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Abstract

We describe a second-order discontinuous Galerkin finite-element method for the solution of an optimal control problem for
determining the trajectory of a launch vehicle. We derive an a posteriori error estimate that is subsequently implemented as the basis
for adaptive error control. We demonstrate that the computational error estimate is reliable and accurate while the adaptive error
control provides a significant gain in efficiency over uniform discretizations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A trajectory problem for a launch vehicle typically takes the form of an optimal control problem, for
example, to maneuver a rocket into a specified orbit while using the least amount of fuel or maximizing the
final velocity. In the modern setting, the goal is to solve for the optimal trajectory sufficiently quickly to
allow “real-time” control of the launch vehicle. This raises serious hurdles for the numerical solution of
such trajectory problems in terms of efficiency and reliability.

The dynamics of a launch vehicle can be represented as a first-order system of ordinary differential
equations for a set of state variables, which includes a set of control variables that appear in the differential
equation as parameters. An optimal control problem is formulated by constructing a cost function in-
volving the differential equation along with the associated boundary conditions. The problem we consider
in this paper is a launch vehicle model initially posed by the LTV Aerospace and Defense (currently
Lockheed—Martin—Vought Systems, we use LTV to refer to both) and developed by Hodges and Johnson
[17]. We consider the problem of maximizing the magnitude of the velocity at the final time while satisfying
the boundary conditions set by LTV.
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In the “direct” approach, the optimal control problem is solved by representing the time history of the
control variables by a finite set of values and then minimizing the cost function with respect to these values
using a nonlinear programming algorithm, see [15]. This approach has been used to solve a variety of
trajectory problems, see [5,19]. However, current implementations of this approach are computationally
too intensive to allow real-time control.

In the “indirect” approach, the calculus of variations is used to determine the optimal solution as the
solution of a two-point boundary-value problem for a set of differential-algebraic equations that includes
the original model equations as well as differential equations for the co-states, or Lagrange multipliers, and
an optimality condition involving the control and state variables. The solution of the two-point boundary-
value problem is then computed numerically. Note that in the indirect approach, it is the actual optimal
solution that is approximated. In contrast in the direct approach, the optimization is carried out only over a
finite-dimensional representation.

There are a variety of possible numerical methods to solve the two-point boundary-value problem
resulting from the indirect approach. For example, a popular method is multiple shooting, which allows
very accurate numerical solutions to be computed. However, shooting has so far turned out to be too
slow to be used in real-time applications. As an alternative, Hodges and Bless proposed a “discontinuous
Galerkin” finite-element method in [16]. This method is implemented in the FORTRAN code GEN-
CODE that solves real-life optimal control problems with constraints on the controls and states, see [2—
4,21-23]. GENCODE computes numerical solutions sufficiently quickly that a version of this code was
employed by engineers at LTV to compute optimal trajectories updates for a missile model every one
second.

Since the regularity and stability properties of solutions of trajectory models vary greatly as time passes,
it is inefficient to compute using a uniform discretization. Instead, the discretization needs to be adjusted
according to the difficulty of solving the differential equation. In this paper, we derive an a posteriori error
estimate for the discontinous Galerkin finite-element method proposed by Hodges and Bless and describe
how to use the estimate as the acceptance criteria for an iterative adaptive error control procedure. We test
the adaptive error control on the trajectory problem proposed by LTV and show that it yields significant
improvements in computational speed over computations using uniform discretizations. We conclude that
implementing the adaptive error control results in significant gains in both reliability, since the error of
numerical solutions is estimated, and efficiency, since the error estimate provides a basis for optimizing the
discretization.

The a posteriori error estimate is derived using a variational analysis to relate the error of a nu-
merical solution to its residual, i.e., the remainder left over from substituting the numerical solution
into the differential equation. This analysis takes into account both the regularity and the stability
properties of a solution and thereby yields a robustly reliable and accurate estimate of the error. This
approach to adaptive error control has garnered increasing interest in recent years, see [§] for an
overview.

