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ABSTRACT

The axial foreshortening effect plays a key role in rotor blade dynamics, but approximating it accurately in reduced basis
models has long posed a difficult problem for analysts. Recently, though, several methods have been shown to be effective
in obtaining accurate, reduced basis models for rotor blades. These methods are the axial elongation method, the mixed
finite element method, and the nonlinear normal mode method. The main objective of this paper is to demonstrate the close
relationships among these methods, which are seemingly disparate at first glance. First, the difficulties inherent in obtaining
reduced basis models of rotor blades are illustrated by examining the modal reduction accuracy of several blade analysis
formulations. It is shown that classical, displacement-based finite elements are ill-suited for rotor blade analysis because they
cannot accurately represent the axial strain in modal space, and that this problem may be solved by employing the axial force
as a variable in the analysis. It is shown that the mixed finite element method is a convenient means for accomplishing this, and
the derivation of a mixed finite element for rotor blade analysis is outlined. A shortcoming of the mixed finite element method
is that it increases the number of variables in the analysis. It is demonstrated that this problem may be rectified by solving
for the axial displacements in terms of the axial forces and the bending displacements. Effectively, this procedure constitutes
a generalization of the widely used axial elongation method to blades of arbitrary topology. The procedure is developed first
for a single element, and then extended to an arbitrary assemblage of elements of arbitrary type. Finally, it is shown that the
generalized axial elongation method is essentially an approximate solution for an invariant manifold that can be used as the
basis for a nonlinear normal mode.

1 Introduction
The application of the finite element method to rotorcraft analysis over the past two decades has removed the topological restrictions

on the models that can be analyzed using older, so-called “first generation” rotorcraft codes. Although final analyses are best done in
finite element space for reasons of accuracy and reliability, it is often convenient to reduce to the size of the finite element model to
a small number of generalized coordinates to improve execution time or to assist in interpreting and understanding the results. The
basis reduction process is typically accomplished via the modal reduction method, which employs eigenmodes computed about some
convenient state. Unfortunately, it is often quite difficult to approximate blade response accurately using just a few eigenmodes when the
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axial motion of the finite element model is parameterized using the Lagrangian axial displacement variable. The reason is that the near
inextensibility of the blade effectively couples the blade’s axial and bending motions through the so-called “axial foreshortening” effect.
However, classical eigenmodes are unable to approximate this key phenomenon accurately when the blade bends more than one or two
degrees away from the state about which the modes are computed. As a result, the blade’s axial displacement, and more important, the
blade’s axial force, may be not get computed accurately. But since the blade’s bending stiffness is mostly geometric stiffness generated
by the axial force, incorrectly evaluating that quantity can lead to significant errors in blade response.

The computational problems caused by the axial foreshortening effect have long been recognized in the rotorcraft literature and
elsewhere. The oldest and most widely used solution to the problem involves parameterizing the axial displacement using the non-
Lagrangian axial elongation variable instead of the axial displacement variable, and was proposed independently in (Smith, 1992) and
in (Kane, 1987). The effectiveness of the approach has been well-documented, but the non-Lagrangian nature of the variable complicates
the finite element assembly process, a feature which has spurred the search for alternative approaches. Mixed finite elements, hereafter
abbreviated as “mixed elements,” have been proposed for rotor blade analysis in (Hodges, 1990), and in (Bauchau, 1993). In (Bauchau,
1993), the modal reduction accuracy of mixed elements was studied, but disappointing results were obtained, especially for torsion
response, even when the mixed elements were supplemented by perturbation modes (Noor, 1980). But more recently, (Ruzicka, 1999)
and (Ruzicka, 2001) demonstrated generally good modal reduction accuracy for all blade motions, including torsion, when mixed
elements were used to model an articulated rotor blade. In (Ruzicka, 2000), the mixed element method is further refined by using
the axial force equations to eliminate the Lagrangian axial displacements from the equations, which results in what may be regarded
as a generalization of the axial elongation method to blades of arbitrary topology. Still another approach to basis reduction is the
“nonlinear normal mode” method proposed in (Shaw, 1993) which replaces the classical eigenvector, with its fixed relationships among
the degrees of freedom, with a nonlinear set of functions termed an “invariant manifold,” which is extracted from the governing equations.
In (Pescheck, 2001a), a preliminary step toward unifying the axial elongation variable and nonlinear normal mode methods was the
recognition that the classical inextensibility approximation—which may be viewed as a special case of the axial elongation method—
leads immediately to an approximation for the invariant manifold of a simple rotor blade. But the topological limitations inherent in the
inextensibility condition impeded the authors from extending the unified treatment to extensible blades of arbitrary topology.

This paper first reprises the mixed element study presented in (Ruzicka, 2000), and then extends it by developing a relationship
between the axial elongation method and the nonlinear normal mode method. The paper thereby achieves a unified development of three
key methods for rotor blade basis reduction: the axial elongation method, the mixed finite element method, and the nonlinear normal
mode method. The mixed finite element method is the most extensively treated of the three methods because it occupies the most central
role procedurally, and because it is not well known to most investigators in rotor blade dynamics. In what follows, a rationale for the
use of mixed elements is developed starting from the well-known Hodges-Dowell equations (Hodges, 1974) of a rotor blade specialized
to axial and flap motions. The derivation of a mixed element is then described, and the element’s effectiveness in modal reduction is
illustrated by applying it to the analysis of an articulated blade model. Then, the mixed finite element is altered by employing the axial
force equations to eliminate the Lagrangian axial displacements in favor of the axial forces for the case of a single element. To extend
the single element analysis to an arbitrary assemblage of beam elements, the “axial displacement” notion is suitably generalized, and
then a procedure is presented that solves for the generalized axial displacements in terms of the bending displacements and the axial
forces. Essentially, this procedure constitutes a generalization of the axial elongation method to blades of arbitrary topology. Finally, the
generalized axial elongation relationship is transformed to modal variables, and shown to have the same form of an invariant manifold
used in nonlinear normal mode analysis.

2 Rationale for Mixed Elements
2.1 Preliminaries: Hodges-Dowell Flap-Axial Blade Equations

The starting point for developing a rationale for mixed elements is the Hodges-Dowell blade equations (Hodges, 1974) specialized
to coupled axial-flap motions:

V
�
x
��� mΩ2x � fx (2-1)

mẅ ��� Vxw
����� �	� EIyw

� ����� ��

fz (2-2)

where Vx is the axial force, m is the mass per unit length, x is the axial coordinate, Ω is the rotor angular speed, w is the flap displacement,
EIy is the cross section flap flexural rigidity, and fx and fz are applied forces per unit length. Following the usual conventions in
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the rotorcraft literature, a prime (
�
) denotes partial differentiation with respect to the axial coordinate, and a dot (̇) denotes partial

differentiation with respect to time. If the blade is clamped at the spin axis, the boundary conditions are:

w
�
x � 0

� w
� �

x � o
� 0 (2-3)

These equations are particularly useful for examining blade analysis methods because they are simple enough to permit easy inspection,
yet they embody the coupling between axial and flap degrees of freedom, which includes the axial foreshortening phenomenon.

In what follows, several mathematical formulations for rotor blade analysis are presented, culminating with a mixed element. The
formulations are evaluated based on their treatment of axial motions, and the key features of the mixed element are introduced in a
step-by-step fashion.

2.2 Method 1: The Axial Displacement Variable
This method represents all variables in terms of displacement fields, and then applies polynomial discretizations of the fields over

sub-regions of the model, which are simply finite elements. The following expression for axial force is used, which is consistent with
the Hodges-Dowell ordering scheme:

Vx
� EA

�
u
� 
 1

2
w
� 2 � (2-4)

where EA is the axial stiffness of the blade cross section. Equation (2-1) neglects the small axial inertia term, but this termSubstituting
equation (2-4) into the Hodges-Dowell equations and restoring the unsteady axial inertia term that has been omitted from equation (2-1)
gives:

mü ��� EA

�
u
� 
 1

2
w
� 2 ��� � 
 mΩ2x



fx (2-5)

mẅ � � EA

�
u
� 
 1

2
w
� 2 � w

� � � �	� EIyw
� ��
 � � 


fz (2-6)

where mü is formally negligible but is included here for consistency with other treatments in the literature. The boundary conditions for
a blade clamped at the spin axis are

u
�
x � 0

� w
�
x � 0

� w
� �

x � 0
� 0 (2-7)

Equations (2-5) and (2-6) allow for full discretization of the blade model in the axial direction, thereby permitting the full power of
the finite element method to be brought to bear on the analysis. Unfortunately, a high price for this flexibility stems from the difficulty
of approximating the axial force, which is critical for accurately representing the blade bending stiffness. The source of the difficulty is
that owing to the near inextensibility of the blade, the constituent parts of the axial strain, εx

� Vx
EA
� u

� 
 1
2 w
� 2, are opposite and nearly

equal whenever the flap displacement becomes significant; i.e.,

u
�
� � 1

2
w
� 2 (2-8)

and therefore
�
εx
�����

u
� �
,
�
εx
���

w
� 2. In other words, εx is the small difference of much larger quantities, and computing it accurately

requires far more accuracy in both u
�
and w

� 2 than can be obtained by representing either of these using a small number of eigenmodes.
This situation is an example of the “small difference of large numbers” conundrum that is often encountered in computational mechanics.
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A physical consequence of the blade’s near inextensiblity is that the axial displacement can usually be computed accurately, for
single load path blades, by simply integrating equation (2-8), viz.

u � x
� � � � x

0

1
2

w
� 2ds (2-9)

In other words, the contribution of the blade’s stretch to the axial displacement is generally negligible. Equation (2-9) explains why
a point on a blade usually moves radially inward whenever the blade bends. The right-hand side of equation (2-9) is often the major
contributor to the axial deflection, and is generally termed the “axial foreshortening,” but another – and perhaps more explanatory – label
is the “bending contribution to the axial displacement.”

The computational difficulties stemming from use of the axial displacement variable in problems where the axial foreshortening
effect is prominent will now be illustrated using several computational examples. The blade model used is shown in Figure (2-1).
Consider, first, an eigenanalysis of the spinning blade. For this analysis, in vacuo conditions are assumed, along with zero swashplate

Aerodynamic Computation PointStructural Node

Structural Properties

Radius - 26.83 ft.
EIy  - 1.85E5 lb-ft2

EIz  - 4.18E5 lb-ft2

GJ  - 2.08E5 lb-ft2 
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92 DOF’s
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Flight Conditions
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Aerosegment Boundaries
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Figure 2-1. Articulated Blade Model

angles, and the blade’s modes are computed about steady-state spin. Then, the static response of the blade, in modal space, is computed
for tip flap loads of 2539.6 pounds and 5079.2 pounds, which correspond to coning angles of 4 � and 8 � , respectively. These are typical
of the mean coning angles in rotorcraft under flight conditions (Johnson, 1980). The modal basis contains the first two flap modes, while
the number of axial modes were varied to study the convergence of the first two flap frequencies. The flap frequencies are plotted against
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the number of axial modes in Figure (2-2). Note that thirty axial modes completely fills the axial displacement subspace of the model. It
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Figure 2-2. Articulated Blade Flap Frequencies: Displacement Elements

may be seen that while reasonable results are obtained for the first flap frequency with just a few axial modes, the accuracy of the second
flap frequency is much poorer, and its accuracy does not become acceptable until almost the entire axial subspace is filled.

