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Abstract

The accuracy of rotor blade basis reduction hinges critically on how axial elongation is treated. This fact is
illustrated by analyzing an articulated rotorcraft blade using several blade formulations, and comparing their
basis reduction accuracies. It is shown that classical, displacement-based finite elements fail to accurately rep-
resent the blade’s axial strain when the blade’s basis is reduced because of ill conditioning caused by the near
inextensibility of the blade. This problem may be solved by introducing the axial force, or a related quantity,
as a variable in the analysis. The mixed finite-element method is the preferred approach for accomplishing this
because it imposes no restrictions on the model’s geometry, but it leads to additional degrees of freedom and
does not explicitly account for the nonlinear axial foreshortening effect. It is shown how both of these short-
comings may be removed by using the mixed element force equations to eliminate axial displacement degress of
freedom in favor of axial force and bending degrees of freedom. The elimination process is formulated first for
a single element, and then for an arbitrary assemblage of elements. In essence, the procedure may be viewed
as a generalization, to blades of arbitrary geometry, of the axial elongation variable, which is widely used by
rotorcraft analysts.

Introduction

The application of the finite-element method to rotorcraft analysis over the past two decades has removed the topo-
logical restrictions on the models that can be analyzed using older, first-generation rotorcraft codes. Although full
finite-element models may be preferred for final analyses for reasons of accuracy and reliability, it is often convenient
in earlier stages of the analysis to reduce the size of the model to a small number of generalized coordinates to im-
prove execution time or to assist in interpreting and understanding the results. The basis reduction process is typically
accomplished via the modal reduction method, which employs eigenmodes computed about some convenient state.
Unfortunately, it is often quite difficult to approximate blade response accurately using just a few eigenmodes when
the axial motion is parameterized using the Lagrangian axial displacement variable. The reason is that the near in-
extensibility of the blade nonlinearly couples the blade’s axial and bending motions and ill conditions the calculation
of the blade’s axial force. As a result, the blade’s axial displacement, and more importantly, the blade’s axial force,
may not be computed accurately. But since the blade’s bending stiffness is mostly geometric stiffness generated by
the axial force, incorrectly evaluating that quantity can lead to significant errors in blade response.

The computational problems caused by the axial displacement variable have long been recognized. The most common
remedy for these problems has been a change of variable, which parameterizes the axial displacement field with an
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axial elongation variable instead of the usual axial displacement variable. This variable is defined in terms of an
integral of the elongation of the reference line, but since the integrand cannot be obtained as the derivative of some
quantity, the variable may be viewed as a quasi-coordinate (analogous to the characterization of the integrals of certain
velocity variables in dynamics.) The approach goes back at least to Vigneron in the 1970’s (Refs. 1, 2) and has been
considered by numerous other investigations since then; see, for example, Refs. 3, 4, 5. Although the effectiveness
of this approach for modal expansion methods has been well documented, its inherently one-dimensional framework
may limit the structural geometries that it can be applied to. Also, the integral can complicate finite-element analyses
by causing a given degree of freedom to become explicitly coupled through the inertia terms to degrees of freedom
at locations further inboard. These undesriable features have spurred the search for alternative approaches. However,
Smith (Ref. 6) showed that modal reduction of a finite-element model could be facilitated by this change of variable.

Mixed finite elements, hereafter abbreviated as “mixed elements,” have been proposed for rotor blade analysis by
Hodges (Ref. 7). and by Bauchau and Guernsey (Ref. 8). In Ref. 8, the modal reduction accuracy of mixed elements
was studied, but disappointing results were obtained, especially for torsional response, even when the mixed elements
were supplemented by perturbation modes, Ref. 9. But more recently, the authors’ work, Refs. 10 and 11, demonstrated
generally good modal reduction accuracy for all blade motions, including torsion, when mixed elements were used to
model an articulated rotor blade. It should be noted that the only mixed aspect of the authors’ work is related to the
axial displacement field. Still another approach to basis reduction is the “nonlinear normal mode” method presented
in Refs. 12 and 13, which replaces the classical eigenmode, with its fixed relationships among the degrees of freedom,
with a nonlinear set of functions termed an “invariant manifold,” which is extracted from the governing equations.
Interestingly, all these approaches, including the one developed in this paper, can be shown to be fundamentally
related (Ref. 14), although there are significant differences in how they are implemented and in the types of models
they can treat.