2. A launch vehicle trajectory problem

In this paper, we solve an optimal control problem for a model of a launch vehicle originally posed by
LTV and later fully developed by Hodges and Johnson [17]. The vehicle is described in three frames of
reference. The effect of gravity and the position states are given in an inertial frame, the values of lift and
drag due to the motion are determined in the wind frame, and finally the acrodynamic forces and the thrust
are described in the body frame. The orientation of the vehicle is defined by the direction cosine matrix
between the wind frame and the inertial frame

v (3702 -0)

where the vector 0 and matrix 0 contain the Rodrigues parameters, viz.,
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0= 62 and 0= 03 0 761 . (1)
0, -0, 0, 0

The use of the Rodrigues parameters implies that the orientation description between the wind frame and
the inertial frame is free of singularities for 0 < 180°.

The kinematic equations are derived from Newton’s second law in terms of three Cartesian coordinates
in the inertial frame x = (xl,xz,x3)T plus the magnitude of the velocity vector

o1
X = VCTel and V = aeer,

where x| is positive in the north direction, x, positive in the east direction, —x; the altitude, e; = (1,0, O)T, m
the mass, and Fy is a vector containing the resultant force on the vehicle in the wind frame. Fy is deter-
mined by the lift L, drag D, thrust 7, and weight mg (assuming a flat earth in the inertial frame). Thrust and
drag are assumed to be aligned along the axis of the vehicle, while the weight is in the e; direction.

The control variables in this model are the angles ¢ and « between the body axes b = (by, by, b;)T of the
vehicle and the components of the wind frame w = (wl,wz7w3)T. If the two frames are aligned, then the
body frame is rotated about b; through the bank angle ¢ and about b3 through the angle of attack o. This
brings b; into alignment with the axis of the vehicle so the lift vector is aligned along b, and the drag aligned
along b;. In this description, « > 0 and —n < ¢ < n. Due to symmetry, we can take —n/2 < ¢ <7/2. It
follows that the forces in the wind frame can be derived as

Fy, = mgCy; + (T — D) cos(a) — Lsin(a),
Fy, = mgCy; + (T — D) cos(¢) sin(a) — L cos(¢p) cos(a),
Fy, = mgCs; + (T — D) sin(¢) sin(or) — Lsin(¢) cos(a).

For the angular velocities, Hodges and Johnson [17] give an expression for the derivative of the Rodrigues
parameters,

. 1 1~ 1
0=—(I+-0+-00" )& Fy.
mV( T30ty )“ w
Thus, this model has seven states consisting of three position states, three orientation states, and the
magnitude of the velocity plus two control variables consisting of the bank angle and the angle of attack.
The mass m is given in tabular form by LTV. The lift L and the drag D are assumed to have the standard
forms

1 1
LZEGpW& D:EGWW&

where p is the atmospheric density derived from an exponential atmospheric model, S the given reference
area, and Cp and Cp are the lift and drag coefficients, which are calculated using bicubic splines of data
provided for various Mach numbers and angles of attack. The thrust T is given as

T+ Ty — Ab,

where A, is the nozzle exit area, p, the ambient pressure, and 7 is the thrust produced by the missile. In this
problem, LTV supplies the thrust as three different values corresponding to stages in the missile. Therefore,
the problem is a multiphase problem. Since the points at which the parameters change is known a priori, this
causes no real difficulty.

The optimal control problem we consider is to compute the solution for which the magnitude of the
velocity at the final time, ¥V (7T), is maximized while satisfying the initial and final conditions set by LTV
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x1(0) =0.0 %(0)=0.0m, x;3(0)=-3.0m,

0,(0) = 0.0, 02( ) = 0.68865, 05(0) = 0.0,

xi(T) = 15,000 m, x,(T) = 15,000 m, x3(T) = —12,000 m,
01(T) = 0.0, 0,(T)=2(V2—1), 05(T)=0

7(0) = 19.6673 m/s>

and T = 25 s. In addition, continuity conditions are posed at the the internal times at which thrust changes,
which are t = 7 and ¢ = 15, respectively. Note that because the initial and final azimuth angle are zero, the
vehicle begins and ends oriented to the north, while it is pitched up /4 from the horizontal at the end. The
vehicle does not remain in a single plane, however, since the final value of x, is nonzero.

3. Discretization

We use the calculus of variations to reduce the solution of the optimal control problem to the solution of
a two-point boundary-value problem, which we then solve numerically.

