
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +44 1

E-mail addr

URL: http:/
Journal of Sound and Vibration 293 (2006) 156–170

www.elsevier.com/locate/jsvi
Damping modelling using generalized proportional damping

S. Adhikari�

Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK

Received 24 January 2005; received in revised form 19 September 2005; accepted 26 September 2005

Available online 20 December 2005
Abstract

Proportional damping is the most common approach to model dissipative forces in complex engineering structures and

it has been used in various dynamic problems for more than 10 decades. One of the main limitation of the mass and

stiffness proportional damping approximation comes from the fact that the arbitrary variation of damping factors with

respect to vibration frequency cannot be modelled accurately by using this approach. Experimental results, however,

suggest that damping factors can vary with frequency. In this paper a new generalized proportional damping model is

proposed in order to capture the frequency-variation of the damping factors accurately. A simple identification method is

proposed to obtain the damping matrix using the generalized proportional damping model. The proposed method requires

only the measurements of natural frequencies and modal damping factors. Based on the proposed damping identification

method, a general approach for modelling of damping in complex systems has been proposed. Examples are provided to

illustrate the proposed method.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Modal analysis is the most popular and efficient method for solving engineering dynamic problems. The
concept of modal analysis, as introduced by Rayleigh [1], was originated from the linear dynamics of
undamped systems. The undamped modes or classical normal modes satisfy an orthogonality relationship
over the mass and stiffness matrices and uncouple the equations of motion, i.e., if U is the modal matrix then
UTMU and UTKU are both diagonal matrices. This significantly simplifies the dynamic analysis because
complex multiple degree-of-freedom (MDOF) systems can be effectively treated as a collection of single
degree-of-freedom oscillators.

Real-life systems are not undamped but possess some kind of energy dissipation mechanism or damping. In
order to apply modal analysis of undamped systems to damped systems, it is common to assume the
proportional damping, a special type of viscous damping. The proportional damping model expresses the
damping matrix as a linear combination of the mass and stiffness matrices, that is,

C ¼ a1Mþ a2K, (1)
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

C viscous damping matrix
I identity matrix
K stiffness matrix
M mass matrix
qðtÞ generalized coordinates
T a temporary matrix, T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K
p

W coefficient matrix associated with the
constants in Caughey seriesbf ð�Þ fitted modal damping function

a1; a2 proportional damping constants
a a vector containing the constants in

Caughey series
bið�Þ; i ¼ 1; . . . ; 4 proportional damping

functions

X diagonal matrix containing the natural
frequencies

U undamped modal matrix
f diagonal matrix containing the modal

damping factors
fv a vector containing the modal damping

factors
lj complex eigenvalues, lj � �zjoj � ioj

oj natural frequencies (rad/s)
zj modal damping factors
ð�Þ

T matrix transpose
ð�Þ
�1 matrix inverse

ð�Þ
�T matrix inverse transpose

ð�ÞðeÞ; ð�Þ
ðeÞ
ð�Þ of eth element/substructure

Imð�Þ imaginary part of ð�Þ
Reð�Þ real part of ð�Þ
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where a1; a2 are real scalars. This damping model is also known as ‘Rayleigh damping’ or ‘classical damping’.
Modes of classically damped systems preserve the simplicity of the real normal modes as in the undamped
case. Caughey and O’Kelly [2] have derived the condition which the system matrices must satisfy so that
viscously damped linear systems possess classical normal modes. They have also proposed a series expression
for the damping matrix in terms of the mass and stiffness matrices so that the system can be decoupled by the
undamped modal matrix and have shown that the Rayleigh damping is a special case of this general
expression. In this paper a more general expression of the damping matrix is proposed so that the system
possesses classical normal modes.

Complex engineering structures in general have non-proportional damping. For a non-proportionally
damped system, the equations of motion in the modal coordinates are coupled through the off-diagonal terms
of the modal damping matrix and consequently the system possesses complex modes instead of real normal
modes. Practical experience in modal testing also shows that most real-life structures possess complex modes.
Complex modes can arise for various other reasons also [3], for example, due to the gyroscopic effects,
aerodynamic effects, nonlinearity and experimental noise. Adhikari and Woodhouse [4,5] have proposed few
methods to identify damping from experimentally identified complex modes. In spite of a large amount of
research, understanding and identification of complex modes is not well developed as real normal modes. The
main reasons are:
�
 By contrast with real normal modes, the ‘shapes’ of complex modes are not in general clear. It appears that
unlike the (real) scaling of real normal modes, the (complex) scaling or normalization of complex modes has
a significant effect on their geometric appearance. This makes it particularly difficult to experimentally
identify complex modes in a consistent manner [6].

�
 The imaginary parts of the complex modes are usually very small compared to the real parts, especially

when the damping is small. This makes it difficult to reliably extract complex modes using numerical
optimization methods in conjunction with experimentally obtained transfer function residues.

