
AIAA Journal
vol. 40, no. 5, May 2002

Single- and Multi-Celled Composite
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A simple composite beam theory that contains only the four “classical” beam variables is con-
structed from a general variational-asymptotic framework. The results of the theory are contained in
closed-form expressions for the stiffness matrices of single- and double-celled composite thin-walled
beams. The accuracy of the approach is demonstrated by several examples. The most important
feature of these solutions, which distinguishes them from those previously published in the litera-
ture, is that shell bending strain measures are consistently taken into consideration. This is shown
to be important for correct treatment of certain closed-cell configurations, the torsional stiffness of
which can be off by a factor of two when bending strain measures or hoop moments are neglected.
Correlation of the present formulae with finite element analysis is demonstrated to be excellent.

Background and Present Approach
Despite the advent of cheap computer power, a simple an-

alytical beam theory can still be quite beneficial for several
reasons. First, having more variables in the analysis than
necessary can obscure a clear understanding of phenomena
being studied. Moreover, preliminary calculations may span
a vast design space or interface with other disciplines, which
may necessitate keeping the information about the elastic
deformation in a maximally compressed form (such as in dy-
namics, control or aeroelastic analysis of rotorcraft). This
paper demonstrates that, contrary to a widespread belief,
there is still some room in improving on the existing simple
composite beam theories (i.e., the ones that contain only
the four “classical” beam variables). Such an improvement
can be important, since only when a simple beam theory
is free from internal flaws can its comparison with refined
theories (i.e., those with a larger number of variables) truly
attest to the need of those theories in specific situations.

The following discussion is restricted to the theory of
prismatic beams for which the 3-D constitutive law and
strain-displacement relationships can be considered linear.
Beam theories are associated with the introduction of vari-
ables that depend only on the coordinate along the beam
axis, which is denoted below as x1. For a general type of
deformation, at least four such 1-D variables have to be
introduced: extensional, U1; torsional, θ; and two bending
variables, U2 and U3 (corresponding to transverse deflec-
tions in two orthogonal directions). The corresponding 1-D
governing equations are uncoupled for isotropic beams with
doubly symmetric cross sections and correspond to Euler-
Bernoulli theory for extension and bending and St.-Venant
theory for torsion. When this theory is extended to com-
posite beams, the governing equations become elastically
coupled due to the appearance of off-diagonal terms in the
cross-sectional stiffness matrix, which we denote by Cab.
This 4×4 matrix characterizes the elastic properties of the
beam, and the strain energy per unit length is expressed in
terms of the four 1-D generalized strain measures as

2Fclassical = αaCabαb (1)

where αT = �U ′1 U ′′2 U ′′3 θ′� and where ( )′ denotes
the derivative with respect to the axial coordinate x1. For
thin-walled beams this problem was first posed in Ref. 1.
However, the approach employed therein led to a compli-
cated set of equations, especially in the case of closed cross
sections. The solution of those equations was presented only
for a special type of 3-D constitutive equations.
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The introduction of the variational-asymptotic method in
context of anisotropic beams2 allowed for the treatment of
this problem from a different perspective: without making
any ad hoc assumptions, beam theory can be obtained from
3-D elasticity by making use of the small parameter a

�
<< 1.

Here a is a characteristic dimension of the cross section, and
	 is the wavelength of deformation along the beam reference
line.

For a general cross section the problem is reduced to a
system of 2-D equations on a cross section. The develop-
ment of a numerical solution to this problem is presented in
Ref. 3. This solution renders results that correlate very well
with those of the numerical procedure outlined in Ref. 4,
which relies on the equilibrium equations. Both procedures
are based on 2-D finite element cross-sectional discretization
and, when the cross-sectional stiffness constants and recov-
ering relations are used in beam theory, the results correlate
very well with 3-D elasticity and finite element solutions.

When applying the variational-asymptotic procedure to
thin-walled cross sections, one can take advantage of an-
other small parameter, h

a
<< 1, where h is a wall thickness.

When the asymptotic procedure with respect to h
a

is applied
directly to the 2-D cross-sectional problem, in some cases so-
lutions can be obtained in closed form for the cross-sectional
elastic constants. As opposed to starting with 3-D elastic-
ity, one can also start with shell theory. Rather than having
to solve a 2-D problem over the cross-sectional plane, one
instead solves a 1-D problem over the contour of the thin
walls. Both approaches lead to the same final results, but
the latter procedure is much simpler algebraically.

