 1, 3, 5, 7, . . .

φx(a)ψy(b) = 0

ωpq =

(
p2

4a2
+

q2

4b2

)

π2

√

D

µ

(4.110)

r-r-p-r

φ = sin
(pπx

2a

)

p = 1, 3, 5, 7, . . .

ψ = cos
(mπy

b

)

m = 0, 1, 2, 3, . . .

φxψy = 0 at free corner

ωmp =

(
p2

4a2
+
m2

b2

)

π2

√

D

µ

(4.111)

r-r-r-r

φ = cos
(nπx

a

)

n = 0, 1, 2, 3, . . .

ψ = cos
(mπy

b

)

m = 0, 1, 2, 3, . . .

ωmn =

(
n2

a2
+
m2

b2

)

π2

√

D

µ

(4.112)
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