�
 The phase of the complex modes are highly sensitive to experimental errors, ambient conditions and

measurement noise and often not repeatable in a satisfactory manner.

In order to bypass these difficulties, often real normal modes are used in experimental modal analysis. Ibrahim
[7], Chen et al. [8] and Balmès [9] have proposed methods to obtain the best real normal modes from identified
complex modes. The damping identification method proposed in this paper assumes that the system is
effectively proportionally damped so that the complex modes can be neglected. The outline of the paper is as
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follows. In Section 2, a background of proportionally damped systems is provided. The concept of generalized
proportional damping is introduced in Section 3. The damping identification method using the generalized
proportional damping is discussed in Section 4. Based on the proposed damping identification technique, a
general method of modelling of damping for complex systems has been outlined in Section 5. Numerical
examples are provided to illustrate the proposed approach.
2. Background of proportionally damped systems

The equations of motion of free vibration of a viscously damped system can be expressed by

M€qðtÞ þ C_qðtÞ þ KqðtÞ ¼ 0. (2)

Caughey and O’Kelly [2] have proved that a damped linear system of form (2) can possess classical normal
modes if and only if the system matrices satisfy the relationship KM�1C ¼ CM�1K. This is an important result
on modal analysis of viscously damped systems and is now well known. However, this result does not
immediately generalize to systems with singular mass matrices [10]. This apparent restriction in Caughey and
O’Kelly’s result may be removed by considering the fact that all the three system matrices can be treated on
equal basis and therefore can be interchanged. In view of this, when the system matrices are non-negative
definite we have the following theorem:

Theorem 1. A viscously damped linear system can possess classical normal modes if and only if at least one of the

following conditions is satisfied:
(a) KM�1C ¼ CM�1K, (b) MK�1C ¼ CK�1M, (c) MC�1K ¼ KC�1M.

This can be easily proved by following Caughey and O’Kelly’s approach and interchanging M, K and C

successively. If a system is ð�Þ-singular then the condition(s) involving ð�Þ�1 have to be disregarded and
remaining condition(s) have to be used. Thus, for a positive definite system, along with Caughey and O’Kelly’s
result (condition (a) of the theorem), there exist two other equivalent criterion to judge whether a damped
system can possess classical normal modes. It is important to note that these three conditions are equivalent
and simultaneously valid but in general not the same.

Example 1. Assume that a system’s mass, stiffness and damping matrices are given by

M ¼

1:0 1:0 1:0

1:0 2:0 2:0

1:0 2:0 3:0

2664
3775; K ¼

2 �1 0:5

�1 1:2 0:4

0:5 0:4 1:8

2664
3775 and

C ¼

15:25 �9:8 3:4

�9:8 6:48 �1:84

3:4 �1:84 2:22

2664
3775. ð3Þ

It may be verified that all the system matrices are positive definite. The mass-normalized undamped modal
matrix is obtained as

U ¼

0:4027 �0:5221 �1:2511

0:5845 �0:4888 1:1914

�0:1127 0:9036 �0:4134

264
375. (4)

Since Caughey and O’Kelly’s condition

KM�1C ¼ CM�1K ¼

125:45 �80:92 28:61

�80:92 52:272 �18:176

28:61 �18:176 7:908

264
375
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is satisfied, the system possesses classical normal modes and the U given in Eq. (4) is the modal matrix.
Because the system is positive definite the other two conditions,

MK�1C ¼ CK�1M ¼

2:0 �1:0 0:5

�1:0 1:2 0:4

0:5 0:4 1:8

264
375

and

MC�1K ¼ KC�1M ¼

4:1 6:2 5:6

6:2 9:73 9:2

5:6 9:2 9:6

264
375

are also satisfied. Thus all three conditions described in Theorem 1 are simultaneously valid although none of
them are the same. So, if any one of the three conditions proposed in Theorem 1 is satisfied, a viscously
damped positive definite system possesses classical normal modes.

3. Generalized proportional damping

In spite of a large amount of research, the understanding of damping forces in vibrating structures is not
well developed. A major reason for this is that, by contrast with inertia and stiffness forces, the physics behind
the damping forces is in general not clear. As a consequence, obtaining a damping matrix from the first
principle is difficult, if not impossible, for real-life engineering structures. For this reason, assuming M and K

are known, we often want to express C in terms of M and K such that the system still possesses classical
normal modes. Of course, the earliest work along this line is the proportional damping shown in Eq. (1) by
Rayleigh [1]. It may be verified that expressing C in such a way will always satisfy the conditions given by
Theorem 1. Caughey [11] proposed that a sufficient condition for the existence of classical normal modes is: if
M�1C can be expressed in a series involving powers of M�1K. His result generalized Rayleigh’s result, which
turns out to be the first two terms of the series. Later, Caughey and O’Kelly [2] proved that the series
representation of damping

C ¼M
XN�1
j¼0

ajðM
�1KÞj (5)

is the necessary and sufficient condition for existence of classical normal modes for systems without any
repeated roots. This series is now known as the ‘Caughey series’ and is possibly the most general form of
damping matrix under which the system will still possess classical normal modes.