To further illustrate the problems of the axial displacement variable, consider the periodic solution of the model shown in Figure
(2-1). The in vacuo eigenmodes of this model are given in Table (2-1), and the modal bases used in the calculations are given in
Table (2-2). Note that in contrast to the theory presented earlier, the model is constrained so that all motions – not just flap and

Mode ID Frequency (/rev)

First Lag 0.27

First Flap 1.03

Second Flap 2.63

Second Lag 4.09

First Torsion 4.86

Second Torsion 14.59

First Axial 22.12

Second Axial 66.41

Table 2-1. Articulated Blade Modes

axial – are permitted. Periodic solutions for the degrees-of-freedom at the tip node are shown in Figure (2-3). It may be seen that the
agreement between the modal and finite element solutions is quite poor for the flap, lag and axial displacements, as was expected. But
surprisingly, the agreement between the finite element and modal solutions is quite good for the pitch rotation. The reasons for the good
modal approximations are the high torsion stiffness of the blade, combined with the low degree of bending-torsion coupling in stiff,
articulated blades of the type analyzed here. Since the pitch response of the blade is the main contributor to the aerodynamic angle of
attack, the good modal approximation for pitch implies that the poor results for the bending and axial motions must come from errors
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Modal Number of Modes

Basis Lag Flap Torsion Axial

1l,1f,1t,1a 1 1 1 1

2l,2f,2t,2a 2 2 2 2

Table 2-2. Description of Modal Bases
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Figure 2-3. Articulated Blade Tip Deflections: Displacement Elements

made in computing those motions, rather than from erroneous aerodynamic loading. Therefore, the approach taken here in focusing on
bending-axial response to evaluate blade formulations is fully justified.

2.3 Method 2: The Axial Force Variable

One approach to modifying the analysis formulation to facilitate modal reduction involves parameterizing the axial motion using
the axial force rather than the axial displacement. The axial displacement may be written in terms of the axial force using equation (2-4):

u
� � Vx

EA
� 1

2
w
� 2 (2-10)
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or

u �
� x

0

�
Vx

EA
� 1

2
w
� 2 � ds (2-11)

With this reparameterization, the axial force is now expressed as a single variable, and the numerical conditioning problems associated
with the axial displacement variable are absent.

The need for an additional improvement to the analysis procedure becomes evident upon applying the axial force variable to the
Hodges-Dowell equations. Substituting equation (2-11) into equations (2-5) and (2-6) gives:

m
� x

0

�
V̈x

EA
� ẇ

� 2 � w
�
ẅ
� � ds � V

�
x



mΩ2x



fx (2-12)

mẅ �
�
Vxw

� � � � � EIyw
� � � � � 
 fz (2-13)

Simplifying equations (2-12) and (2-13) by removing the negligible terms arising from mü leads, once again, to the Hodges-Dowell
equations (equations (2-1) and (2-2)). An examination of those equations reveals a quadratic nonlinearity, � Vxw

� � �
, which is significant

enough to adversely impact modal reduction. Indeed, it was found that a mixed element formulated analogously to equation (2-13) had
only modestly improved modal reduction capabilities in comparison with the displacement element. This problem may be removed by
expressing the variables as sums of steady state values and dynamic perturbations:

Vx
� Vx0



∆Vx (2-14)

w � ∆w (2-15)

For simplicity, let the external forces be associated with the perturbations, viz.

fx
� ∆ fx (2-16)

fz
� ∆ fz (2-17)

Substituting these representations into equations (2-12) and (2-13) and placing linear terms on the left-hand side gives:

∆V
�

x
� ∆ fx (2-18)

m∆ẅ �
�
Vx0∆w

��� � � �
∆Vxw

�
0

� � 
 �
EIy∆w

� ��� � � � �
∆Vx∆w

��� � 

∆ fz (2-19)

Inasmuch as the axial force in a rotor blade varies little from its steady-state value, the only nonlinear term appearing in these equations,�
∆Vx∆w

� � �
, will be quite small.

Although the axial force variable has not been applied to rotor blades in the form described here, its likely effectiveness in modal
reduction may be inferred from the success of a similar concept, the axial elongation variable, which is defined as:

ue
�

� x

0

Vx

EA
ds (2-20)
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Clearly, the underlying motivations of the axial force and axial elongation variables, insofar as they treat axial forces, are identical and
their implementations are quite similar. The effectiveness of the axial elongation variable at modal reduction has been well documented
(Smith, 1992). Although the axial elongation variable is the preferred parameterization in rotorcraft practice, the axial force variable is
preferred in this paper because it is consistent with the literature on mixed elements.

Although the axial force variable should greatly facilitate modal reduction of the blade equations, severe pitfalls may result if it is
not implemented in a suitable manner. For example, if the method is implemented as described in (Smith, 1992), the axial deflection
must must be computed by integrating the axial force outward from the spin axis, as implied by equation (2-11). But this requires that an
element variable, the u displacement, must be computed from nodes other than those to which the element is attached, which necessitates
a major modification to the usual finite element assembly process. For example, equation (2-11) implies that the axial displacement of
the root of the nth element outboard from the spin axis in a single load path blade must be computed as follows:

u �
n � 1

∑
i � 1

� x

0

� Vx

EA
� 1

2
w
� 2 �

i
ds (2-21)

where the subscript i signifies the ith element outboard from the spin axis. Conversely, computing the element’s axial forces requires
summing the axial forces on any outboard elements in an analogous fashion. A more serious consequence of computing the axial
response using equation (2-21) is that that quantity is uniquely defined only when a single load path is present; in other words, it
is applicable only to blade models with a tree topology. Special procedures are required to handle multiple load paths, which occur
in bearingless rotors, but which also can arise in blades of any configuration when that are modeled using two or three dimensional
elements. It will be seen later, however, that the mixed finite element method may used to remove these difficulties, and offers a means
to apply the axial elongation approach to blades of arbitrary topology.

2.4 Method 3: Axial Force and Axial Displacement Variables – A Mixed Element
It has been shown that parameterizing axial motions using the Lagrangian axial displacement gives unrestricted modeling freedom

at the expense of ill-conditioned and highly nonlinear axial-bending coupling, while using the axial force as a variable makes modeling
more awkward, but simplifies axial-bending coupling. We will now seek to obtain the advantages of both methods – without their
limitations – by using both axial displacements and axial forces as variables. That may be accomplished by augmenting the Hodges-
Dowell equations with an equation that relates the axial force and the axial displacement. Three equations result:

Vx

EA
� u

� 
 1
2

w
� 2 (2-22)

mü � V
�

x



mΩ2 � x



u
� 


fx (2-23)

mẅ � �
Vxw

� � � 

fz (2-24)

Since axial forces and displacements are variables in these equations, it is dubbed a mixed element.
The advantages of the mixed element equations are more readily appreciated when they are expressed in variational form. That

process involves applying finite element interpolations to the three independent variables: Vx
� �

HVx ��� qVx � , u � �
Hu ��� qu � , and w ��

Hw ��� qw � . In what follows, all variables are assumed to have been discretized, but – when possible – they are displayed as continuous
for improved readability. The finite element interpolations are substituted into equations (2-22), (2-23), and (2-24), which are then are
multiplied by δVx, δu, and δw, respectively. The results of these operations are then summed and integrated over the length of the element
giving:

� l

0

� � δqVx � T � ȲVx �



� δqu � T � Ȳu �



� δqw � T � Ȳw �
�
dx � 0 (2-25)

where:

� ȲVx � � �
HVx � T

�
Vx

EA
� u
� � 1

2
w
� 2 � (2-26)
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� Ȳu � � �
Hu � T �

mü � V
�
x
� mΩ2 � x



u
� � fx � (2-27)

� Ȳw � � �
Hw � T

�
mẅ � � Vxw

� 
 � � fz � (2-28)

For future reference, note that it is often convenient to express the discretized form of u
�
as follows:

u
� � � H �u � � qu � � � Hu � � � qu � � (2-29)

for some set of unknowns, � qu � � , which is of size Nu
� 1.

The usefulness of the mixed element for modal reduction may be inferred from arguments similar to those used in discussing the
axial force variable. First, consider the � δqu � variation. Setting the coefficient of that variation to zero gives, after removing the small
contributions from u, and ü:

� l

0

�
Hu � T �

V
�
x
� mΩ2 � x



u
� � fx � dx � 0 (2-30)

which is analogous to the first of the Hodges-Dowell equations, and which largely determines Vx. Thus, in contrast to the axial displace-
ment variable method, the axial force, which is a key quantity, is determined directly from what is essentially an equilibrium equation.
Using Vx in the � δqw � variation gives:

� l

0

�
Hw � T

�
mẅ � � Vxw

� 
 � � fz � dx � 0 (2-31)

which is analogous to the second of the Hodges-Dowell equations, and which largely determines w. Finally, the � δqVx � variation leads
to:

� l

0

�
HVx � T

�
Vx

EA
� u
� � 1

2
w
� 2 � dx � 0 (2-32)

which is analogous to equation (2-11), and which largely determines u. Observe that weak enforcement of the governing equations is
crucial in allowing the axial force to be computed as a separate variable. Also, weak enforcement of the force-displacement equation
(equation (2-32)) permits the implicit determination of u from that equation and eliminates the need to constrain the model’s topology
in order to be able to calculate u by integrating outward from the spin axis as in equation (2-11).

The mixed element equations just presented (i.e., equations (2-25) – (2-28)), were developed in a rather ad hoc manner, and apply
only to a blade with coupled axial and flap motions. The Appendix presents the derivation of a complete mixed finite element for
rotor blade applications, in which coupled axial, flap, lag, and torsion motions are considered, and the structural terms are developed
systematically from a mixed variational principle.

The accuracy of the mixed element developed in the Appendix will now be evaluated using the examples used in evaluating the axial
displacement variable. The first example is the flap frequencies of the articulated blade. Plots of the first two flap frequencies versus
the number of axial modes are shown in Figure (2-4). In contrast to the corresponding results seen in Figure (2-2) for the displacement
element, only a single axial mode – but actually, two generalized coordinates – are required to match the finite element results accurately.