The latter procedure was used in Refs. 5 and 6 to ob-
tain analytical solutions for closed single- and double-celled
sections, respectively. The resulting cross-sectional stiff-
ness formulas published in that paper are easy to use and
they provide reasonable results for most thin-walled beams.
However, shell bending strain measures were neglected in
those papers. Similar final formulae can also be obtained
from Ref. 7, where equilibrium equations were employed
and only shell membrane strain measures were considered as
well. An alternative way of treating bending strain measures
is to employ the thin-walled beam analog of the uniax-
ial stress hypothesis, which sets hoop stress resultants and
hoop moments to zero (for example, see Refs. 8–11). For
most layups all of these theories render practically identi-
cal results, which might explain why the deficiency of those
theories described in this paper was not realized earlier.
However, as shown below, for certain material properties
the deviation of all those results from the asymptotically
correct results might be significant. Finally, a general pro-
cedure was provided in Ref. 12 that allows one to obtain the
results presented here.
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Fig. 1 Configuration and Coordinate system

Solution for Single Cell
In order to employ shell theory for thin-walled beams

that have cross sections with curved contours, we introduce
R, the characteristic radius of curvature of the undeformed
shell mid-surface. Next, we assume h << a,R and make
no assumptions about the relative orders of a and R. The
cross-sectional Cartesian coordinates are x2 and x3. Also,
a curvilinear system of cross-sectional coordinates is intro-
duced (see Fig. 1) with ξ and s being the through-thickness
and contour coordinates, respectively. In the analysis that
follows, vectors are denoted in bold type. With r = xixi
representing a position vector to the shell midsurface, the
notation to be used is

˙( ) ≡ d( )

ds
( )′ ≡ d( )

dx1

R = ẋ2/ẍ3 = −ẋ3/ẍ2

τ = ṙ = ẋ2x2 + ẋ3x3

n = τ × x1 = ẋ3x2 − ẋ2x3

rτ = τ · r = ẋ2x2 + x3ẋ3

rn = n · r = x2ẋ3 − x3ẋ2

(2)

Curvilinear displacements vi are expressed in terms of
Cartesian displacements ui as

v1 = u1

v2 = u2ẋ2 + u3ẋ3

v3 = u2ẋ3 − u3ẋ2

(3)

where index 1 refers to the coordinate along the axis of the
beam, index 2 to the (curvilinear) contour coordinate, and
index 3 to the through-thickness coordinate. The beam is
considered as a cylindrical shell, so that that there are six
shell strain measures:13–15

γ11 = v1,1 ρ11 = v3,11

2γ12 = v1,2 + v2,1

ρ12 = v3,12 +
1

4R
(v1,2 − 3v2,1)

γ22 = v2,2 +
v3

R

ρ22 = v3,22 −
(v2

R

)
,2

(4)

where the comma refers to the derivative in the appropriate
direction, while γT = �γ11 γ22 2γ12� and ρT = �ρ11 ρ22 ρ12�
are membrane and bending/twisting shell strain measures,
respectively. (The latter are asymptotically equivalent to
the three deformed shell curvature measures �κ11 κ22 κ12�.)

The strain energy density of the shell is a quadratic form
of membrane and bending measures. Another way to put
it is to say that for a generally anisotropic shell, these six
strain shell measures are connected with stress resultants
NT = �N11 N22 N12� and moments MT = �M11 M22 M12�

in general by a fully populated 6×6 stiffness matrix:

2Eshell = hEαβγδ
e γαβγγδ + h3Eαβγδ

b yραβργδ+

+2h2Eαβγδ
eb γαβργδ

(5)

where Greek indices vary from 1 to 2; Eαβγδ
e and Eαβγδ

b
are 2-D material constants corresponding to membrane and
bending deformation, respectively; and Eαβγδ

eb corresponds
to the coupling between these two types of deformation.
Explicit formulae for these constants are found in the Ap-
pendix.