Assuming that the system is positive definite, a further generalized and useful form of proportional damping
will be proposed in this paper. Consider the conditions (a) and (b) of Theorem 1; premultiplying (a) by M�1

and (b) by K�1 one has

ðM�1KÞðM�1CÞ ¼ ðM�1CÞðM�1KÞ or AB ¼ BA,

ðK�1MÞðK�1CÞ ¼ ðK�1CÞðK�1MÞ or A�1D ¼ DA�1, (6)

where A ¼M�1K, B ¼M�1C and D ¼ K�1C. Notice that condition (c) of Theorem 1 has not been considered.
Premultiplying (c) by C�1, one would obtain a similar commutative condition. Because it would involve C

terms in both the matrices, any meaningful expression of C in terms ofM and K will be difficult to deduce. For
this reason only the two commutative relationships in Eq. (6) will be considered. The eigenvalues of A, B and
D are positive due to the positive-definitiveness assumption of the system matrices. For any two matrices A
and B, if A commutes with B, bðAÞ also commutes with B where the real function bðxÞ is smooth and analytic
in the neighborhood of all the eigenvalues of A. Thus, in view of the commutative relationships in Eq. (6), one
can use several well known functions to represent M�1C in terms of M�1K and also K�1C in terms of K�1M.
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This implies that representations like C ¼MbðM�1KÞ and C ¼ KbðK�1MÞ are valid expressions. The damping
matrix can be expressed by adding these two quantities as

C ¼Mb1ðM
�1KÞ þ Kb2ðK

�1MÞ (7)

such that the system possesses classical normal modes. Postmultiplying condition (a) of Theorem 1 by M�1

and (b) by K�1 one has

ðKM�1ÞðCM�1Þ ¼ ðCM�1ÞðKM�1Þ,

ðMK�1ÞðCK�1Þ ¼ ðCK�1ÞðMK�1Þ. (8)

Following a similar procedure we can express the damping matrix in the form

C ¼ b3ðKM
�1ÞMþ b4ðMK�1ÞK (9)

such that system (2) possesses classical normal modes. The functions bið�Þ should be analytic in the
neighborhood of all the eigenvalues of their argument matrices. This implies that b2ð�Þ and b4ð�Þ should be
analytic around o2

j ; 8j, and b2ð�Þ and b4ð�Þ should be analytic around 1=o2
j ; 8j. Clearly, these functions can

have very general forms. However, the expressions of C in Eqs. (7) and (9) get restricted because of the special
nature of the arguments in the functions. As a consequence, C represented in Eq. (7) or (9) does not cover the
whole RN�N , which is well known that many damped systems do not possess classical normal modes.

Rayleigh’s result (1) can be obtained directly from Eq. (7) or (9) as a special case by choosing each matrix
function bið�Þ as a real scalar times an identity matrix, that is,

bið�Þ ¼ aiI. (10)

The damping matrix expressed in Eq. (7) or (9) provides a new way of interpreting the ‘Rayleigh damping’ or
‘proportional damping’ where the scalar constants ai associated withM and K are replaced by arbitrary matrix
functions bið�Þ with proper arguments. This kind of damping model will be called generalized proportional

damping. We call the representation in Eq. (7) right-functional form and that in Eq. (9) left-functional form. The
functions bið�Þ will be called proportional damping functions which are consistent with the definition of
proportional damping constants (ai) in Rayleigh’s model.

It is well known that for any matrix A 2 RN�N , all Ak, for integer k4N, can be expressed as a linear
combination of Aj ; jpðN � 1Þ, by a recursive relationship using the Cayley–Hamilton theorem [12]. Because
all analytic functions have a power series form via Taylors expansion, the expression of C in (7) or (9) can in
turn be represented in the form of Caughey series (5). However, since all bið�Þ can have very general forms,
such a representation may not be always straightforward. For example, if C ¼MðM�1KÞ�e the system
possesses normal modes, but it is neither a direct member of Caughey series (5) nor is it a member of the series
involving rational fractional powers given by Caughey [11] as e is an irrational number. However, we know
that e ¼ 1þ 1=1!þ � � � þ 1=r!þ � � � þ1, from which we can write C ¼MðM�1KÞ�1ðM�1KÞ�1=1! � � �

ðM�1KÞ�1=r!
� � �1, which can in principle be represented by Caughey series. From a practical point of view

it is easy to verify that this representation is not simple and requires truncation of the series up to some finite
number of terms. Therefore, the damping matrix expressed in the form of Eq. (7) or (9) is a more convenient
representation of Caughey series. From this discussion we have the following general result for damped linear
systems:

Theorem 2. Viscously damped positive definite linear systems will have classical normal modes if and only if the

damping matrix can be represented by
(a)
 C ¼Mb1ðM
�1KÞ þ Kb2ðK

�1MÞ, or
(b)
 C ¼ b3ðKM
�1ÞMþ b4ðMK�1ÞK,
where bið�Þ are smooth analytic functions in the neighborhood of all the eigenvalues of their argument matrices.