Periodic solutions for finite element and modal bases are compared in Figure (2-5). for blade tip displacements, and in Figure (2-6)
for blade root loads. It may be seen that there is a dramatic improvement in how the modal solutions approximate blade tip displacements
when compared with the corresponding results for the displacement elements (Figures (2-3). The axial displacement is not approximated
quite as well as the other displacements, probably because of the nonlinearity of the axial foreshortening effect. However, the primary
interest in the axial displacement is its impact on lag moments through the Coriolis effect, but as may be seen in Figure (2-6), the
modal approximations of the root lag moments is quite good, which suggests that the modal approximation of the axial displacement is
satisfactory for practical purposes. Still, it is desirable to improve the modal approximation of the axial displacement, and a technique
for doing that is the subject of the remainder of this paper.
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Figure 2-4. Articulated Blade Flap Frequencies: Mixed Elements
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Figure 2-5. Articulated Blade Tip Deflections: Mixed Elements

3 Mixed Finite Element Analysis of Axial Displacement
3.1 Overview

An interesting feature of the axial force variable method becomes apparent upon examination of equation (2-11.) As noted earlier,
the axial strain is significantly smaller than the deformation gradient quantities, and if that term is dropped, there results:

u � �
� x

0

1
2

w
� 2ds (3-33)10 Copyright  2001 by ASME
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Figure 2-6. Articulated Blade Root Loads: Mixed Elements

which is the axial foreshortening term. In other words, the axial foreshortening effect is embedded within the axial force variable
method. The mixed finite element analogue of equation (2-11) is equation (2-32), which cannot approximate the foreshortening effect
well in modal space because the axial displacement is obtained by a linear superposition of eigenmodes. However, it seems that if –
analogous to equation (2-11) – one were to solve equation (2-32) for the axial displacement in terms of the remaining variables, the
axial foreshortening effect would be accurately recovered. This is the strategy that will be used in this section to improve the modal
representation of the axial displacement.

3.2 Axial Displacement Analysis for a Single Mixed Element
For the case of a single element, the first step in computing the axial displacement involves substituting the finite element discretiza-

tion for u in equation (2-32). Then, rearranging terms gives:

� � l

0

�
HVx � T �

Hu � � dx � � qu � � � � l

0

�
HVx � T

�
Vx

EA
� 1

2
w
� 2 � dx (3-34)

Convergence considerations dictate (Szabo, 1991) that

Nu
� 1 � NVx (3-35)
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and recalling that � qu � � is of length Nu
� 1, it may be concluded that the coefficient of � qu � � in equation (3-34) is a square matrix. Since

that matrix should also be nonsingular in a properly formulated element, equation (3-34) can be solved for � qu � � as follows:

� qu � � �
� � l

0

�
HVx � T

�
Hu � � dx � � 1 � l

0

�
HVx � T

�
Vx

EA
� 1

2
w
� 2 � dx (3-36)

Upon noting that u
�
E
� Vx

EZ , it becomes evident that equation (3-36) embeds the axial foreshortening effect in the mixed finite element
analysis, and since u

�
e
� Vx

EA , that equation is a particularly vivid illustration of the links between the axial force variable, the axial
elongation variable, and the mixed finite element methods.

3.3 Axial Displacement Analysis for General Structures
3.3.1 Extensional-Inextensional Decomposition of Displacement Field In order to extend the axial displacement

analysis to structures of arbitrary topology, the definition of the quantity must be appropriately generalized. For example, in blades with
droop, sweep, or precone, the axial displacement is discontinuous at transition points, and in multiple load path blades, it may be multiply
defined where load paths intersect. The axial displacement variable may be generalized based on the notion that it is a displacement
field that makes elements stretch. This idea will now be further developed by using the δVx equations of the mixed finite element, which
relate axial forces and axial displacements.

If the � δqVx � equations of the model are collected together, they may be arranged in the form:

�
Ū ��� qu � � � �

V̄ ��� qVx �



� fFS � (3-37)

where
�
Ū � (NV

� NU ) and
�
V̄ � (NV

� NV ) are matrices and � fFS � (NV
� 1) are the nonlinear terms arising from axial foreshortening, in

which NV are the number of force degrees of freedom, and NU is the number of displacement degrees of freedom. Since the model is
assumed to contain only structural elements, N � NU



NV where N is the total number of degrees of freedom. The matrix

�
Ū � embodies

the features of the displacement field that are needed to generalize the axial displacement concept to structures of arbitrary configuration.
The null space of

�
Ū � is a subspace of displacement vectors such that

�
Ū ��� q � � 0, and the dimension of this subspace is nullity � Ū

�
,

which means that is contains nullity � Ū
�

basis vectors. Members of this subspace do not generate axial forces in the model, and can
only make elements of the model bend or undergo perturbational rigid motions. Therefore, the null space may also be thought of as the
inextensional subspace of the model. It can be shown from basic matrix theory that the null space may be expanded into a basis that
spans the entire displacement space of the finite element model. The additional basis vectors have the property that

�
Ū ��� q � �� 0, which

means that they cause the elements to stretch. If these additional basis vectors are made orthogonal to the null space, then the subspace
that they span will consist only of stretching motions, and will be referred to as the extensional subspace of the model. The dimension
of the extensional subspace is rank � Ū

�
, and from basic matrix theory, we have the important relationship:

rank � Ū
� 


nullity � Ū
� � NU (3-38)

Therefore, any displacement vector may be regarded as a combination of extensional and inextensional basis vectors. The measure
numbers of the extensional bases are the extensional coordinates of a displacement vector, and are generalizations of the axial displace-
ment degrees of freedom of the single element model. Correspondingly, the measure numbers of the inextensional basis vectors are the
inextensional coordinates, and are generalizations of the bending degrees of freedom of the single element structural model.

Another important result from basic matrix theory is that

dimension � range � Ū
� � � rank � Ū

�
(3-39)

which implies that if rank � Ū
���

NV , then not all the axial forces are independent. The model will then have redundant or multiple
load paths, and the degree of redundancy will be equivalent to the number of independent relationships among the axial forces. These
relationships are generated as byproducts of the solution process to be described shortly.

Generalizing the single element analysis procedure described earlier involves using equation (3-37) to solve for the extensional part
of the displacement field, � qext � in terms of the axial forces and the foreshortening terms.
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3.3.2 Solution Procedure The most common method for solving for � qext � employs the singular-value decomposition of�
Ū � . Recall that the singular-value decomposition of

�
Ū � may be written:

�
Ū � � �

A � Σ �
B � T (3-40)

where
�
A � (NV

� NV ) are the left singular vectors, and BT (NU
� NU ) are the right singular vectors. The matrix Σ may be written as:

Σ � �
ΣT 0 � (3-41)

where
�
ΣT � is a diagonal matrix that lists, in descending order, the positive square roots of the eigenvalues of

�
Ū � � Ū � T . Since

�
Ū � � Ū � T

is generally positive semi-definite, its eigenvalues are either zero or positive. The positive eigenvalues are associated with the exten-
sional displacement field, and will be denoted with the subscript ext, while the zero eigenvalues are associated with the inextensional
displacement field, and will be denoted with the subscript inext. It proves convenient to write Σ in the alternative form:

Σ � � Σext 0
0 0

� (3-42)

where
�
Σext � (rank � Ū

� � rank � Ū
�
) contains the positive part of ΣT . The matrices

�
A � (NV

� NV ) and
�
B � (Nu

� Nu) appearing in equation
(3-40) are orthogonal matrices, in which the columns of

�
A � are the eigenvectors of

�
Ū � � Ū � T , and the columns of

�
B � are the eigenvectors

of
�
Ū � T �

Ū � . It follows that
�
A � and

�
B � may be partitioned as follows:

�
A � � �

Aext
�
Ainext � (3-43)

�
B � � �

Bext
�
Binext � (3-44)

The ordering of the columns of
�
A � and

�
B � pertaining to nonzero eigenvalues matches the ordering of their corresponding eigenvalues in�

Σ � .
Consider, now, the matrix

�
B � . Since the columns of this matrix fully span the finite element space, the following coordinate

transformation may be applied to an arbitrary vector � qu � :

� qu � � �
B �

�
qext

qinext � (3-45)

Substituting equation (3-45) into equation (3-37), premultiplying by
�
A � T , and then premultiplying the top partition by Σ � 1

ext gives:

qext
� � Σext

� � 1 �
Aext � T ��� �

V̄ ��� qV �



� fFS �
�

(3-46)

0 � �
Ainext � T ��� �

V̄ ��� qV �



� fFS �
�

(3-47)

Equation (3-46) constitutes the generalization to models of arbitrary topology of the axial displacement equation derived earlier for
a single element (see equation (3-36)). Equation (3-47) is the equation mentioned earlier that relates axial forces when the model
is redundant. In view of the dependencies among the axial forces, these degrees of freedom may be partitioned into a set of � NV

�
rank � Ū

� �
dependent variables, � qVdep � , and a set of rank � Ū

�
independent variables, � qVindep � . Similarly,

�
V̄ � may be partitioned as�

V̄ � � �
V̄dep

�
V̄indep � . Equation (3-47) may be now solved for � qVdep � as follows:

�
qVdep � � � �

Ainex � T � Vdep � � � 1 � � �
Ainex � T � Vindep � �

qVindep � 
 �
Ainex � T � fFS �

�
(3-48)
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The complete dynamical equations of the system are obtained by combining the mixed element axial force equations (equation
(3-37)) with the remaining system equations of motion, which are derived by calculating the work associated with virtual displacements
of the Nu Lagrangian degrees of freedom. The equations of motion may be written in the form:

ftotal
� finertia



faerodynamic



fstructural

� 0 (3-49)

The following outlines a strategy for solving these equations. In a preliminary processing step, the matrix
�
Ū � is formed, and its singular

value decomposition is calculated. Then, equations (3-45), (3-46), and (3-48) are applied so that the original Nu equations of motion may
be expressed in terms of Nu

� rank � Ū
�

generalized inextensional degrees of freedom, � qinext � , and rank � Ū
�

independent axial forces,

� qVindep � . Next, the eigenmodes of the system governing equations are computed about some convenient state, whereupon the reduced
system degrees of freedom may be expressed as: �

qinext

qVindep � � � Φinext

ΦVindep

� � qmodal � (3-50)

where
�
Φ � is a column matrix of eigenvectors, and � qmodal � are the corresponding generalized coordinates of the modally reduced model.

In the timestepping phase of the analysis, the Nmodal degrees of freedom are stepped forward from tn to tn
�

1, typically using an
implicit integration scheme. Setting � ftotal � � 0 for the new time step leads to Nmodal equations for the degrees of freedom that are
usually solved with a Newtonian iteration scheme. Once a trial set of degrees of freedom for the new time step, � qn

�
1

modal � , are obtained, it
is necessary to compute the corresponding generalized forces. To accomplish this, equations (3-45), (3-46), (3-48), and (3-50) are used
to calculate the finite element displacements and generalized forces. The same equations may be used to develop expressions for the
generalized forces of the modal degrees of freedom in terms of the finite element generalized forces.