For the following discussion it is convenient to rewrite
Eq. (5) as

2Eshell = ψiQijψj + 2φiSijψj + φiPijφj (6)

where ψT ≡ �γ11 hρ11 hρ12�, and φT ≡ �γ12 γ22 hρ22�;
i,j=1,2,3 and 3×3 matrices Qij , Sij , and Pij are correspond-

ing combinations of Eαβγδ
e , Eαβγδ

eb , and Eαβγδ
b (explicit ex-

pressions for these matrices are given in the Appendix).
Consistently using the above-mentioned small parame-

ters, a
�

and h
a
, it follows from application of the variational-

asymptotic method12 that the shell strain measures are
functions of the four classical beam variables: three trans-
lations Ui(x1) of a cross section in the xi direction and
one rotation θ of a cross section about x1. Furthermore,
for closed sections, finding the expressions for those shell
strain measures leads to the following conclusions: γ11 =
U ′1 − x2U

′′
2 − x3U

′′
3 is known (and obvious); ρxx and ρxs

are small and can be neglected (note that the latter term
cannot be neglected for open sections), while γxs, γss and
ρss are unknowns that can be found by minimizing the
energy. Since the energy is a quadratic function of the
unknowns, this minimization is straightforward. The only
subtlety of the analysis stems from the fact that for each
cell of the cross section, four constraints must be imposed
on the unknowns. These constraints follow from the re-
quirement that the Cartesian displacements and the slope
of the contour in the cross-sectional plane be single-valued.
Thus, Ξ ≡ hŵ3,2 − hŵ2/R, so that Ξ,2 = φ3. Clearly∮

φ3ds ≡
∮

Ξ,2ds = 0. Next,
∮

u1,2ds =
∮

ŵ1,2ds = 0,

so that
∮

φ1ds = θ′
∮

rnds. The other two constraints are a
bit less straightforward. However, as shown in Ref. 12 the
requirement that the two in-plane Cartesian coordinates u2

and u3 be single-valued is equivalent to∮
ẋαΞds = 0 or

∮
xαφ3ds = 0 (7)

Therefore, for a single-cell cross section, the functional to
be minimized has the form

2Λ =

∮ [
ψ

2

1Q11 + 2φiSi1ψ1 + φiPijφj+

+ 2λ1(φ1 + θ′rn) + 2φ3(λαxα + λ4)
]
ds (8)

where λa are Lagrange multipliers; here and below a =
1, . . . , 4. Then the solution is given by

φi = −ciψ1 − P−1
ij tj where ci ≡ P−1

ij Sj1 (9)

Here tT = �λ1, 0, (λαxα + λ4)�.
Recalling that each Lagrange multiplier is a function of

the four 1-D generalized strain measures αa, we can explic-
itly write a system of 4 linear equations for the Lagrange
multipliers: Fλ = Jα, so that λ = F−1Jα. The Appendix
provides explicit expressions for F and J . After substitut-
ing the expression found for the Lagrange multipliers into
Eq. (9) and the result into Eq. (8) we obtain the final ex-
pression for the strain energy per unit length:

2Λ =

∮ [
ψ

2

1

(
Q11 − Si1P

−1
ij Sj1

)
+ tiP

−1
ij tj

]
ds (10)
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Table 1 Properties of thin-walled box-beams used in
the examples

outer dimensions: width a = 0.953 in
wall thickness: h = 0.03 height b = 0.53 in

layup:
right wall CAS1: [θ/− θ]3

upper wall CAS1: [θ]6
left wall CAS1: [−θ/θ]3

lower wall CAS1: [−θ]6
right and upper walls CAS2: [θ3/− θ3]

left and lower walls CAS2: [−θ3/θ3]
right and left walls CAS3: [θ3/− θ3]

upper and lower walls CAS3: [−θ3/θ3]
material properties: El = 20.59× 106 psi
Et = 1.42× 106 psi Glt = 8.9× 105 psi

Gtn = 6.96× 105 psi νlt = νtn = 0.42

It must be noted that the most computationally intensive
aspect of this procedure is the solution of the linear system
of equations for the Lagrange multipliers. However, there is
no known shortcut for the correct solution, and approximate
solutions based on some simplification will inevitably fail for
some configurations, as shown below.

Most researchers neglect all shell bending strain measures
for closed sections; see, for example, Refs. 5 and 16. This
would seem to be logical since ρxs and ρxx are small. More-
over, for Circumferentially Uniform Stiffness (CUS) beams,
the approach of Ref. 5 yields the results that are practi-
cally indistinquishable from the asymptotically correct ones.
However, for certain layups, such as those with Circumferen-
tially Asymmetric Stiffness (CAS) construction, ρss cannot
be neglected without introducing significant errors.