A proof of the theorem is given in the Appendix. For symmetric positive-definite systems both expressions
are equivalent and in the rest of the paper only the right functional form (a) will be considered.
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Example 2. This example is chosen to show the general nature of the proportional damping functions which
can be used within the scope of conventional modal analysis. It will be shown that the linear dynamic system
satisfying the following equation of free vibration:

M€qþ Me�ðM
�1KÞ2=2 sinhðK�1M lnðM�1KÞ2=3Þ þ K cos2ðK�1MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1M

4
p

tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K
p

p

" #
_qþ Kq ¼ 0 (11)

possesses classical normal modes. Numerical values of M and K matrices are assumed to be the same as in
Example 1.

Direct calculation shows

C ¼ �

67:9188 104:8208 95:9566

104:8208 161:1897 147:7378

95:9566 147:7378 135:2643

264
375. (12)

Using the modal matrix calculated before in Eq. (4), we obtain

UTCU ¼

�88:9682 0:0 0:0

0:0 0:0748 0:0

0:0 0:0 0:5293

264
375,

a diagonal matrix. Analytically the modal damping factors can be obtained as

2zjoj ¼ e�o
4
j
=2 sinh

1

o2
j

ln
4

3
oj

 !
þ o2

j cos
2 1

o2
j

 !
1ffiffiffiffiffioj
p tan�1

oj

p
, (13)

where oj are the undamped natural frequencies of the system.
This example shows that using the generalized proportional damping it is possible to model any variation of

the damping factors with respect to the frequency. This is the basis of the damping identification method to be
proposed later in the paper. With Rayleigh’s proportional damping in Eq. (1), the modal damping factors
have a special form

zj ¼
1

2

a1
oj

þ a2oj

� �
. (14)

Clearly, not all forms of variations of zj with respect to oj can be captured using Eq. (14). The damping
identification method proposed in the next section removes this restriction.

4. Damping identification using generalized proportional damping

4.1. Derivation of the identification method

The damping identification method is based on the expressions of the proportional damping matrix given in
Theorem 2. Considering expression (a) in Theorem 2 it can be shown that (see the Appendix for details)

UTCU ¼ b1ðX
2
Þ þX2b2ðX

�2
Þ or 2fX ¼ b1ðX

2
Þ þX2b2ðX

�2
Þ. (15)

The modal damping factors can be expressed from Eq. (15) as

zj ¼
1

2

b1ðo
2
j Þ

oj

þ
1

2
ojb2ð1=o

2
j Þ. (16)

For the purpose of damping identification the function b2 can be omitted without any loss of generality. To
simplify the identification procedure, the damping matrix is expressed by

C ¼Mf ðM�1KÞ. (17)
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Using this simplified expression, the modal damping factors can be obtained as

2zjoj ¼ f ðo2
j Þ (18)

or

zj ¼
1

2oj

f ðo2
j Þ ¼

bf ðojÞ ðsayÞ. (19)

The function bf ð�Þ can be obtained by fitting a continuous function representing the variation of the measured
modal damping factors with respect to the natural frequencies. From Eqs. (17) and (18) note that in the
argument of f ð�Þ, the term oj can be replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K
p

while obtaining the damping matrix. With the fitted
function bf ð�Þ, the damping matrix can be identified using Eq. (19) as

2zjoj ¼ 2oj
bf ðojÞ (20)

or bC ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p bf ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �
. (21)

The following example will clarify the identification procedure.

Example 3. Suppose Fig. 1 shows modal damping factors as a function of frequency obtained by conducting
simple vibration testing on a structure. The damping factors are such that, within the frequency range
considered, they show very low values in the low frequency region, high values in the mid-frequency region
and again low values in the high frequency region.

We want to identify a damping model which shows this kind of behavior. The first step is to identify the
function which produces this curve. Here this (continuous) curve was simulated using the equation

bf ðoÞ ¼ 1

15
ðe�2:0o � e�3:5oÞ 1þ 1:25 sin

o
7p

� �
ð1þ 0:75o3Þ. (22)

From the above equation, the modal damping factors in terms of the discrete natural frequencies can be
obtained by

2zjoj ¼
2oj

15
ðe�2:0oj � e�3:5oj Þ 1þ 1:25 sin

oj

7p

� �
ð1þ 0:75o3

j Þ. (23)
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Fig. 1. Variation of modal damping factors; — original, � recalculated.
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To obtain the damping matrix, consider Eq. (23) as a function of o2
j and replace o2

j by M�1K (that is, oj byffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K
p

) and any constant terms by that constant times I. Therefore, from Eq. (23) we have

C ¼M
2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p
e�2:0

ffiffiffiffiffiffiffiffiffiffi
M�1K

p

� e�3:5
ffiffiffiffiffiffiffiffiffiffi
M�1K

p� �
� Iþ 1:25 sin

1

7p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �� �
½Iþ 0:75ðM�1KÞ3=2� ð24Þ

as the identified damping matrix. Using the numerical values of M and K from Example 1 we obtain

C ¼

2:3323 0:9597 1:4255

0:9597 3:5926 3:7624

1:4255 3:7624 7:8394

264
375� 10�2. (25)

If we recalculate the damping factors from the above constructed damping matrix, it will produce three points
corresponding to the three natural frequencies which will exactly match with our initial curve as shown in
Fig. 1.