3.3.3 Plate Bending Analysis The analytical difficulties associated with rotor blade analysis are consequences of the stiff-
ening effect of the blade’s spin. Any flexible structural blade is potentially subject to the same difficulties, regardless of the choice of
mathematical paradigm used to model the blade. But a particularly intriguing feature of the analysis just described is that it should be
possible to extend it to all blade models, and not just those composed of beams. For example, it may be desirable to develop a high
fidelity model of a flexbeam by modeling it with plate or shell elements instead of beam elements. This section illustrates how the axial
foreshortening analysis just developed may be extended to a blade model containing plate finite elements.

Plate Geometry and Kinematics

The undeformed plate is assumed to be rectangular and to lie in the x-y plane. All deflections are referred to the middle surface of
the undeformed plate. The inplane deflections in the x and y directions are denoted u and v, and the out-of-plane deflection, which is in
the z direction, is denoted w. A local coordinate basis is established whose origin is located on the middle surface of the undeformed
plate, and with basis vectors oriented in the x, y and z directions.

Inplane motions are based on the “Kirchhoff assumption,” which is analogous to Bernoulli’s hypothesis for beams, and states that
lines normal to the middle surface remain straight and normal under the deformation:

u � û � zwx (3-51)

v � v̂ � zwy (3-52)

w � ŵ (3-53)

where the hatted quantities are the deflections of the middle surface, and z is the distance to the middle surface.
If classical, “moderate deflection” plate theory (i.e., Von Karman plate theory) is assumed, the strains at a generic point are given

by:

εxx
� ex

� zwxx (3-54)

εyy
� ey

� zwyy (3-55)

γxy
� exy

� 2zwxy (3-56)
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where the e’s are the strains of the middle surface:

ex
� ûx


 1
2

w2
x (3-57)

ey
� v̂y


 1
2

w2
y (3-58)

exy
� v̂x



ûy



wxwy (3-59)

It is assumed that the plate consists of n layers, each composed of an orthotropic material that is assumed to be in a state of plane strain;
i.e., γxz

� γyz
� εzz

� 0. The constitutive relations for layer k are as follows:�� � σxx

σyy

σxy

� �
�
�
k �
�	�
 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q23 Q33

�� � k � �� � εxx

εyy

γxy

� �
�
�
k �

(3-60)

where the Qi j are the measure numbers of Hooke’s tensor for the material in layer k.
The strain energy of the plate is calculated by forming the strain energy density for each material, and integrating the energy density

first over the thickness of each layer, and then over the surface of the entire plate. The result is:

U �
�

ΦdA (3-61)

where Φ is the plate strain energy density (i.e., strain energy density per unit area), viz.

Φ � 1
2

�




� 




�
ex

ey

exy

κx

κy

κxy

� 




�




�
T ������


A11 A12 A13 B11 B12 B13

A21 A22 A23 B21 B22 B23

A31 A32 A33 B31 B32 B33

B11 B12 B13 D11 D12 D13

B21 B22 B23 D21 D22 D23

B31 B32 B33 D31 D32 D33

��������
�




� 




�

ex

ey

exy

κx

κy

κxy

� 




�




� (3-62)

where

κx
� ŵxx (3-63)

κy
� ŵyy (3-64)

κxy
� ŵxy (3-65)

are the generalized strains of the plate, and Ai j, Bi j and Di j are computed by integrating the lamina stiffnesses, Q
�
k �

i j over the thickness
of the plate:

Ai j
� N

∑
k � 1

Q
�
k �

i j
� zk

�
1
� zk

�
(3-66)

Bi j
� � 1

2

N

∑
k � 1

Q
�
k �

i j
� z2

k
�

1
� z2

k

�
(3-67)

Di j
� 1

3

N

∑
k � 1

Q
�
k �

i j
� z3

k
�

1
� z3

k

�
(3-68)
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In view of the definition of
�
B � given above, the symmetry of

�
B � follows from the symmetry of

�
Q � , and this fact has been exploited in

equation (3-62). Equation (3-62) may also be written in the more compact form:

Φ � 1
2

�
e
κ � T � A B

B D
� �

e
κ � (3-69)

The generalized stresses corresponding to the generalized strains are obtained by differentiating the strain energy with respect to the
generalized strains. Differentiating Φ with respect to the translational strains gives the in-plane force resultants:

Nxx
� ∂Φ

∂ex

� A11εx



A12εy



A13εxy



B11κx



B12κy



B13κxy (3-70)

Nyy
� ∂Φ

∂ey

� A21εx



A22εy



A23εxy



B21κx



B12κy



B23κxy (3-71)

Nxy
� ∂Φ

∂exy

� A31εx



A32εy



A33εxy



B31κx



B32κy



B33κxy (3-72)

and differentiating Φ with respect to the bending curvatures gives the moment resultants:

Mxx
� ∂Φ

∂κx

� B11εx



B12εy



B13εxy



D11κx



D12κy



D13κxy (3-73)

Myy
� ∂Φ

∂κy

� B21εx



B22εy



B23εxy



D21κx



D22κy



D23κxy (3-74)

Mxy
� ∂Φ

∂κxy

� B31εx



B32εy



B33εxy



D31κx



D32κy



D33κxy (3-75)

These equations may also be expressed more compactly as:�
N
M � � � A B

B D
� �

e
κ � (3-76)

The presence of axial foreshortening terms in the in-plane strains will likely cause difficulties in a plate element that are similar to
those in a beam element. As in the case of a beam element, it is expected that those difficulties may be lessened or eliminated by using
the in-plane stress resultants as degrees of freedom in the mathematical model. To effect this modification, first solve for the in-plane
strains as functions of the in-plane stress resultants and the bending curvatures:

� e � � � A � � 1 � � N � � �
B � � κ �



(3-77)

Substituting this expression into the strain energy allows the in-plane stresses to appear explicitly in the equations of motion. However,
equation (3-77), with � e � expressed in terms of displacements, may also be regarded as a constraint, which may be reintroduced into the
equations of motions by appending it to the strain energy via Lagrange multipliers. The augmented strain energy expression may then
be written as follows:

Φ � 1
2

� � A � � 1 � � N � � �
B � � κ �



κ � T � A B

B D
� � � A � � 1 � � N � � �

B � � κ �



κ � 
 (3-78)

� λ � T

�� �� � û



1
2 w2

x

v̂



1
2 w2

y
v̂x



ûy



wxwy

� �
� � �

A � � 1 � � N � � �
B � � κ �

����
(3-79)
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where � λ � � � λx � λy � λxy � T . Setting the first variation of Φ with respect to the in-plane stresses to zero shows that the Lagrange multipliers
are equal to the in-plane stresses; viz. �
� 
� ∂Φ

∂Nx
∂Φ
∂Ny
∂Φ

∂Nxy

� 
�
� � 0 ���
�� � λx

λy

λxy

� �
� �

�� � Nx

Ny

Nxy

� �
� (3-80)

The troublesome foreshortening terms appear in the displacement-force constraint equations, which may be recovered by setting
the first variation of Φ with respect to the Lagrange multipliers to zero. Discretizing these equations, and then collecting them together
gives:

� Û � �
qÛ � � � N̂ � �

qN̂ � 
 � fFS � (3-81)

in which the bending curvature terms have been absorbed into � fFS � . Evidently, equation (3-81) has the same form as equation (3-37),
and application of the singular value decomposition to � Û � allows the extensional part of the displacement field to be expressed in terms
of the inextensional part of the field and the in-plane forces and the foreshortening terms. In other words, the foreshortening terms in
plate models may be treated in a manner entirely analogous to their treatment in beam models. Moreover, it is evident from the foregoing
analysis that the same general approach will apply to models composed of plates and beams.

4 Generalized Axial Foreshortening and Nonlinear Normal Modes
It has been noted that a weakness of classical modal superposition is that it is linear and that this makes it difficult to approximate

nonlinear phenomena, such as the axial foreshortening effect. The generalized axial foreshortening analysis developed in the previous
section sought to overcome this limitation by embedding the axial foreshortening effect directly in the axial displacement analysis.
Recently, a general procedure for embedding nonlinear effects in basis reduction procedures, the nonlinear normal mode method, has
been introduced by Shaw and Pierre (Shaw, 1993). In this section, a relationship will be derived between the nonlinear mode method
and the generalized axial foreshortening method, but first, a brief description of the nonlinear normal method is given. The reader is
encouraged to consult the reference just cited and the numerous references given there for a more complete description of the method.

In the classical linear normal method, the relationship of the degrees of freedom are constant relative to each other, and the eigen-
mode is unique except for an arbitrary scaling factor. For example, the response of a dynamic system in the ith normal mode is:

� q � � �
Φi � µi (4-82)

where the
�
Φi � is the eigenvector, and µi is a generalized coordinate that represents the mode. Classical modal superposition seeks to

combine these modes in a linear fashion to represent system response, viz.:

� q � � �
Φ � � µ � (4-83)

where
�
Φ � is a modal matrix of some subset of eigenmodes, and � µ � is a vector of generalized coordinates. The fidelity with which

modal basis reduction can model dynamic phenomena can be improved by replacing the fixed, linear relationships given in equations
(4-82) and (4-83) with a set of nonlinear relationships termed an invariant manifold:�

qi
� Xi

� µm
�

q̇i
� Yi

� µm
� m � S � m

�
(4-84)

where S � m
�

is the set of indices of the eigenmodes that comprise the reduced basis, and the Xi and Yi are nonlinear functions. The
manifold is termed invariant because as in the case of linear eigenmodes, the motion of the system always remains on the manifold once
the manifold is activated.
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A numerical procedure for determining the manifold equations has been given in (Pescheck, 2001), but the generalized axial elon-
gation process readily yields an approximate analytical solution for the manifold, and it is this solution that establishes the link between
the generalized axial elongation method and the nonlinear normal mode method. If the dependent axial force degrees of freedom are
expressed in terms of independent quantities using equation (3-48), and the results substituted into equation (3-46), the extensional
coordinates may be expressed as follows:

qext
� �

Aq � � qVindep �

 �

A f � � fFS � (4-85)

where
�
Aq � and

�
A f � are matrices. An approximation for an invariant manifold may be obtained simply by applying a modal transforma-

tion to the independent coordinates in equation (4-85). Since the foreshortening term is quadratic in the primal Lagrangian displacements
(see equation (2-9)), the modal expansion of the ith may be written:

� fFS � i
� ai jkqmodal jqmodalk (4-86)

in which the ai jk are constants, the qmodal j � k are modal generalized coordinates, and the summation convention for indices is assumed.
Finally, substituting equation (4-86) into equation (4-85) and then applying a modal expansion to the force terms leads to the following:

qexti
� αi jqmodal j



βi jkqmodal jqmodalk (4-87)

Equation (4-87) is a nonlinear relationship between the displacement and nodal degrees of freedom. It therefore embodies the key
concept of an “invariant manifold” although differing in several respects from the manifold relationships presented in (Shaw, 1993),
which were originally developed for a broader range of applications. First, it is expressed entirely in terms of displacement variables,
while the manifolds developed in (Shaw, 1993) are obtained from equations of motion cast in first-order form, and are therefore velocity-
dependent. For the nonlinear constraint considered here, which is dominated by the axial foreshortening effect, velocity dependencies
are weak, and neglecting them in the manifold definition is generally a good approximation. Another difference with the manifolds
developed in (Shaw, 1993) is that equation (4-87) considers only nonlinear coupling between extensional and inextensional degrees of
freedom, while the development in (Shaw, 1993) considers coupling among all modal coordinates. In rotorcraft applications, however,
it is generally observed that while the nonlinear couplings among inextensional modes (i.e., bending and torsion modes) are certainly
present, they do not appreciably distort the character of those modes; indeed, such couplings have been traditionally ignored when
defining generalized coordinates in rotorcraft analyses, without producing adverse effects. Finally, the manifolds developed in (Shaw,
1993) are expressed in the form of relationships between “master” and “slave” modes, while equation (4-87) is a relationship between
modal coordinates and other generalized coordinates. This difference, however, is largely cosmetic and may be eliminated simply by
expressing the qexti in terms of modal coordinates, and choosing suitable modes as independent or “master” degrees of freedom. In
summary, the generalized axial elongation method is formally different than the nonlinear normal mode method, but it treats the most
crucial aspect of rotor blade basis reduction, the axial foreshortening effect, in a manner quite similar to the nonlinear normal method,
and it may be viewed as an approximation to that method.

5 Conclusions
A unified development of three blade analysis methods that have good basis reduction attributes has been presented. As a prelude,

the analysis issues associated with various blade formulations were examined by applying these formulations to the Hodges-Dowell
blade equations specialized to flap-axial motions. It was shown that classical displacement-based finite elements, while permitting full
topological generality, are problematic owing to the near-inextensibility of the blade, which makes the small, but critical, axial strain
difficult to approximate accurately in modal space. The mixed finite element method was then extensively described because it plays
a central role in understanding how the analysis problems may be resolved, and it may also be used a starting point from which the
other two effective blade analysis methods may be developed. The mixed finite element method was introduced in a two-step process:
First, an analysis method was proposed in which the axial force replaces the axial displacement as an analysis variable, and while this
approach is likely to be more effective in approximating the axial force, it imposes topological restrictions on the models that can be
analyzed. Then, the mixed finite element method was obtained from the axial force method by retaining the axial force as a solution
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variable, and then appending the force-axial displacement equation as an additional equation. It was shown that while this method has
good modal reduction accuracy without imposing topological restrictions on the model, it achieves these advantages at the expense
of adding additional degrees of freedom to the analysis. In order to reduce the number of degrees of freedom, an alternative method
was developed that employs the mixed finite element equations to solve for the extensible portion of the displacement field in terms of
the axial forces and the inextensible displacements; effectively, this method generalizes the axial elongation method to blade models
of arbitrary topology, and its derivation reveals that it may be regarded as a variant of the mixed finite element method. Finally, the
generalized elongation method was shown to be an approximation for an invariant manifold that may be used as a generalized basis
function in a nonlinear normal mode analysis.
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A Development of a Mixed Element for Rotor Blades
A.1 Overview

A mixed finite element for rotor blade analysis has been developed and implemented in an experimental version of the Second
Comprehensive Generation Helicopter Analysis System (2GCHAS) (1). In essence, the finite element already used in 2GCHAS for
rotor blade analysis, the so-called “Nonlinear Beam Element,” was converted into a mixed element. In contrast to other mixed elements
that have been used for rotor blades, e.g., (Hodges, 1990) and (Bauchau, 1993), the mixed treatment is limited to the axial direction.
This limitation reduces the number of degrees of freedom that are needed and simplifies both the derivation and the programming of
the element. Only the structural terms of the 2GCHAS element are impacted by the conversion to a mixed element, but for the sake of
completeness, the element’s inertia terms are also derived here. The derivation of this element has already been presented in the literature
(see (Ruzicka, 2001),) but it’s included here for the reader’s convenience.

The conversion process proved to be quite fast and straightforward, as the reader may infer by comparing the theory of the mixed
element with the theory of the original 2GCHAS element and noting the strong parallelism between the two. The ease of conversion is
stressed here because it should be duplicatable for any displacement-based finite element code, not just 2GCHAS, thus underscoring the
utility of mixed elements. The derivation presented here employs the notations and conventions of the 2GCHAS, and the reader should
consult (1) for the necessary background material.

A.2 Element Geometry and Kinematics
A.2.1 Element Geometry The geometry of the undeformed element is shown in Figure (A-7). The element is assumed to

move in a non-inertial reference frame denoted E, whose motion relative to the inertial frame I is prescribed. The E frame absorbs the
large rigid-body motions of the rotorcraft, while the smaller motions of the deforming blade relative to the frame are analyzed using a
“moderate deformation” blade theory familiar to rotorcraft analysts. The geometry and motion of the element are defined with the aid
of a coordinate system within the E frame with basis vectors � bE

1 � b
E
2 � b

E
3 � . The beam element reference axis is assumed to be initially

straight and parallel to the unit vector bE
1 . A structural reference frame S is located on the reference axis a distance x from the origin of

the E frame. Its orientation differs from E by a rotation about bE
1 by the built-in twist angle θt , rotating the E frame coordinates y and z

into alignment with S frame cross-sectional coordinates η and ζ (see Figure (A-7)). Thus, the position and orientation of S with respect
to E are �

rSE
E � � �

x � 0 � 0 � T

� T SE � � �
 1 0 0
0 cosθt sinθt

0 � sinθt cosθt

��
(A-88)

A.2.2 Element Kinematics In this section the displacement of a generic material point A within the undeformed beam is
developed; in the deformed beam it is denoted by A

�
. In order to carry out this development, consider first the motion of E in I. Then, the

3-D displacement field of the beam is represented in terms of 1-D variables and cross-sectional position coordinates. An intermediate
frame S

�
is introduced and used to relate the motion of A

�
to I.

The deformed beam cross-sectional frame S
�
, which becomes coincident with S when the beam is in its undeformed state, is specified

in the following way: The material points in the undeformed beam which lie along the reference line move when the beam deforms,
deforming into a curved line which is not, in general, the same length as the original reference line because of the possibility of stretching.
Similarly, the material points in the plane perpendicular to the reference line are denoted as the reference cross section. This plane of
points, determined by the η and ζ coordinate directions, also moves when the beam deforms. The points remain contiguous in the
deformed beam so that they make up a surface which is very close to a plane.
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Figure A-7. Geometry of Undeformed Element

In accordance with Euler-Bernoulli beam theory, it is assumed that the frame S
�
rigidly transports the η and ζ coordinate directions

at any particular value of x to a new orientation, perpendicular to the reference line of the deformed beam at the same material point
(which is associated with the same value of x in the undeformed beam). Any deviation of the surface of points from a plane is, in
accordance with Euler-Bernoulli theory, small. The orientation of S

�
in E can be expressed in terms of a set of 1-D variables which

govern the position of and the rotation of S
�
about the deformed beam reference line.

As expected, three rotations are sufficient to express the direction cosines of S
�

in E, denoted by
�
T S � E � . A set of body 3: 3-2-1

orientation angles (Kane et al, 1983) is used. The direction cosine matrix
�
T S � E � may be expressed in terms of these angles as:

�
T S � E � � �
 c3c2 c2s3

� s2� s3c1



s1s2c3 c1c3



s1s2s3 s1c2

s1s3



c1c3s2
� c3s1



c1s3s2 c1c2

��
(A-89)

where s1
� sinθ1, c1

� cosθ1, etc. The orientation of S
�
with respect to E is now expressible as�� � bS �

1

bS �
2

bS �
3

� �
� � �

T S � E �
�� � bE

1
bE

2
bE

3

� �
� (A-90)

Upon expressing the direction cosines in equation (A-89) in terms of the 1-D variables v
�
, w
�
, and φ, and retaining terms to O � ε2

�
, the
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transformation matrix
�
T S � E � becomes (see (Hodges, 1980)):

�
T S � E � � ��
 1 � v � 2

2
� w � 2

2 v
�

w
�

� � v � c1



w
�
s1
�

c1
� 1 � v � 2

2

� � v
�
w
�
s1 s1

� 1 � w � 2

2

�

v
�
s1
� w

�
c1

� s1
� 1 � v � 2

2

� � v
�
w
�
c1 c1

� 1 � w � 2

2

�

� ��
(A-91)

The position of the generic point A
�
on the deformed beam cross section is then defined as

rA � I � rEI 
 rA � E
� rEI 
 � x



u
�
bE

1



vbE

2



wbE

3



ΨκxbS �

1



ηbS �

2



ζbS �

3 (A-92)

This equation can be written in column matrix form if each vector is expressed in terms of its measure numbers in the E basis, viz.,

�
rA � I

E � � �
rEI

E � 
 �
rA � E

E �
� �

rEI
E � 
 �� � x



u

v
w

� �
� 
 �

T ES � �
�� � Ψκx

η
ζ

� �
� (A-93)

Here u, v, and w are the displacement measures of the beam reference line due to elastic deformations in the E frame, xbE
1 is the vector

from the origin of the element frame E to the origin of the structural frame S (see Figure (A-8)), and η and ζ are the cross-sectional
position coordinates. The last term is the position of A

�
within the deformed beam cross-sectional frame S

�
. (Recall that these coordinates

have been convected and thus they correspond to the original cross-sectional coordinates of A in the undeformed beam.) Lastly, an out-
of-plane warping is assumed of the form κx

� x
�
Ψ � η � ζ

�
, where Ψ is the St. Venant torsion warping function and κx

� x
�

represents the
amplitude of the warping (Hodges, 1980a). Subsequently κx is defined as the elastic part of twist per unit length or just “elastic twist.”

A.3 Stress-Strain Relationship
The stress-strain relationship for a linearly elastic anisotropic solid is characterized by 21 constants which form a fourth-order tensor.