We describe the reduction briefly, see [2,20] for more details. We write the the multiphase model for the
launch vehicle as

y=fivut), i <t<t, 1<i<M,

P(0), 28 ), ¥(E ) -+ (fyy_), 1(T), T) =0,
where y € R? represents the states and u € R represents the control variables, 0 =7y < 7, < ---fyy = T'isa
partition of [0, 7], and we use the notation lim, ;: y(¢) = y(#F). We assume that the functions {f;} are

smooth inside the corresponding sub-intervals.
The cost associated to a solution is given by a cost functional of the form

(3.1)

10:(0), 0(T), T) + / Lyyu, ) dr

for some appropriate functions / and L. In this case, the differential equation and the boundary conditions
act as constraints, so these conditions are adjoined to the cost functional using Lagrange multipliers / and
A(#), respectively, to obtain

10:(0), 9(T), T) + 2" (9(0), (77 ), (17 ), - (T3 ): W(T), T)

+Z/ L0y, 1) + AW iy 0) = 5)) .

A(t) is the vector of co-states of the problem Defining the Hamiltonian of the problem H so that
H; =L+ A'f;on[i; %) and setting @ = [ + 2" ¥, y, = »(0), and y; = y(T), we can write this functional as

D (3(0).07), 9, ¥y ) (T),77. ) Z / Hi(u, A7 1) = A75) dr.

Using the calculus of variations, we see that the optimal solution satisfies a set of differential-algebraic
equations consisting of the state and co-state equations and the optimality condition

j/*ﬁ(y,u,t):(h i>1<t<;,-,

. 0H; ~ -
T i _
A + ay (y,/l,u, t) = 07 i <t<t, (32)
OH;
(y7/17u7t) :01

ou
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for 1 <i< M. The corresponding boundary conditions are

0P v _ 09 _ oo

ATO = T3 — A,
© o) Oyr

(3.3)
where the last condition arises if the final time is allowed to vary.

In the optimal control problem for the launch vehicle, the states corresponding to position and orien-
tation are specified at the initial and final times so the co-states for these variables are unknown at those
points, while the co-state corresponding to the velocity state is constrained to be —1 at the final time. The
cost functional is /(y(T)) = —V(T), so the Hamiltonian is simply H# = A’ f and the co-state equations are
AT =—-A"f,.

For simplicity we assume that the control variables u can be eliminated from these equations by solving
the optimality condition in these problems exactly. In the optimal control problem for the launch vehicle
model, we are able solve the algebraic constraints to round-off accuracy.

The optimal solution may include discontinuities in the Hamiltonian and co-states of the form

. 0 - 0P - 0P
A7) = W(f) AT(T)) = @) A =HE) T, I<isM.

If a given state is continuous across an intermediate node, then the corresponding co-state is also con-
tinuous across the same node. Likewise if the intermediate node is not specified as part of the problem, then
the Hamiltonian is continuous across that node, despite the possibility of having different forms on either
side. In the optimal control problem for the launch vehicle, the thrust takes on three different values during
the flight and the state and co-state equations change across each internal node. But they are different only
in the value of the thrust for each phase while the co-states are continuous across the internal nodes while
the Hamiltonian is discontinuous across the nodes.

Combining the states and co-states in (3.2) into one variable x, we first discretize the single phase two-
point boundary-value problem

x=f(x), 0<t<T,

y (3.4)
Iox(0) = xo, Irx(T) =x7, x€RY,

where j and Ir are diagonal matrices with ones or zeroes on the diagonal and rank(/y) + rank(Ir) = d. It is
straightforward to handle more complicated linear boundary conditions and nonautonomous problems.

The finite-element method we used to discretize (3.4) was originally proposed by Hodges and Bless [16].
It has three immediate attractions: the boundary conditions are enforced weakly, the method preserves the
Hamiltonian, and it yields second-order convergence while avoiding the need for quadrature in evaluating
the integrals involving f.

To discretize (3.4), the time axis is partitioned as (p =0 < t; < t, < --- < ty =T, with k, =¢, — t,_; and
I, = (t,_1,t,), the trial space is chosen to be the space of piecewise constant polynomials and the test space is
chosen to be the space of continuous piecewise linear polynomials, i.e.,

2" ={v|v|, e ?°(,)}, € ={V|v|, €2'(l,), V is continuous},

where #7(1,) denotes the vector space of polynomials of degree less than or equal to p on I,.