The method outlined here can produce accurate damping matrix if the modal damping factors are known.
All polynomial fitting methods can be employed to approximate bf ðoÞ and one can construct a damping matrix
corresponding to the fitted function by the procedure outlined here. As an example, if 2zjoj can be represented
in a Fourier series

2zjoj ¼
a0

2
þ
X1
r¼1

ar cos
2proj

O

� �
þ br sin

2proj

O

� �� �
, (26)

then the damping matrix can also be expanded in a Fourier series as

C ¼M
a0

2
Iþ

X1
r¼1

ar cos 2prO�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �
þ br sin 2prO�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �h i !
. (27)

The damping identification procedure itself does not introduce significant errors as long as the modes are not
highly complex. From Eq. (21) it is obvious that the accuracy of the fitted damping matrix depends heavily on
the accuracy of the mass and stiffness matrix models. In summary, this identification procedure can be
described by the following steps:
(1)
 Measure a suitable transfer function HijðoÞ by conducting vibration testing.

(2)
 Obtain the undamped natural frequencies oj and modal damping factors zj, for example, using the circle-

fitting method.

(3)
 Fit a function z ¼ bf ðoÞ which represents the variation of zj with respect to oj for the range of frequency

considered in the study. ffiffiffiffiffiffiffiffiffiffiffiffiffip

(4)
 Calculate the matrix T ¼ M�1K.

(5)
 Obtain the damping matrix using bC ¼ 2MTbf ðTÞ.

Most of the currently available finite element based modal analysis packages usually offer Rayleigh’s
proportional damping model or a constant damping factor model. A generalized proportional damping model
together with the proposed damping identification technique can be easily incorporated within the existing
tools to enhance their damping modelling capabilities without using significant additional resources.

4.2. Comparison with the existing methods

The proposed method is by no means the only approach to obtain the damping matrix within the scope of
proportional damping assumption. Géradin and Rixen [13] have outlined a systematic method to obtain the
damping matrix using Caughey series (5). The coefficients aj in series (5) can be obtained by solving the linear
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system of equations

Wa ¼ fv, (28)

where

W ¼
1

2

1

o1
o1 o3

1 � � �o2N�3
1

1

o2
o2 o3

2 � � �o2N�3
2

..

. ..
. ..

. ..
.

1

oN

oN o3
N � � �o2N�3

N

266666666664

377777777775
; a ¼

a1
a2

..

.

aN

8>>>><>>>>:

9>>>>=>>>>; and fv ¼

z1
z2

..

.

zN

8>>>>><>>>>>:

9>>>>>=>>>>>;
. (29)

The mass and stiffness matrices and the constants aj calculated from the preceding equation can be substituted
in Eq. (5) to obtain the damping matrix. Géradin and Rixen [13] have mentioned that the coefficient matrix W

in Eq. (29) becomes ill-conditioned for systems with well separated natural frequencies.
Another simple, yet very general, method to obtain the proportional damping matrix is by using the inverse

modal transformation method. Adhikari and Woodhouse [4] have also used this approach in the context of
identification of non-proportionally damped systems. From experimentally obtained modal damping factors
and natural frequencies one can construct the diagonal modal damping matrix C0 ¼ UTCU as

C0 ¼ 2fX. (30)

From this, the damping matrix in the original coordinate can be obtained using the inverse transformation as

C ¼ U�TC0U�1. (31)

The damping matrix identification using Eq. (31) is essentially numerical in nature. In that it is difficult to
visualize any underlying structure of the modal damping factors of a particular system. With the proposed
method it is possible to identify the proportional damping functions corresponding to several standard
components such as damped beams, plates and shells, and investigate if there are any inherent functional
forms associated with them. It will be particularly useful if one can identify typical functional forms of modal
damping factors associated with different structural components.