The 21 material constants can be obtained in the local Cartesian system along unit vectors bS
i , associated with the curvilinear coordinates

x, η, and ζ. These material constants can be formed into a 6 � 6 symmetric matrix, the elements of which may vary as functions of x, η,
and ζ. This matrix linearly relates the stress components σxx, σηη, σζζ, σηζ, σxζ, and σxη, with the strain components γxx, γηη, γζζ, γηζ,
γxζ, and γxη, where the order of the components corresponds to that of anisotropic elasticity.

For slender, isotropic beams, the Bernoulli hypothesis approximately holds, according to asymptotic analyses (Berdichevsky, 1976).
This hypothesis is that the transverse normal stresses σηη and σζζ, along with the distortion shear stress σηζ, are much smaller than the
other three stress components. Thus, one solves for the three strain components γηη, γηζ, and γζζ in terms of the others. Substituting the
results into the original equations for σxx, σxη, and σxζ, one obtains a “reduced” 3-D stress-strain law which can be written as�� � σxx

σxη
σxζ

� �
� � �
 Q11 Q16 Q15

Q16 Q66 Q56

Q15 Q56 Q55

�� �� � γxx

γxη
γxζ

� �
� � �

Q � � Γ � (A-94)

This reduced 3-D stress-strain law is the basis of most elementary beam theories. Some published treatments confuse this with setting
the strain components γηη, γηζ, and γζζ equal to zero. These are not zero, but may be calculated from the above reduction process.

Note that, in the special case of the beam having laminated construction with the ζ direction perpendicular to the plane of the
laminate, this numbering scheme corresponds to that of common treatments of lamination theory. Note that for the case of an isotropic
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Figure A-8. Undeformed and Deformed Element Cross Section

material

Q11
� E

Q55
� Q66

� G (A-95)

Q15
� Q16

� Q56
� 0

With the above 3-D stress-strain law, one can write the strain energy per unit length (or 1-D strain energy function)

Φ � 1
2

�
� Γ � T �

Q ��� Γ ��� (A-96)

where � ��� ��� refers to an integral of ��� � over the cross section, which forms the basis for beam theory. In order to determine the 1-D
function Φ, the strain field must be expressed in such a way that this cross-sectional integral can be evaluated. Note that the strain energy
of the element is simply

U �
�	�

0
Φdx (A-97)
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A.4 1-D Strain Energy Function

From axiomatic, Euler-Bernoulli rod theory, the strain energy density of the beam element (i.e., strain energy per unit length) may
be written in the form:

Φ � 1
2

�
� 
� εx

κx

κη
κζ

� 
�
�
T ��
 E0A E0D0 E0Aetζ

� E0Aetη
E0D0 G0J E0D3

� E0D2

E0Aetζ E0D3 E0Iη E0Iηζ� E0Aetη
� E0D2 E0Iηζ E0Iζ

� �� �
� 
� εx

κx

κη
κζ

� 
�
� (A-98)

where εx, κx, κη, and κζ are generalized beam strains and curvatures defined by:

εx
� s

� � 1

κx
� �

bS �
2

� �
� bS �

3
� θ
�
t

κη
��� �

bS �
1

� �
� bS �

3

κζ
� �

bS �
1

� �
� bS �

2 (A-99)

Equation (1) is adequate for the stiff, articulated blade considered in this paper, but note that for bearingless blades, it must be augmented
by an additional nonlinear strain term that gives rise to the so-called “trapeze effect” (see (Borri, 1986)).

For elements composed of isotropic materials, the cross sectional constants in equation (A-99) may be computed as follows. Sub-
stitute the displacement obtained from the element’s kinematical relations (equations (A-91) and (A-93)) into small strain, moderate
rotation strain-displacement relations that can adequately capture rotor blade kinematics (see (Danielson, 1988).) Next, substitute the
strains into equation (A-94) to compute the stresses, and then integrate the stresses over the cross section to obtain forces and moments.
This process gives:

A � 1
E0

� Q11
�

k2
A
� 1

A
� Iη



Iζ
�

etη
� 1

E0A
� Q11η

�
etζ
� 1

E0A
� Q11ζ

�

Iζ
� 1

E0

�
Q11η2 � Iη

� 1
E0

�
Q11ζ2 �

Iηζ
� � 1

E0
� Q11ηζ

�
B1
� 1

E0

�
Q11

� η2 
 ζ2 � 2 �

B2
� 1

E0

�
Q11η � η2 
 ζ2 � � B3

� 1
E0

�
Q11ζ � η2 
 ζ2 � �
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D0
� 1

E0
� Q1s

� 
 1
E0

θ
�
t

�
Q11

� ζΨ � η
� ηΨ

� ζ
� � D1

� 1
E0

� � η2 
 ζ2 � Q1s �


 1
E0

θ
�
t

� � η2 
 ζ2 � Q11
� ζΨ � η

� ηΨ
� ζ
� �

D2
� 1

E0
� Q1sη

� 
 1
E0

θ
�
t

�
ηQ11

� ζΨ � η
� ηΨ � ζ

� � D3
� 1

E0
� Q1sζ

� 
 1
E0

θ
�
t

�
ζQ11

� ζΨ � η
� ηΨ � ζ

� �

J � 1
G0

�
Q55

� Ψ
� ζ



η
� 2 
 2Q56

� Ψ � η
� ζ
� � Ψ

� ζ



η
� 


Q66
� Ψ � η

� ζ
� 2 � 
 1

G0
θ
�
t
2 � Q11

� ζΨ � η
� ηΨ

� ζ
� 2 �



2

1
G0

θ
�
t

� � ζΨ � η
� ηΨ � ζ

� �
Q15

� Ψ � ζ



η
� 


Q16
� Ψ � η

� ζ
�
� �

where Q1s
� Q15

� Ψ
� ζ



η
� 


Q16
� Ψ � η

� ζ
�
. For an element composed of anisotropic materials, three-dimensional effects such as inplane

warping become significant, and elementary beam theory is inadequate for computing the cross sectional constants. Furthermore,
calculations based on asymptotic theories such as VABS (Cesnik, 1997) show that the Bernoulli hypothesis is not as accurate for
composite beams as it is for isotropic beams (Yu, 2001). However, even in this more complex case, the formal, asymptotic analysis on
which VABS is based shows that the form of equation (A-98) remains correct, and the 4 � 4 matrix in equation (A-98) can be calculated
using a code such as VABS, which may be applied to beams with arbitrary cross-sectional geometry and material properties. In general
these properties depend on the cross-sectional geometry, the material anisotropy, and the local initial twist. One is far better off using a
cross-sectional analysis tool such as VABS to determine the cross-sectional elastic constants without ad hoc assumptions.

It is well-known that the displacement-based element behaves poorly in modal reduction, and that this problem may be remedied by
formulating the axial strain in terms of the axial force rather than the axial displacement. This may be accomplished by differentiating
the strain energy with respect to the axial strain to obtain an expression for the axial force, and then using that expression to solve for
the axial strain in terms of the axial force and the other generalized strains; viz.

εx
� 1

A

�
Vx

E0

� D0κx
� Aetζκη



Aetηκζ

� (A-100)

Substituting equation (A-100) into equation (A-98) gives an expression for the strain energy in terms of the axial force, Vx. It is
important, however, that the axial strain somehow be re-introduced explicitly into the strain energy to exhibit its coupling with the finite
element axial degrees of freedom, but this must be done in a way that allows all the variables to be treated as independent, despite the
redundancy between εx and Vx. This goal may be accomplished by appending equation (A-100) to the strain energy via a Lagrange
multiplier, whereupon the strain energy becomes:

Φ � 1
2 � γ

�

� T �
K0 � � γ

�

�



λ � εx
� 1

A

�
Vx

E0

� D0κx
� Aetζκη



Aetηκζ

� � (A-101)

where λ is a Lagrange multiplier, � γ
� � is the re-parameterized column matrix of generalized strains:

� γ
�

� �
�

� 

� 1

A

�
Vx
E0

� D0κx
� Aetζκη



Aetηκζ

�
κx

κη
κζ

� 

�

� (A-102)
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and
�
K0 � is the coefficient matrix in equation (A-98):

�
K0 � � ��
 E0A E0D0 E0Aetζ

� E0Aetη
E0D0 G0J E0D3

� E0D2

E0Aetζ E0D3 E0Iη E0Iηζ� E0Aetη
� E0D2 E0Iηζ E0Iζ

����
(A-103)

By taking the variation of Φ with respect to Vx, λ may be identified as the axial force, and therefore, the strain energy may be written:

Φ � 1
2 � γ

�

� T �
K0 ��� γ

�

�



Vx
� εx
� 1

A

�
Vx

E0

� D0κx
� Aetζκη



Aetηκζ

� � (A-104)

where εx is expressed in terms of the primal displacement variables u, v, w, and φ.
If the strain energy is used as shown in equation (5), it will be found that the coefficients of the equations pertaining to Vx will differ

greatly from the other coefficients for typical rotor blades, and this raises the specter of ill-conditioning of the system equations. The
coefficients of the element’s equations may be made more uniform in magnitude by replacing Vx with a strain-like quantity defined as:

ε̄ � Vx

E0A
(A-105)

whereupon the strain energy becomes:

Φ � 1
2 � γ

�

� T �
K0 � � γ

�

�



ε̄
�
E0A � εx

� ε̄
� 


E0D0κx



E0Aetζκη
� E0Aetηκζ � (A-106)

A.5 Contributions from Strain Energy Function
In this section the contributions to the equations of motion from strain energy are formulated. For this, the strain energy must be

expressed in terms of the displacement and force variables of the analysis. The generalized internal loads are then obtained from the
first variation of the strain energy function, and the contribution to the Jacobian is obtained from the second variation. Like the previous
rendition of this element, which employed only displacement variables, the variables in the “strain” column matrix all have dimensions
of strain; but the last of these variables, ε̄, is actually the axial force scaled by a factor. Differentiating the strain energy with respect to
this variable does not produce a “force,” but instead yields an implicit relation for the axial strain, a phenomenon which is characteristic
of the Reissner-Hellinger variational principle. The ordering scheme is applied to the energy prior to undertaking these operations, thus
guaranteeing the appropriate preservation of symmetry. Although formally negligible, the terms of cubic and higher degree in the 1-D
strains are retained to improve modeling of bearingless rotors. These terms are simplified in that κx in those terms can be taken as φ

�
.

This results in a simple expression for both the internal loads and the Jacobian.