In their original formulation, Hodges and Bless ([16]) form a variational equation associated to (3.4) by
multiplying the differential equation by a continuous test function, integrating over time, and then inte-
grating the time-derivative term by parts to move the time-derivative on the test function while the initial
and final conditions are posed in variational form. The equation they obtain is

/0 (x,8) i + / (), 0)dt — (x,0) [} — (x(T) — x7.7) + (x(0) — x0, 30) = 0, (3.5)

where 0y and 9y denote the freely varying values of v at the endpoints. The finite-element approximation
X € 2° satisfies
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; /IH(X, 7)de+ ; /In(f(X), V)de — (X, ) + (o, %) + (ToXo — xo, Vi) 6

- (ITXN —Xr, I}N) =0.

To write this finite-element method in the manner usually used for discontinuous Galerkin methods, see
[9,10], we avoid the initial integration by parts and instead introduce “jump” terms that arise when the
discontinuous approximate solution is differentiated. In this framework, the finite-element approximation
X € 9" satisfies

> ([ o0+ 3wl r) o (37)

n=1 n=0

for all ¥ € €', I,X; = xo, and I;:Xy = x7, where for W € 9°, [W,] = W, — W,", W* =lim, = W(f), de-
notes the jump in the value of W at the indicated node and for V € €', ¥, = V' (z,).
Either approach yields a system of equations for the nodal values of X:

1o X, = x,

X +Xy +hf(X])/2=0,

- X +X  +kfX)24+ ko1 f(X1-)/2=0, 2<n<N -1, (3.8)
Xy + Xy +knf(Xy)/2 =0,

+
TXN = Xr.

Since the internal nodes are given a priori, discretization of a multiphase problem is performed by treating
each two-point boundary-value problem posed on each sub-interval in the same way as (3.4). This is an-
other advantage of using discontinuous functions in the finite-element method.

4. The a posteriori error analysis and adaptive error control

The adaptive error control is based on an a posteriori error estimate that is computed after the ap-
proximate solution is computed. The a posteriori analysis is based on the introduction of the residual, which
is determined by substituting the numerical solution into the differential equation and computing the re-
mainder. The residual, unlike the error e = x — X, is explicitly computable.

In order to determine a relationship between the error and the residual, we use a variational analysis
after introducing the dual problem to the differential equation. This yields an exact representation of a
projection of the error as a linear combination of weights times local residuals, where the weights are
determined by norms of the solution of the dual problem. Then, we introduce norms into the error rep-
resentation to obtain the error estimate. We call the normed weights in the estimate stability factors since
they reflect the accumulation and propagation of error in the numerical solution arising from the local
residuals at each point in time.

To obtain a linear dual problem, we linearize around an average of the true and approximate solutions.
We define the average linearized coefficient matrix by

1 af
A(t) = —(Ox(t) + (1 — 0)X(2))do,

0 Ox
where 0f /Ox denotes the Jacobian of f. This choice yields the useful relation
(A(1)e(r), @) = (f(x) = f(X), ¢) (4.1)

for any ¢ € R?. The corresponding forced dual problem to (3.4) is
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—d=A(t) p—e/le|, 0<i<T,
(I —1)p(0) = ¢y, (I =1I7)p(T) = .

Multiplying the dual equation (4.2) by e and integrating, we start with
T T X T
| tetonar= [ et dwpar+ [ eto.am0o(w)ar

Integrating by parts inside each interval in the first integral on the right, moving 4 onto e, using (4.1), and
using the fact that x solves the differential equation exactly, we obtain

/0 Jelldr = / (B det Y (=X 1) = (s = X0 d) = D / (F(X), $)dr

Using the continuity of x, the definition of X;; and X,;, and choosing ¢, = ¢, = 0, we simplify the sum in
the middle on the right to get

/0 el de =" / (X = £(x), $)de + S (1K), b,)- (43)

This equation is similar to (3.7) defining X except that ¢ & ¥'. To see that the difference is small, we use
Galerkin orthogonality to insert a projection of ¢ into %', i.e., we subtract (3.7) from (4.3) to obtain the
error representation formula which holds for all V € %',

/0 e de =" / (X = £(X), ¢ — V)de+ S (K], 6, — Vo). (4.4)

We can see the terms on the right-hand side are small by choosing V =P € ¢ ! as a suitable approxi-
mation of ¢ in the test space. Taking norms and using the fact that X = 0, we get