For a given structure, if the degrees-of-freedom of the finite element (FE) model and experimental model (that is,
the number of sensors and actuators) are the same, Eq. (31) and the proposed method would yield similar damping
matrices. Usually the numerical model of a structure has more degrees-of-freedom compared to the degrees-of-
freedom of the experimental model. With the conventional modal identification method it is also difficult to
accurately estimate the modal parameters (natural frequencies and damping factors) beyond the first few modes.
Suppose the numerical model has dimension N and we have measured the modal parameters of first noN number
of modes. The dimension of C0 in Eq. (30) will be n� n, whereas for further numerical analysis using FE method
we need the C matrix to be of dimension N �N. This implies that there is a need to extrapolate the available
information. If the modal matrix from an FE model is used, one way this can be achieved is by using an N � n

rectangular U matrix in Eq. (31), where the n columns of U would consist of the mode shapes corresponding to the
measured modes. Since U becomes a rectangular matrix, a pseudo-inverse is required to calculate U�T and U�1 in
Eq. (31). Because pseudo-inverse of a matrix essentially arises from a least-square error minimization, it would
introduce unquantified errors in the modal damping factors associated with the higher modes (which have not been
measured). The proposed method handles this situation in a natural way. Since a continuous function has been
fitted to the measured damping factors, the method would preserve the functional trend to the higher modes for
which the modal parameters have not been measured. This property of the proposed identification method is
particularly useful provided the modal damping factors of the structure under investigation do not show
significantly different behavior in the higher modes. These issues are clarified in the following example.

Example 4. A partly damped linear array of spring-mass oscillator is considered to illustrate the application of
proposed damping identification method. The objective of this study is to compare the performance of the
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Fig. 2. Linear array of N spring-mass oscillators, N ¼ 30, m ¼ 1kg, k ¼ 3:95� 105 N=m. Dampers are attached between 8th and 23rd

masses with c ¼ 40N s=m.

Table 1

Natural frequencies (Hz) and modal damping factors for the first 10 modes

Modes 1 2 3 4 5 6 7 8 9 10

Natural 10.1326 20.2392 30.2938 40.2707 50.1442 59.8890 69.4800 78.8927 88.1029 97.0869

frequencies

(oj=2p)

Damping 0.0005 0.0032 0.0057 0.0060 0.0067 0.0095 0.0117 0.0117 0.0125 0.0155

factors
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proposed method with existing methods. The system, together with the numerical values assumed for different
parameters, is shown in Fig. 2.

The mass matrix of the system has the form M ¼ mI where I is the N �N identity matrix. The stiffness
matrix of the system is given by

K ¼ k

2 �1

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

. .
. . .

.
�1

�1 2

266666666664

377777777775
. (32)

Some of the masses of the system shown in Fig. 2 have viscous dampers connecting them to each other. The
damping matrix C has similar form to the stiffness matrix except that it has non-zero entries corresponding to
the masses attached with the dampers only. With such a damping matrix it is easy to verify that the system is
actually non-proportionally damped. For numerical calculations, we have considered a 30-degree-of-freedom
system so that N ¼ 30. Values of the mass and stiffness associated with each unit are assumed to be the same
with numerical values of m ¼ 1 kg and k ¼ 3:95� 105 N=m. The resulting undamped natural frequencies then
range from approximately 10 to 200Hz. The value c ¼ 40N s=m has been used for the viscous damping
coefficient of the dampers.

We consider a realistic situation where the modal parameters of only the first 10 modes are known.
Numerical values of oj and zj for the first 10 modes are shown in Table 1. Because the system is non-
proportionally damped, the complex eigensolutions are obtained using the state-space analysis (see Ref. [10],
for example) and the modal damping factors are calculated from the complex eigenvalues as
zj ¼ �ReðljÞ=jImðljÞj.

Using this data, the following three methods are used to fit a proportional damping model:
(a)
 method using Caughey series,

(b)
 inverse modal transformation method,

(c)
 the method using generalized proportional damping.
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The modal damping factors corresponding to the higher modes, that is, from mode number 11 to 30, are
available from simulation results. The aim of this example is to see how the modal damping factors obtained
using the identified damping matrices from the above three methods compare with the ‘true’ modal damping
factors corresponding to the higher modes.

For the method using Caughey series, it has not been possible to obtain the constants aj from Eq. (28)
since the associated W matrix becomes highly ill-conditioned. Numerical calculation shows that the 10� 10
matrix W has a condition number of 1:08� 1051. To apply the inverse modal transformation method,
only the first 10 columns of the analytical modal matrix U are retained in the truncated modal matrixbU 2 R30�10. Using the pseudo-inverse, the damping matrix in the original coordinate has been obtained from
Eq. (31) as

C ¼ ½ðbUT bUÞ�1 bUT�T½2fX�½ðbUT bUÞ�1 bUT�. (33)

From the identified C matrix, the modal damping factors are recalculated using

f ¼ 1
2
½UTCU�X�1, (34)

where U is the full 30� 30 modal matrix.
Now consider the proposed method using generalized proportional damping. Using the data in Table 1,