A.5.1 Generalized Internal Forces In order to define the generalized internal forces, first note that the 1-D generalized
strain measures have the convenient property that derivatives of the 1-D strain energy function with respect to these measures gives the
1-D stress resultants which correspond to axial section force Vx, twisting moment Mx, and bending moments Mη and Mζ. The derivative
with respect to the “strain” ε̄ gives a quantity dubbed α, which has the dimensions of force, but may be regarded more properly as the
residual of the inverse constitutive relation for the axial strain, and the subsequent application of a weighting function (i.e., δε) to this
quantity will constitute the weak enforcement of the relation. The internal forces are therefore:

E0Aε̄ � ∂Φ
∂εx

Mx
� ∂Φ

∂κx

� E0D0ε̄

 � G0J � E0D2

0

A

�
κx

 � E0D3

� E0D0etζ
�
κη

 ��� E0D2



E0D0etη

�
κζ
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Mη
� ∂Φ

∂κη

� E0Aetζ ε̄

 � E0D3

� E0D0etζ

�
κx

 � E0Iη

� E0Ae2
tζ

�
κη

 � E0Iηζ



AE0etζ etη

�
κζ

Mζ
� ∂Φ

∂κζ

��� E0Aetη ε̄

 ��� E0D2



E0D0etη

�
κx

 � E0Iζ

� E0Ae2
tη

�
κζ

 � E0Iηζ



E0Aetζetη

�
κη

α � ∂Φ
∂ε̄

� E0A � εx
� ε̄
� 


E0D0κx



E0Aetζκη
� E0Aetηκζ (A-107)

These quantities correspond to the axial force, twisting moment, and bending moments in the deformed beam basis. They can be
arranged in a column matrix � F � so that

Fi
� ∂Φ

∂γi
(A-108)

where the subscript i � 1 � 2 � 3 � 4 � 5 refers to the set εx, κx, κη, κζ, and ε̄. Note that γ is now defined as: γ � � εx � κx � κη � κζ � ε̄ � T .
With anticipation of forming the Jacobian, a symmetric matrix

�
K � is defined so that

Ki j
� ∂2Φ

∂γi∂γ j
(A-109)

Thus,
�
K � is given by

�
K � �

������

0 0 0 0 E0A

0 G0J � E0D2
0

A E0D3
� E0D0etζ

� E0D2



E0D0etη E0D0

0 E0D3
� E0D0etζ E0Iη

� E0Ae2
tζ

E0Iηζ



AE0etζetη E0Aetζ

0 � E0D2



E0D0etη E0Iηζ



AE0etζ etη E0Iζ
� E0Ae2

tη
� E0Aetη

E0A E0D0 E0Aetζ
� E0Aetη

� E0A

� ������ (A-110)

Both � F � and
�
K � are used below to obtain the generalized internal forces and the associated Jacobian.

To proceed with this development, it is necessary to carry out the variation of the strain energy with the 1-D strain measures written in
terms of the variables of the analysis u, v, w, φ, ε̄ and their derivatives. First, the strain measures are written in terms of the displacement
variables. Applying the ordering scheme and retaining terms to O � ε2

�
, one obtains

εx
�

�
� 1



u
� �

2



v
�
2



w
�
2 � 1

κx
� φ

� 

v
� �
w
�

κη
� v

� �
s1
� w

� �
c1

κζ
� v

� �
c1



w
� �
s1 (A-111)

The variation is now most easily done using index notation and the chain rule. Introducing the column matrix

� z � � � u v w φ u
�

v
�

w
�

φ
�

u
� �

v
� �

w
� �

φ
� �

ε̄ � T (A-112)

with indices which vary from 1 – 13, and letting all repeated indices be summed over their range, one can express the first variation of
Φ as

δΦ � ∂Φ
∂γi

∂γi

∂z j
δz j

� FiRi jδz j
� δ � z � T �

R � T � F � (A-113)

27 Copyright  2001 by ASME



where
�
R � and � F � are given by

�
R � �

�����

0 0 0 0

�
1

�
u � �

εx
�

1
v �

εx
�

1
w �

εx
�

1 0 0 0 0 0 0
0 0 0 0 0 0 v

� �
1 0 w

�
0 0 0

0 0 0 κζ 0 0 0 0 0 s1
� c1 0 0

0 0 0 � κη 0 0 0 0 0 c1 s1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

� �����

� F � �

�


� 


�
E0Aε̄
Mx

Mη
Mζ
α

� 


�


� (A-114)

It is now easily seen that the column matrix of generalized forces corresponding to � z � as defined above is

� f � � �
R � T � F � (A-115)

The column matrix � f � can be written explicitly as

� f � �

�





















� 





















�

0
0
0

Mηκζ
� Mζκη

E0Aε̄
�
1

�
u � �

εx
�

1
E0Aε̄v �
εx

�
1

E0Aε̄w �
εx

�
1



v
� �
Mx

Mx

0
w
�
Mx



Mζc1



Mηs1

Mζs1
� Mηc1

0
E0A � εx

� ε̄
� 


E0D0κx



E0Aetζκη
� E0Aetηκζ

� 





















�





















�

(A-116)

The contribution of the internal forces is then expressible as

δU �
� �

0
δ � z � T f dx (A-117)

A.5.2 Jacobian

The contribution of these terms to the perturbation equations is obtained from forming the Jacobian. This is like taking one more
variation, resulting in

∆δΦ � δzi

�
RkiKklRl j


 ∂2γk

∂zi∂z j
Fk
� ∆z j (A-118)
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Thus, the contribution can be written in matrix form as

∆δU �
� �

0
δ � z � T � � K1 �


 �
K2 �
�
∆ � z � dx (A-119)

where
�
K1 � is given by

�
K1 � � �

R � T �
K � � R � (A-120)

and
�
K2 � is

�
K2 � �

��������������������


0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 � � Mηκη



Mζκζ

�
0 0 0 0 0 Mηc1

� Mζs1 Mηs1



Mζc1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 E0Aε̄ 0 0 0 0 0 0 0
0 0 0 0 0 0 E0Aε̄ 0 0 Mx 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Mηc1

� Mζs1 0 0 Mx 0 0 0 0 0 0
0 0 0 Mηs1



Mζc1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

����������������������
(A-121)

Thus, the strain energy contribution to the Jacobian is given explicitly in terms of
�
K1 �


 �
K2 � . Only the nonzero elements of

�
K1 �

should be calculated.

A.6 Mixed Element Inertia Terms
The inertia terms of the mixed element are obtained by forming the integral of the virtual work due to inertial loads from the

time integral of the variation of the kinetic energy, and then integrating by parts. First, expressions are written for the velocity of an
arbitrary point on the beam reference line and the angular velocity of the deformed beam cross section, assuming that the warping of the
section is ignored for the purpose of determination of the kinetic energy. Next, the kinetic energy is written based on the geometrically
exact formulation of reference (Hodges, 1990), using the cross-sectional integrals defined therein. Finally, the contribution to the final
equations of motion from inertial and gravitational forces is determined by a series of operations which include variation with respect to
all unknown coordinate functions, integration by parts in the time domain, and application of the ordering scheme. The ordering scheme
need not be invoked until the last step.

A.6.1 Kinematics For the purpose of writing the kinetic energy in compact form, the column matrix
�

vA � I
E � is written as

�
vA � I

E � � �
vEI

E � 
 �
ṙA � E

E � 
 ���
ωEI

E � �
rA � E

E � (A-122)

where
�
vEI

E � is the column matrix, the elements of which are measure numbers of vEI ;
�
ωEI

E � is the column matrix, the elements of
which are measure numbers of ωEI ; and (neglecting warping effects)

�
rA � E

E � �
�� � x



u
v
w

� �
� (A-123)
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The column matrix
�

ωS � I
S � � contains the measure numbers of the angular velocity of the deformed beam cross sectional frame ωS � I in the

deformed beam basis. An approximation consistent with the ordering scheme is given by

�
ωS � I

S � � � �
 1 0 w
�

0 c1 s1

0 � s1 c1

�� �� � φ̇
� ẇ
�

v̇
�

� �
� 
 �

T S � E � �
ωEI

E � (A-124)

Finally, consider the virtual rotation of S
�
in I. Since the motion of E is prescribed in I, this is the same as the virtual rotation of S

�

in E, denoted by δθS � E
. From reference (Hodges, 1980) this vector can be written as

δθ
S � E � δθ

S � E
S �i bS �

i (A-125)

where, within the accuracy of the ordering scheme, the column matrix containing these elements can be written as

�
δθ

S � E
S � � � �
 1 0 w

�
0 c1 s1

0 � s1 c1

�� �� � δφ
� δw

�
δv
�

� �
� (A-126)

A.6.2 Kinetic Energy Expression The kinetic energy can now be written as

K � 1
2

� �
0

� m �
vA � I

E � T �
vA � I

E � 
 2m
�

ωS � I
S � � T � �

e �
�
T S � E � �

vA � I
E � 
 �

ωS � I
S � � T �

I �
�

ωS � I
S � � � dx (A-127)

where � e � is given by

� e � �
�� � 0

emη
emζ

� �
� (A-128)

emη
� � ρη

�
, emζ

� � ρζ
�
,
�
I � is the sectional inertia matrix given by

�
I � � �
 iη 
 iζ 0 0

0 iη iηζ
0 iηζ iζ

��
(A-129)

and iη �
�
ρζ2 � , iζ

� �
ρη2 � , and iηζ

� � � ρζη
�
. This is a geometrically-exact expression for the kinetic energy, provided that all vector

quantities are written exactly. (Note that the radii of gyration can be obtained from kmη
�

�
iζ
m and kmζ

�
�

iη
m .) The result for the virtual

work of body forces is of the form

δWb
� δWb0



δWb1



δWb2 (A-130)

where the subscript b refers to these as body force terms, and the subscripts 0, 1, and 2 refer to the zeroth, first, and second moment
terms respectively. Below, the first term (the zeroth moment term of K) is written exactly. The second term (the first moment) and the
third term (the second moment) are approximated and have been carried out via computer-aided symbolic manipulation based on the

above approximation of
�

ωS � I
S � � .
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A.6.3 Exact Term When δK is substituted into Hamilton’s principle, the first term must be integrated from fixed times t1 and

t2. After doing this, integrating by parts in time, and setting δ
�

rA � E
E � equal to zero at t � t1 and t � t2, one obtains the contribution of

this term to the virtual work of the inertial forces

δWb0
� �

� �
0

mδ
�

rA � E
E � T

� �
aEI

E � 
 ¨�
rA � E

E � 
 2
� �
ωEI

E � �
ṙA � E

E � 
 � ���
ωEI

E � � �
ωEI

E � 
 ˙���
ωEI

E � � �
rA � E

E � � dx (A-131)

This can be written as four terms, three on the left-hand side of the equations of motion (the signs are changed on these terms to
refect the change from right to left), and one on the right-hand side. The left-hand-side contributions are to the mass matrix

�	�
0

m

�� � δu
δv
δw

� �
� T �� � ü

v̈
ẅ

� �
� dx (A-132)

the gyroscopic matrix (which is non-dissipative)

2
� �

0
m

�� � δu
δv
δw

� �
� T ���

ωEI
E �

�� � u̇
v̇
ẇ

� �
� dx (A-133)

and the stiffness matrix

� �
0

m

�� � δu
δv
δw

� �
� T � � �

ωEI
E � � �

ωEI
E � 
 ˙���

ωEI
E � �

�� � u
v
w

� �
� dx (A-134)

where the associated rotation matrices are

� �
ωEI

E � � �
ωEI

E � �	�
 � � ω2
2



ω2

3

�
ω1ω2 ω1ω3

ω1ω2
� � ω2

1



ω2

3

�
ω2ω3

ω1ω3 ω2ω3
� � ω2

1



ω2

2

�

��
(A-135)

and

˙� �
ωEI

E � � �
 0 � ω̇3 ω̇2

ω̇3 0 � ω̇1� ω̇2 ω̇1 0

��
(A-136)

All the remaining terms contribute to the residual on the right-hand side of the equations. This contribution is

�
� �

0
m

�� � δu
δv
δw

� �
� T �� � �

aEI
E � 
 x � ���

ωEI
E � � �

ωEI
E � 
 ˙� �

ωEI
E � �

�� � 1
0
0

� �
�
� �
� dx (A-137)

Gravity can be treated with the inertial forces just by replacing
�
aEI

E � with
�
aEI

E � � � gE � where � gE � is the column matrix which
contains the measure numbers of the gravity vector in E basis.
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A.6.4 First Moment Term The second term in the kinetic energy contains the contributions from the offset of the beam
reference axis and the sectional mass centroid. If sectional analysis codes are used, the reference line can be input as the mass centroid
which removes all these terms from the equations.