To illustrate this, let us first consider the thin-walled box-
beam CAS1, the properties of which are given in Table
1. Note that the normal to each wall is directed outward
and from the bottom to the top ply. Experimental results
were reported17 for this box-beam configuration, and an-
alytical theories are customarily correlated against those
results.5,16,18 All analytical solutions are compared to re-
sults from VABS, a computer code that performs a 2-D finite
element analysis of the cross section3 as well as SVBT, also a
cross-sectional finite element analysis code that is based on
the theory developed in Ref. 4. For all cases considered the
finite element codes render results that are indistinguishable
from each other within plotting precision.

Figs. 2 and 3 show tip bending slope and tip torque, re-
spectively, under the unit shear lead for a cantilevered beam
(l = 30 in). As can be seen from these figures, considered
lay-up is not sensitive to the presence of shell bending strain
measures, and all theories yield practically identical results
that correlate very well to the numerical results. However,
as the following example shows, this is not always the case.

Let us now consider another layup, CAS2 (see Table 1).
In the thin-walled approximation, the coupling for this case
is negligible, which results in a diagonal 4×4 cross-sectional
stiffness matrix. Note the upper curve in Fig. 4, that is
calculated using the analysis from Ref. 5, which severely
overpredicts the torsional rigidity.

Although the uniaxial stress hypothesis is asymptotically
correct for classical theory of isotropic beams, it can lead
to serious errors in the analysis of composite beams.19 For
thin-walled composite beams, for which the analogous as-
sumption is to set Nss = Mss = 0, this assumption this
is also true. Results for the torsional rigidity are plotted
in Fig. 4. These results demonstrate the consequences of
this assumption, which are not negligible at all. Indeed, the
torsional rigidity is severely underpredicted when this as-
sumption is invoked for the box-beam CAS2. If we consider
a slightly different lay-up CAS3, see Table 1, the situation
is similar, but neglecting ρ22 leads to even more severe over-
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Fig. 5 Torsional Rigidity of Box-Beam, CAS2
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Fig. 6 Direction of integration for a double cell

prediction of the torsional rigidity. According to Fig. 5, for
60◦ it predicts more than twice the actual rigidity. In this
particular case, however, setting Nss = Mss = 0 does not
introduce as large an error.

Double-Cell Formulae

Following the same procedure as the one for a single cell,
we have to integrate along the entire contour and introduce
four Lagrange multipliers for each cell; therefore, for two
cells there will be eight Lagrange multipliers altogether. It
must be emphasized that the direction of the integration
must be consistent throughout the entire contour. For ex-
ample, one can choose the direction presented in Fig. 6, and
impose constraints over the outside cell 1 + 2 and the right
cell 2+3. One could reverse the direction of integration over
the middle wall and then choose constraints for the outside
cell and the left cell, but choosing constraints for left and
right cell so that the middle member will be integrated in
the opposite direction for the right and left cell respectively
will obviously lead to incorrect results. Note that such a
convention is different from the one used in traditional text-
books where each cell is treated separately so that no global
consistency in the direction of integration is required (see
Refs. 20 and 21). Thus, the following constraints must be

enforced:∮
1+2

φ1ds =

∮
1+2

θ′rnds and

∮
2+3

φ1ds =

∮
2+3

θ′rnds∮
1+2

φ3ds = 0 and

∮
2+3

φ3ds = 0∮
1+2

xαφ3ds = 0 and

∮
2+3

xαφ3ds = 0

(11)

and the functional to be minimized has the following form:

2Λ =

∫
1+2+3

[
ψ

2

1Q11 + 2φiSi1ψ1 + φiPijφj
]
ds+

+

∮
1+2

[
2λ1(φ1 + θ′rn) + 2φ3(λαxα + λ4)

]
ds+

+

∮
2+3

[
2λ5(φ1 + θ′rn) + 2φ3(λ6x2 + λ7x3 + λ8)

]
ds

(12)

Similar to the single-cell case, the solution is given by

φi = −ciψ1 − P−1
ij tj where ci ≡ P−1

ij Sj1 (13)

Here, t has a different form for each contour. For contour 1

tT = �λ1, 0, λαxα + λ4� (14)

For contour 2

tT = �λ1 +λ5, 0, (λ2 +λ6)x2 +(λ3 +λ7)x3 +λ4 +λ8� (15)

and finally, for contour 3

tT = �λ5, 0, λ6x2 + λ7x3 + λ4� (16)