Fig. 3 shows the variation of modal damping factors for the first 10 modes.
Looking at the pattern of the curve in Fig. 3 we have selected the function bf ð�Þ as

z ¼ bf ðoÞ ¼ y1oþ y2 sinðy3oÞ, (35)

where yi; i ¼ 1; 2; 3, are undetermined constants. Using the data in Table 1 together with a nonlinear least-
square error minimization approach results

y1 ¼ 0:0245� 10�3; y2 ¼ �0:5622� 10�3 and y3 ¼ 9:0. (36)
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Fig. 3. Modal damping factors for the first 10 modes; –�– original, � � � 	 � � � fitted generalized proportional damping function.
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Fig. 4. Modal damping factors for all 30 modes; –�– original, .-.&.-. fitted using inverse modal transformation, � � � 	 � � � fitted using

generalized proportional damping.
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Recalculated values of zj using this fitted function is compared with the original function in Fig. 3. This simple
function matches well with the original modal data. Note that neither the function in Eq. (35) nor the
parameter values in Eq. (36) are unique. One can use more complex functions and sophisticated parameter
fitting procedures to obtain more accurate results.

The damping matrix corresponding to the fitted function in Eq. (35) can be obtained using Eq. (21) as

C ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p bf ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �
¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p
y1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p
þ y2 sin y3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �h i
¼ 2y1Kþ 2y2M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p
sin y3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1K

p� �
. ð37Þ

The first part of the C matrix in Eq. (37) is stiffness proportional and the second part is mass proportional in
the sense of generalized proportional damping.

As mentioned earlier, the aim of this study is to see how the different methods work when modal damping
factors are compared against a full set of 30 modes. In Fig. 4, the values of zj obtained by the inverse modal
transformation method in Eq. (34) are compared with the original damping factors for all the 30 modes
calculated using complex modal analysis. As expected, there is a perfect match with the original damping
factors for the first 10 modes. However, beyond the first 10 modes the damping factors obtained using the
inverse modal transformation method do not match with the true damping factors. This is also expected since
this information has not been used in Eqs. (33) and (34) and the method itself is not capable of extrapolating
the available modal information.

Modal damping factors using the fitted function in Eq. (35) are also shown in Fig. 4 for all 30 modes. The
‘predicted’ damping factors for modes 11–30 matched well with the original modal damping factors. This is
due to the fact that the pattern of the variation of modal damping factors with natural frequencies does not
change significantly beyond the first 10 modes and hence the fitted function provides a good description of the
variation. This study demonstrates the advantage of using generalized proportional damping over the
conventional proportional damping models.
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5. Damping modelling of complex systems

The method proposed in the previous section is ideally suitable for small structures for which ‘global’
measurements can be obtained. For a large complex structure such as an aircraft, neither the global vibration
measurements nor the processing of global mass and stiffness matrices in the manner described earlier is
straightforward. However, it is possible to identify the generalized proportional damping models for different
components or substructures chosen suitably. For example, to model the damping of an aircraft fuselage one
could fit generalized proportional damping models for all the ribs and panels by testing them separately and
then combine the element (or substructure) damping matrices in a way similar to the assembly of the mass and
stiffness matrices in the standard finite element method. The overall damping modelling procedure can be
described as follows:
(1)
 Divide a structure into m elements/substructures suitable for individual vibration testing.

(2)
 Measure a transfer function H

ðeÞ
ij ðoÞ by conducting vibration testing of eth element/substructure.
(3)
 Obtain the undamped natural frequencies oðeÞj and modal damping factors zðeÞj for eth element/
substructure.
(4)
 Fit a function zðeÞ ¼ bf ðeÞðoÞ which represents the variation of damping factors with respect to frequency for
the eth element/substructure. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
(5)
 Calculate the matrix TðeÞ ¼ M�1ðeÞKðeÞ.

(6)
 Obtain the element/substructure damping matrix using the fitted proportional damping function asbCðeÞ ¼ 2MðeÞTðeÞbf ðeÞðTðeÞÞ.

(7)
 Repeat steps from 2 to 6 for all e ¼ 1; 2; . . . ;m.P

(8)
 Obtain the global damping matrix as bC ¼ m

e¼1
bCðeÞ. Here the summation is over the relevant degrees-of-

freedom as in the standard finite element method.
It is anticipated that the above procedure would result in a more realistic damping matrix compared to simply
using the damping factors arising from global vibration measurements. Using this approach, the damping
matrix will be proportional only within an element/substructure level. After the assembly of the element/
substructure matrices, the global damping matrix will in general be non-proportional. Experimental and
numerical works are currently in progress to test this method for large systems.
6. Conclusions

A method for identification of damping matrix using experimental modal analysis has been proposed. The
method is based on generalized proportional damping. The generalized proportional damping expresses the
damping matrix in terms of smooth continuous functions involving specially arranged mass and stiffness
matrices so that the system still possesses classical normal modes. This enables one to model variations in the
modal damping factors with respect to the frequency in a simplified manner. Once a scalar function is fitted to
model such variations, the damping matrix can be identified very easily using the proposed method. This
implies that the problem of damping identification is effectively reduced to the problem of a scalar function
fitting. The method is simple and requires the measurement of damping factors and natural frequencies only.
The proposed method is applicable to any linear structures provided accurate mass and stiffness matrices are
available and the modes are not significantly complex. If a system is heavily damped and modes are highly
complex, the proposed identified damping matrix can be a good starting point for more sophisticated analyses.
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Appendix A. The proof of Theorem 2