/0 el de< S / T - Pé| dr+Z|| I =P (45)
n=1 I

Beginning with the first term on the right-hand side, we estimate

Z/Ilf T = Pl de < lef T =P, fen,

- ||. We write the second term on the right-hand side of (4.5) as

where || - ||,

ZII I =Pl = Xl (= A) ¢OII+ZH N = PO+ XV = Pyl

n=1

We then expand the sum in the middle on the right-hand side as

N-1 N-1 k) -
S I =Pl =3 (s + e ) I = )l

n=1

which we write as

n— + kl‘l

. bl = 20

I =)o+ (e IR = P+

ky

R BRI~ POyl
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Using the continuity of ¢, we have the estimates
10 =Pl <IN = A)Sl,, and [I(7 =PI <1 = )¢

Using these estimates in (4.5), we conclude that

|1n+1 :

I e dr (B8 + 2 N+ N ) - PO

3 (s M+ = N+ KOOI ) 1 = P,

B el + kel >) I~ Pl (4.6)

+ { [1XV]]| +ﬁ|\[

We assume that there is an interpolation constant C such that for all ¢ with two continuous derivatives

dZ
=Pl < [ | G50 o
1/1

Such error bounds are satisfied by the L, projection and the standard interpolation operator, see [6]. We
therefore define the discretization residual on the interval 7,, 1 <n<N, by

II[ olll + 5 NIl =+ &l ), n=1,
RX 1)k, = Hkﬂ Xl + e X ]H+k IS XN, 1T<n<N,
rsend (12 Co01| R 1> 3[R N IVAC el /P8 n=N

and the corresponding stability factor

d2
"/,nHW

From (4.6), we obtain the a posteriori error estimate

’ dz.

| tellar< S a )z (47)

n=1

Mesh selection is a complicated nonlinear constrained optimization problem to minimize the cost under the
constraint of keeping a computable mesh acceptance criteria below a desired tolerance. The solution of the
mesh selection problem is approximated by a iterative process:
1. Compute the numerical solution on the current mesh.
2. Compute the acceptance criteria for this solution.
3. Either decide to accept the solution or predict the mesh changes needed to compute a new solution that
meets the constraint.
See for example [7,9,18]. We start with a coarse mesh as a way to keep the computational costs low. The
mesh refinement decision is based on a principle of equidistribution in which the acceptance criteria is di-
vided into components measuring the local contribution from each element and the mesh is adjusted to
keep these local contributions roughly equal.
The main difference between the approach to adaptivity in this paper and to other approaches in the
literature is the acceptance criteria, which in our case is

RX 1) S (W, 1) <6, (4.8)
>

where 0 is a predetermined tolerance. The a posteriori result (4.7) actually estimates the true or global error
by taking into account both the numerical solution’s local regularity properties, in the form of residual, and
stability properties, in the form of the stability factor. Classical approaches to constructing acceptance
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criteria consider only the local regularity of the solution and therefore cannot estimate the true error in
general, see [13,14].

In this case, the residual is second-order in the time step. We define # = #/k?, so the principle of
equidistribution means that the mesh should be chosen so that

N 0
ES(I)RX,I,) < N 1<n<N. (4.9)
If the acceptance criteria (4.8) is not satisfied on the current mesh, then steps in a new mesh {k, v} are

determined from the current steps {k, .4} by

2
(IZ—W ) _ o 7 (4.10)
mold kioldN(y(ln)%(Xaln))
for each n. (4.10) can also be used to determine if the mesh should be coarsened, namely when the quantity
on the right in (4.10) is larger than one on adjacent time steps, we can combine neighboring elements to
form larger elements. In practice, we do not coarsen in a region unless the step sizes are too small by a
factor of 10.

5. Implementation

As we have seen, (3.7) yields a set of nonlinear algebraic equations of the form F(X) = 0, where we use X
to denote the nodal values {X~}. These equations are solved using a restricted step Newton—-Raphson it-
eration, which requires the Jacobian of F. To compute this Jacobian, which involves partial derivatives of
the system equations and boundary conditions with respect to states and controls, GENCODE interfaces to
either of the symbolic manipulation packages MACSYMA or MAPLE.

As formulated, the Jacobian of the system becomes singular when the angle of attack « is zero, in which
case the bank angle  becomes irrelevant. Moreover, o approaches zero in the problem we solve, which
causes the Jacobian to become badly conditioned. To relieve this problem, we use the control formulation
derived in [17] that is based on the Lagrangian equinoctial variables, see [1]. The control variables o and ¢
are replaced by

f, =cos(¢)tan(a) and f; =sin(¢)tan(a).