Recalling that each Lagrange multiplier is a function of
four generalized 1-D strain measures αa, we can explicitly
write a system of eight linear equations for the Lagrange
multipliers, namely Fdλ = Jdα, so that λ = F−1

d Jdα. Matri-
ces Fd and Jd are constructed in exactly in the same fashion
as for a single cell: Fd is an 8×8 matrix (the expression for

4×4 matrix F̃ is given in Eq. A.6):

Fd =

[∮
1+2

F̃ ds
∫
2
F̃ ds∫

2
F̃ ds

∮
2+3

F̃ ds

]
(17)

and Jd is a 4×8 matrix (the expression for the 4×4 matrix

J̃ is given in Eq. A.7):

Jd =

[∮
1+2

J̃ds∮
2+3

J̃ds

]
(18)

Substituting the results into Eq. (12), we obtain the final ex-
pression for the double-celled strain energy per unit length:

2Λ =

∫
1+2+3

[
ψ

2

1

(
Q11 − Si1P

−1
ij Sj1

)
+ tiP

−1
ij tj

]
ds (19)

As a numerical example, consider a double-celled beam.
Let us introduce a vertical wall or mid-web in the middle
of the box-beam CAS3 with the same width and lay-up as
the vertical walls, and see how the torsional rigidity is pre-
dicted by the current theory. Qualitatively the situation is
similar to the single cell: as expected, there is a very good
correlation between the present thin-walled theory and nu-
merical results (see Fig. 7), while both the analysis from
Ref. 5 and setting hoop moments to zero result in serious
errors. Furthermore, it is remarkable to note that neither
of these approximations is sensitive to the introduction of
the mid-web at all (see Figs. 5 and 7), while the present



964 VOLOVOI AND HODGES

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

Ply Angle (degree)

T
or

si
on

al
 s

ti
ff

ne
ss

 (
N

-m
2)

Cross-sectional FEA
Asymptotic
No bending shell strains
No hoop moments

Fig. 7 Torsional rigidity of double cell, dependence on
the ply angle

analysis accurately picks up the increase in torsional stiff-
ness due to the mid-web. For comparison, it might be useful
to recall a familiar torsional behavior for isotropic beams of
the same geometry. In this case, the torsional (St. Venant)
warping is out-of-plane and not affected by the presence of
the mid-web; indeed, in the thin-walled approximation, the
mid-web does not deform when the beam is twisted. There-
fore, the torsional rigidity is the same with or without the
mid-web. For the anisotropic lay-up under consideration, a
totally different situation can be observed from comparison
of the displacement fields with and without the mid-web (or
3-D warping) that were obtained numerically using SVBT.
In both cases the warping displacement fields are mainly
in-plane for this lay-up, and they are clearly affected by the
introduction of the mid-web (see Fig. 8). Effectively, the up-
per and lower walls undergo an in-plane bending, with the
mid-web introducing a middle node, which, naturally, leads
to an increase in rigidity. It is worth noting that this jump
in torsional rigidity is practically independent of the thick-
ness of the web, or of its material properties. Of course, one
has to remember that this is true only within the assump-
tions of linear theory, and in reality the issue of buckling of
the mid-web has to be dealt with. Still, the effect is quite
remarkable.

Multi-celled sections
Generalizing the formulae for multi-celled sections, it

must be recalled that since each cell provides four Lagrange
multipliers, the associated system of equations grows un-
wieldy quite fast. For an N -celled section, the 4N×4N
matrix that has to be inverted has a quite predictable struc-
ture: it consists of 4×4 blocks Fnm where n,m = 1, . . . , N
with boundaries ln obtained by integrating F̃ (s) along the
boundary of the cell for diagonal blocks and along the com-
mon boundary between cell n and cell m for off-diagonal
blocks:

Fnm =

{ ∮
ln

F̃ ds if n = m∫
ln∩lm F̃ ds if n �= m

(20)

If two cells do not have a common boundary, then the cor-
responding 4×4 block consists of zeros, and the solution of
this system is more tractable. For example, if we consider a
three-celled section in one row (see Fig. 9), then the corre-

Fig. 8 Cross-sectional displacement fields due to torsion
for single (above) and double (below) cells

3
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Fig. 9 Direction of integration for three cells

sponding matrix 12×12 F3 has a banded structure:

F3 =


∮
1+2

F̃ ds
∫
2
F̃ ds 0∫

2
F̃ ds

∮
2+3+4+5

F̃ ds
∫
5
F̃ ds

0
∫
5
F̃ ds

∮
5+6

F̃ ds

 (21)