Taking the variation and integrating over time, one obtains

� t2

t1
δKdt �

� t2

t1

� �
0

�
mδ

�
ωS � I

S � � T � �

e �
�
T S � E � �

vA � I
E � 
 m

�
ωS � I

S � � T � �

e � δ
�
T S � E � �

vA � I
E �



m

�
ωS � I

S � � T � �

e �
�
T S � E � δ

�
vA � I

E ��� dxdt

������

(A-138)

The variation of the angular velocity can be written in terms of the virtual rotation

�
δθS � E

S � � according to reference (Hodges, 1990) as

δ
�

ωS � I
S � � � ˙�

δθ
S � E
S � � 
 � �

ωS � I
S � �

�
δθ

S � E
S � � (A-139)

Also, the variation of
�
T S � E � can be expressed in terms of the virtual rotation as

δ
�
T S � E � � � � �

δθ
S � E
S � � �

T S � E � (A-140)

With these substitutions, the contribution to the equations of motion can be shown to be in these two terms

δK � �
� �

0
m

� �
δθ

S � E
S � � T � �

e �
�
T S � E � � �

aEI
E � 
 ¨�

rA � E
E �



2

���
ωEI

E � ˙�
rA � E

E � 
 � � �
ωEI

E � � �
ωEI

E � 
 ˙���
ωEI

E � � �
rA � E

E � �



δ
�

rA � E
E � T �

T S � E � T � � �
ωS � I

S � � � �
ωS � I

S � � 
 ˙� �
ωS � I

S � � � � e � � dx

������

(A-141)

This expression is geometrically exact. However, in the present theory
�
T S � E � ,

�
ωS � I

S � � , and

�
δθ

S � E
S � � are approximated as in equations A-

91, A-124, and A-126, respectively. The offset quantities are assumed to be O � ε2
�
. Thus, the terms multiplied by the offsets need only

be retained to O � ε
�
.

The above operations result in the contribution of the first moment terms to the virtual work of the inertial force terms on the
right-hand side. These can be simplified by introducing

emy
� c1emη

� s1emζ
emz

� s1emη



c1emζ (A-142)

so that the generalized body force contributions from the first moment terms are

δWb1
�

� �
0

δv � emy
� ω1

2 
 ω3
2 
 2ω1φ̇



φ̇2

 � emz

� ω2ω3
� ω̇1

� φ̈

 � dx
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�
� �

0
δw � emy

� ω2ω3



ω̇1



φ̈

 � emz

� ω1
2 
 ω2

2 
 2ω1φ̇



φ̇2

 � dx

�
� �

0
δφ

�
emy

�
A3
�	� ω1

2 
 ω2
2



w �	� A1
� xω2

2 � xω3
2



w
�



v � ω2ω3



ω̇1
� 


x � ω1ω3
� ω̇2

� 

2ω1v̇



ẅ�



emz

� � A2

 � ω1

2 
 ω3
2



v

 � A1

� xω2
2 � xω3

2



v
�



w � � ω2ω3



ω̇1
� � x � ω1ω2



ω̇3
� 


2ω1ẇ � v̈� � dx


 � �
0

δw
�
emz

� A1
� x � ω2

2 
 ω3
2

 � dx


 � �
0

δv
�
emy

� A1
� x � ω2

2 
 ω3
2

 � dx (A-143)

Note that in this expression there are no linear terms.
The first moment term yields a total of 17 terms in the perturbed equations of motion, the signs of which are changed to reflect their

being on the left-hand side of the equations of motion. In virtual work form, the four “mass matrix” terms are

� ∆δWb1
���

� �
0

δvmemz ∆φ̈dx


 � �
0

δwmemy ∆φ̈dx

�
� �

0
δφmemz ∆v̈dx


 � �
0

δφmemy ∆ẅdx

������

(A-144)

The four “gyroscopic matrix” terms are

� ∆δW b1
��� 2

� �
0

δvmemy
� ω1



φ̇
�
∆φ̇dx

� 2
� �

0
δwmemz

� ω1



φ̇
�
∆φ̇dx



2ω1

� �
0

δφmemy ∆v̇dx



2ω1

� �
0

δφmemz ∆ẇdx

������

(A-145)

The nine terms contributing to the Jacobian are

� ∆δW b1
�

� �
0

δvm � emy
� ω2ω3

� ω̇1
� φ̈

 


emz
� ω1

2 
 ω3
2 
 2ω1φ̇



φ̇2

 � ∆φdx

�
� �

0
δwm � emy

� ω1
2 
 ω2

2 
 2ω1φ̇



φ̇2

 


emz
� ω2ω3



ω̇1



φ̈

 � ∆φdx


 � �
0

δφm � emy
� ω2ω3



ω̇1
� 


emz
� ω1

2 
 ω3
2

 � ∆vdx

�
� �

0
δφm � emy

� ω1
2 
 ω2

2

 


emz
� ω2 ω3

� ω̇1
� � ∆wdx


 � �
0

δφm
�

emy

� � A2
� xω1ω2



ω1

2v



ω3
2v � ω2ω3w



wω̇1

� xω̇3



2ω1ẇ � v̈

 � A1

� xω2
2 � xω3

2



v
� �
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emz

� � A3
� xω1ω3

� ω2ω3v



ω1
2w



ω2
2w

� vω̇1



xω̇2
� 2ω1v̇ � ẅ


 � A1
� xω2

2 � xω3
2



w
� � � ∆φdx

�
� �

0
δw
�
memy

� A1
� x � ω2

2 
 ω3
2

 � ∆φdx


 � �
0

δv
�
memz

� A1
� x � ω2

2 
 ω3
2

 � ∆φdx

�
� �

0
δφmemy

� A1
� x � ω2

2 
 ω3
2

 � ∆w

�
dx


 � �
0

δφmemz
� A1

� x � ω2
2 
 ω3

2

 � ∆v

�
dx

������

(A-146)

A.6.5 Second Moment Term The third term in the kinetic energy contains the contributions from the sectional inertia matrix�
I � . Taking the variation of this term and integrating over time yields

� t2

t1
δKdt �

� t2

t1

�	�
0

δ
�

ωS � I
S � � T �

I �
�

ωS � I
S � � dxdt


������
(A-147)

Substituting equation A-139, integrating by parts, and setting

�
δθ

S � E
S � � equal to zero at t � t1 and t � t2, one obtains the contribution of

these terms to the equations of motion

δK � �
� �

0

�
δθS � E

S � � T � �
I � ˙�

ωS � I
S � � 
 � �

ωS � I
S � � �

I �
�

ωS � I
S � � � dx


������
(A-148)

The sectional mass moments of inertia can be regarded as O � mR2ε3
�
; thus, the terms multiplied by them need only be retained to

O � 1
�
. To this order, there are only two second moment terms. The first is a linear term in the mass matrix, the sign of which is changed

to reflect its being on the left-hand side

� δW b2
�

� �
o

δφ � iη



iζ
�
φ̈dx


������
(A-149)

The second is the residual, in which there is only a nonlinear torsion moment term, given by

δW b2
�

� �
o

δφ

� � iη � iζ

 � � c1

2 � s1
2



ω2 ω3
� � ω2

2 � ω3
2



s1 c1 �
� iηζ

� 4c1 s1 ω2 ω3

 � c1

2 � s1
2

 � ω2

2 � ω3
2

 � � � iη 
 iζ



ω̇1 � dx


������
(A-150)

Note that there are no linear terms in this expression. (The one linear term which would have been present is in the mass matrix and not
repeated in the residual.) The Jacobian of this expression only contains the one term

� ∆δW b2
�

� �
o

δφ
� � � c1

2 � s1
2 � � iη � iζ

� � 4s1 c1 iηζ � � ω2
2
� ω2

3

�



4 � � c1

2 � s1
2 � iηζ



s1 c1

� iη � iζ
� � ω2 ω3 � ∆φdx (A-151)

This part of the formulation can be extended, if necessary, to the case in which the sectional mass moments of inertia are O � mR2ε2
�
.

The contribution of these neglected terms, however, is believed to be negligible for most rotor blades.
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B Modal Reduction with Mixed Elements
If mixed elements are employed, it may seem straightforward to recover the finite element displacements from modal coordinates

by employing the usual modal reduction relation:

� q � � �
Φ ��� α � (B-152)

where
�
Φ � is the modal matrix, α is a vector of modal coordinates, and � q � are the finite element degrees of freedom, in which � q �

includes the axial force degrees of freedom. However, using this approach implicitly retains a linear relation between the axial forces
and displacements, which is not generally correct. This problem may be dealt with by retaining the axial forces as independent degrees
of freedom. To accomplish this, each eigenvector is written as follows:

� φi � �
�

φd

φ f � (B-153)

where � φi � is the ith modal vector, � φd � is the displacement part of the eigenmode and � φ f � is the force part of the eigenmode. When
modal reduction is performed, � φi � is split into two generalized coordinates containing the force and displacement parts separately:

� φi � �� �
φ1
�
φ2 � � � φd

0
0

φ f

� (B-154)

This approach permits sufficient decoupling of the axial displacements and forces to enable the accurate calculation of each. It has the
drawback of requiring that additional generalized coordinates be added to the analysis, but in practice, only one or two of these are
needed.
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