Consider the ‘if’ part first. Suppose U is the mass normalized modal matrix and X is the diagonal matrix
containing the undamped natural frequencies. By the definitions of these quantities we have

UTMU ¼ I (A.1)

and

UTKU ¼ X2. (A.2)

From these equations one obtains

M ¼ U�TU�1; K ¼ U�TX2U�1, (A.3)

M�1K ¼ UX2U�1 and K�1M ¼ UX�2U�1. (A.4)

Because the functions b1ð�Þ and b2ð�Þ are assumed to be analytic in the neighborhood of all the eigenvalues of
M�1K and K�1M, respectively, they can be expressed in polynomial forms using the Taylor series expansion.
Following Bellman [14, Chapter 6] we may obtain

b1ðM
�1KÞ ¼ Ub1ðX

2
ÞU�1 (A.5)

and

b2ðK
�1MÞ ¼ Ub2ðX

�2
ÞU�1. (A.6)

A viscously damped system will possess classical normal modes if UTCU is a diagonal matrix. Considering
expression (a) in the theorem and using Eqs. (A.3) and (A.4) we have

UTCU ¼ UT½Mb1ðM
�1KÞ þ Kb2ðK

�1MÞ�U

¼ UT½U�TU�1b1ðM
�1KÞ þU�TX2U�1b2ðK

�1MÞ�U. ðA:7Þ

Utilizing Eqs. (A.5) and (A.6) and carrying out the matrix multiplications, Eq. (A.7) reduces to

UTCU ¼ ½U�1Ub1ðX
2
ÞU�1 þX2U�1Ub2ðX

�2
ÞU�1�U

¼ b1ðX
2
Þ þX2b2ðX

�2
Þ. ðA:8Þ

Eq. (A.8) clearly shows that UTCU is a diagonal matrix.
To prove the ‘only if’ part, suppose

P ¼ UTCU (A.9)

is a general matrix (not necessary diagonal). Then there exists a non-zero matrix S such that (similarity
transform)

S�1PS ¼ D, (A.10)

where D is a diagonal matrix. Using Eqs. (A.8) and (A.9) we have

S�1D1S ¼ D, (A.11)

where D1 is another diagonal matrix. Eq. (A.11) indicates that two diagonal matrices are related by a
similarity transformation. This can only happen when they are the same and the transformation matrix is an
identity matrix, that is, S ¼ I. Using this in Eq. (A.10) proves that P must be a diagonal matrix.
References

[1] L. Rayleigh, Theory of Sound ðtwo volumesÞ, 1945th ed., Dover Publications, New York, 1877.

[2] T.K. Caughey, M.E.J. O’Kelly, Classical normal modes in damped linear dynamic systems, Transactions of ASME, Journal of Applied

Mechanics 32 (1965) 583–588.



ARTICLE IN PRESS
S. Adhikari / Journal of Sound and Vibration 293 (2006) 156–170170
[3] M. Imregun, D.J. Ewins, Complex modes—origin and limits, in: Proceedings of the 13th International Modal Analysis Conference

(IMAC), Nashville, TN, 1995, pp. 496–506.

[4] S. Adhikari, J. Woodhouse, Identification of damping: part 1, viscous damping, Journal of Sound and Vibration 243 (1) (2001) 43–61.

[5] S. Adhikari, J. Woodhouse, Identification of damping: part 2, non-viscous damping, Journal of Sound and Vibration 243 (1) (2001)

63–88.

[6] S. Adhikari, Optimal complex modes and an index of damping non-proportionality, Mechanical System and Signal Processing 18 (1)

(2004) 1–27.

[7] S.R. Ibrahim, Computation of normal modes from identified complex modes, AIAA Journal 21 (3) (1983) 446–451.

[8] S.Y. Chen, M.S. Ju, Y.G. Tsuei, Extraction of normal modes for highly coupled incomplete systems with general damping,

Mechanical Systems and Signal Processing 10 (1) (1996) 93–106.

[9] E. Balmès, New results on the identification of normal modes from experimental complex modes, Mechanical Systems and Signal

Processing 11 (2) (1997) 229–243.

[10] D.E. Newland, Mechanical Vibration Analysis and Computation, Longman, Harlow, Wiley, New York, 1989.

[11] T.K. Caughey, Classical normal modes in damped linear dynamic systems, Transactions of ASME, Journal of Applied Mechanics 27

(1960) 269–271.

[12] E. Kreyszig, Advanced Engineering Mathematics, eighth ed., Wiley, New York, 1999.
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