. . . and J3 is 4×12 matrix:

J3 =


∮
1+2

F̃ ds∮
2+3+4+5

F̃ ds∮
5+6

F̃ ds

 (22)

However, there seems to be no shortcut if such common
boundaries are present. For example, consider the four-
celled section depicted in Fig. 10, in which case the matrix
F4 is 16×16 and not banded, such that

F4 =


∮
1+2+5

F̃ ds
∫
2
F̃ ds 0

∫
1
F̃ ds∫

2
F̃ ds

∮
2+3+6

F̃ ds
∫
3
F̃ ds 0

0
∫
3
F̃ ds

∮
3+4+7

F̃ ds
∫
4
F̃ ds∫

1
F̃ ds 0

∫
4
F̃ ds

∮
1+4+8

F̃ ds


(23)

Conclusion
A beam theory for thin-walled, multi-celled, anisotropic

beams with closed cross sections is constructed based on
shell theory. It is shown that local shell bending strain mea-
sures can be important for such beams. It is important to
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note that, to the best of the authors’ knowledge, there are no
published analytical theories for such beams that correctly
take into account the influence of these strain measures. Ex-
plicit formulae for the stiffnesses of single- and double-celled
sections are provided, along with examples. The correlation
with a finite-element-based solution is excellent. Although
the procedure can be applied to N -celled sections, in order
to find the formulae for the stiffnesses, one must symbol-
ically invert a 4N×4N matrix that might be not banded.
In this case the analytical solution becomes too cumber-
some, and one must resort to a numerical solution of these
equations. It must be emphasized that all existing theories
involve only one constraint per cell. However, if a correct
solution is desired, there seems to be no shortcut to taking
all four constraints per cell into consideration. It is useful
to note that the “zero shell bending strain” and “zero hoop
moment” approximations can be considered as upper and
lower bounds, respectively, for the asymptotically correct
stiffness constants. Obviously, this leads to a simple spot
check for potential errors. If both approximations lead to
the same results, then the cross-sectional constants are cal-
culated correctly. However, if there is a significant difference
between the two results, then a more accurate procedure is
needed. The asymptotic theory derived herein is feasible
provided the 4N×4N matrix can be inverted symbolically.
If not, a finite-element-based cross-sectional analysis must
be used.
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Appendix
2-D material constants are obtained from the reduced 3-D

material constants Dαβγδ by use of the relations⌊
Eαβγδ
e , Eαβγδ

eb , Eαβγδ
b

⌋
=

=
1

h

∫ h/2

−h/2
Dαβγδ

⌊
1,

ξ

h
,

(
ξ

h

)2
⌋

dξ
(A.1)

These constants are, in turn, obtained from the regular 3-D
constants as

Dαβγδ = Eαβγδ − Eαβ33Eγδ33

E3333
−HµλG

αβµGγδλ

where H−1
µλ = Eµ3λ3 − Eµ333 Eλ333

E3333

Gαβµ = Eαβµ3 − Eαβ33Eµ333

E3333

(A.2)

Regrouping the strain measures in order to write the energy
in the form of Eq. (6) yields the following expressions:

Q = h

 E1111
e hE1111

eb 2hE1112
eb

hE1111
eb h2E1111

b 2h2E1112
b

2hE1112
eb 2h2E1112

b 4h2E1212
b

 (A.3)

S = h

 E1112
e hE1112

eb 2hE1212
eb

E1122
e hE1122

eb 2hE1222
eb

hE1122
eb h2E1122

b 2h2E1222
b

 (A.4)

P = h

 E1212
e E1222

e hE1222
eb

E1222
e E2222

e hE2222
eb

hE1222
eb hE2222

eb h2E2222
b

 (A.5)

F =

∮
F̃ ds where

F̃ (s) = −


P−1

11 x2P
−1
13 x3P

−1
13 P−1

13

x2
2P
−1
33 x2x3P

−1
33 x2P

−1
33

x2
3P
−1
33 x3P

−1
33

Symm P−1
33

 (A.6)
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J =

∮
J̃ds where

J̃(s) =


c1 −x2c1 x3c1 2rn

x2c3 −x2
2c3 −x2x3c3 0

x3c3 −x2x3c3 −x2
3c3 0

c3 −x2c3 x3c3 0

 (A.7)