With the correct implementation, the problems associated to o approaching zero are avoided, see [17].

We found that the convergence of the Newton iteration for this problem is very sensitive to the initial
guess. We generate a good initial guess by computing solutions of a sequence of simpler but related
problems in an ad hoc homotopy method.

The most accurate numerical solution that can be reasonably computed by a HP-UX workstation has a
Jacobian containing on the order of 120,000 nonzero elements. The sparsity of the Jacobian is exploited by
using sparse solvers from the Harwell library. These routines store information about the structure of the
linear systems between calls, so that subsequent Newton iterations take less time to solve.

We approximate the forcing function e/||e|| for the dual problem by using Richardson extrapolation on
numerical solutions for two different meshes. At any given level in the refinement process, we store two
consecutive meshes and corresponding numerical solutions, where time steps in the old mesh are always
divided at least into two steps, and possibly more, when the new mesh is constructed. We estimate the error
of the solution on the finer mesh by using the asymptotic estimate of the error of the solution on the coarser
mesh obtained by Richardson extrapolation.

One difficulty that arises with the original variables is that the scales of the different components of the
solution vary over a large range. For example, the Rodrigues parameter is order one while the position
states range up to 10,000. Since we are estimating the vector norm of the error, it is desirable to keep the
components of the solution roughly the same size. Consequently when computing, we rescale the launch
vehicle model by multiplying the states and co-states by the scaling factors listed in Table 1. In the new
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Table 1
Scaling factors for variables in the launch vehicle model

Variable Scaling factor
X 0.0017

X2 0.002

X3 0.003

vV 0.04

0, 23

[ 13

05 20

t 3

variables, the maximum value of each state and its corresponding co-states are within 20% of each other
while the maxima of all eight states and eight co-states are in the range [7,75].

To form the coefficient matrix 47 of the dual problem, we linearize around the approximate solution
rather than the average of the true and approximate solutions in the definition. The effect of this substi-
tution depends on the degree of nonlinearity of the problem as measured by how much the stability
properties of nearby trajectories can differ. It is possible to show that the stability factors obtained from the
dual problem linearized around the approximate solution converges to the stability factors obtained from
the dual problem with the averaged coefficients as the discretization is refined, see [10]. Computationally,
the linearization does not appear to be a problem.

To solve the dual problem, we use the same order finite-element method, quadrature, and mesh used to
compute X. This means that the computational cost of the error estimation is roughly the same as the cost
of a single Newton iteration in the computation of X. So the error estimation typically represents 20-25% of
the total cost of the computation. In addition the numerical solution of the dual problem requires the same
amount of memory to store as X, while the coefficients of the dual problem are already stored in order to
implement the Newton method used to compute X. So the additional memory needed to compute the error
estimate is not significant.

We compute the derivatives in the stability factor exactly after reducing the order through repeated
substitution using the differential equation. The stability factor also involves the interpolation constant C.
Standard interpolation theory gives a value for this constant that is “sharp” in the sense that there is some
function in the appropriate function space whose interpolation error is given precisely by the theoretical
estimate with that value for the constant. In practice, however, we find the analytic value leads to consistent
over-estimation by 1-2 orders of magnitude for the solutions of the differential equations we compute.
Instead of the analytic value, we calibrate (see [11]) the error estimate (4.7) by computing the seminorm on
the dual solution defining the stability factor and the residual error of a numerical solution for a problem in
which the true solution, and hence the error, is known, then we set the ratio of the error to the bounding
quantity without the constant to be the constant C. In the computations in this paper, we calibrate using the
exact solution of a control problem for a simple trajectory problem to get C ~ 0.0048. The reason for the
consistent over-estimation when using the analytic value of the interpolation constant and the theoretical
justification of the calibration process are interesting issues for future study.

The finite-element method used in this paper was originally implemented in the FORTRAN code
GENCODE by Bless and Hodges. The original version of GENCODE can quickly solve optimal control
problems involving single phase problems with constraints on the controls and states, see [2-4]. Warner and
Hodges [21,23,22] extend GENCODE in several ways. First, the new version of GENCODE implements
higher-order shape functions, allowing arbitrary order inside each element, see [20,12] for more details on
higher-order versions of the finite-element method. Likewise, flexibility in the finite-element mesh was
added, allowing each element to be sub-divided into an arbitrary number of sub-element at each refinement
step. Lastly, GENCODE implements the a posteriori theory described in Section 4 as the means for
computational error estimation for mesh and shape function order selection. We use GENCODE to
produce all the numerical presented in this paper.
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6. Numerical results

We begin by showing a numerical solution of the optimal control problem for the launch vehicle
computed using GENCODE with 27 elements per phase for a total of 81 elements. In Fig. 1, we plot the
position and velocity versus time, and in Fig. 2, we plot the Rodrigues parameters and the control variables.
The effect of changing the thrust is seen clearly in the sharp changes in velocity while the positions states
and Rodrigues parameters vary smoothly. Both the position states and velocity undergo large changes in
scale. Both of the control variables vary rapidly during an initial transient while the bank angle also un-
dergoes several rapid transient periods during the flight. In contrast, the Lagrange multipliers vary rela-
tively smoothly with the co-states corresponding to position and velocity having values on the order of 0.1
and 1, respectively, while the co-states for time and the Rodrigues parameters are on the order of 100, see
Figs. 3 and 4.
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Fig. 1. Plots of position states and velocity.
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Fig. 2. Plots of Rodrigues parameters and orientation angles.
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Fig. 3. Plots of the co-states for position and velocity.
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Fig. 4. Plots of the co-states for the Rodrigues parameters and time.

In Table 2, we show the initial uniform mesh input into GENCODE and the final mesh resulting from
the adaptive error control with a tolerance of 20. The meshes are recorded as Ni:N,:N; with N; denoting the
number of elements used in phase i of the flight path. In every case except the initial 9:9:9 mesh, the final
mesh is generated after one iteration of the adaptive algorithm. We also show the error estimate computed
by GENCODE corresponding to the final mesh. To test the accuracy of this estimate, we compute a very
accurate ‘“‘reference” solution using a piecewise quadratic approximation on a 18:8:12 mesh and then
compute an approximate “‘error’ using this reference solution. In Table 2, we record the corresponding
error for each numerical solution and the error to bound ratio. Ideally, the error to bound ratio would be 1
for all computations. We find that the ratio does vary as the final mesh is altered, but the variations are
acceptably small. The error estimate is predictably too conservative by a factor of 4-5, which is due to value
of C determined by calibration. While this degree of over-estimation is acceptable for this application, it
would be worthwhile to generate a more sophisticated calibration problem and thereby reduce the over-
estimation.

Recall that both the choice of data for the dual problem and the effects of linearization mean that the
error estimate indirectly depends on the accuracy of the discretization. In Fig. 5, we plot the error to bound
ratios versus the refinement level for computations with 6:6:6 and 9:2:12 meshes. The estimate generally
becomes more accurate as the mesh is refined and in all cases varies acceptably as the mesh is changed.

We illustrate the degree to which equidistribution is achieved by the adaptive error control in Fig. 6,
where we plot the local quantities & (W, 1,)Z(X, L,).

We conclude by demonstrating the gain in efficiency that results from using adaptive error control versus
uniform refinement. Using the numerical reference solution computed with piecewise quadratic approxi-
mation on an 18:8:12 mesh to compute absolute errors, we plot these errors versus the number of elements
for computations made with several tolerances beginning with a 9:2:12 mesh on the left in Fig. 7. To achieve
a predicted error of 2, the adaptive error control uses 300 fewer elements than is required by a uniform
discretization, saving about 16%. This translates to about 6.1 fewer CPU s, about a 37% reduction. On the
right in Fig. 7, we plot the error versus the number of elements and the CPU time for computations made
with several tolerances beginning with a 9:9:9 mesh. The gain in efficiency in this computation is even more
evident.

Table 2
Table showing initial and final meshes and the error to bound ratios for various numerical solutions
Initial mesh Final mesh Estimate Error Estimate/Error
6:2:8 39:11:13 13.1 2.7 4.8
6:8:8 35:8:13 15.3 2.8 5.6
8:8:8 41:8:13 11.8 3.3 3.6
9:9:9 40:9:14 16.8 2.8 5.9
9:2:3 46:12:16 6.9 1.9 3.7
9:2:12 49:12:14 8.9 2.1 4.3

12:12:12 41:12:13 10.3 2.3 4.5
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