Although the mixed finite-element method appears adequate for comprehensive rotorcraft analysis in its current form,
it is noted that the method can withstand further refinement in two respects: first, the blade axial response is not ap-
proximated quite as well as the other responses; and, in addition, it is desirable to eliminate additional generalized
coordinates that must be introduced into the modal reduction scheme to preserve the independence of the axial force
and axial displacement generalized coordinates in modal space (see Ref. 11). Introducing these refinements into the
mixed finite-element rotor blade analysis that was presented in Ref. 11 is the first goal of this paper. An additional,
broader aim of this paper is to lay the groundwork for broadening the method into a truly global procedure for an-
alyzing axial foreshortening effects that can be applied to models containing arbitrary assemblages of two and three
dimensional elements as well as beam elements.

In what follows, a rationale for the use of mixed elements is developed starting from the Hodges-Dowell equations
(Ref. 15) of a rotor blade specialized to axial and flap motions. The derivation of a mixed element is then described,
and the element’s effectiveness in modal reduction is illustrated by using it in the analysis of an articulated blade
model. Then, the mixed finite element is revised by employing the axial force equations to eliminate the Lagrangian
axial displacement degrees of freedom in favor of axial force degrees of freedom for the case of a single element.
The single element analysis is extended to an arbitrary assemblage of beam elements through suitably generalizing
the axial displacement concept, and then developing a procedure that solves for the generalized axial displacement
degrees of freedom in terms of bending and axial force degrees of freedom. This procedure effectively generalizes the
axial elongation variable concept to blades of arbitrary geometry. Finally, there is a discussion of the applicability of
the procedure to models containing structural components other than beams.

It is to be emphasized that the focus of this paper is on the adequacy of modal reduction methods rather than on
validating the rotor blade analyses. However, the analysis examples presented here embody many of the key features
rotor blades and their loadings under flight conditions, and it is therefore felt that the modal reduction accuracies
demonstrated here will be typical of actual rotor blades.
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Rationale for Mixed Elements

Preliminaries: Hodges-Dowell flap-axial blade equations

The discussion starts with the Hodges-Dowell blade equations (Ref. 15) specialized to coupled axial-flap motions:

V ′

x = −mΩ2x − fx (1)
mẅ = (Vxw′)′ − (EIyw′′)′′ + fz (2)

where Vx is the axial force, m is the mass per unit length, x is the axial coordinate, Ω is the rotor angular speed, w is
the flap displacement, EIy is the cross section flap flexural rigidity, and fx and fz are applied forces per unit length.
Following the usual conventions in the rotorcraft literature, ( )

′ denotes partial differentiation with respect to the axial
coordinate, and ˙( ) denotes partial differentiation with respect to time. If the blade is clamped at the spin axis, the
boundary conditions are:

w|x=0 = w′|x=0 = 0 (3)

These equations are particularly useful for examining blade analysis methods because they are simple enough to permit
easy inspection, yet they embody the key axial stiffening and axial foreshortening phenomena.

In what follows, various mathematical formulations for rotor blade analysis are presented, culminating with a mixed
element. The formulations, which differ primarily in how they treat axial displacement and axial elongation, are
evaluated based on their modal reduction accuracy, and the key features of the mixed element are introduced in a
step-by-step fashion.

Method 1: the axial displacement variable

This method represents all variables in terms of displacement fields, and then applies polynomial discretization of the
fields over sub-regions of the model, which are simply finite elements. The following expression for axial force is
used, which is consistent with the Hodges-Dowell ordering scheme:

Vx = EA

(

u′ +
1

2
w′2

)

(4)

where EA is the axial stiffness of the blade cross section. Substituting equation (4) into the Hodges-Dowell equations,
and then reintroducing the (formally negligible) contributions of u and ü into the axial acceleration gives:

mü =

[

EA

(

u′ +
1

2
w′2

)]

′

+ mΩ2(x + u) + fx (5)

mẅ =

[

EA

(

u′ +
1

2
w′2

)

w′

]

′

− (EIyw′′)
′′

+ fz (6)

where mü and mΩ2u are ignored in the original Hodges-Dowell equations, but are required when the axial displace-
ment variable is introduced. The boundary conditions for a blade clamped at the spin axis are

u|x=0 = w|x=0 = w′|x=0 = 0 (7)

Equations (5) and (6) allow for full discretization of the blade model in the axial direction, thereby permitting the full
power of the finite-element method to be brought to bear on the analysis. Unfortunately, a high price for this flexibility
stems from the difficulty of approximating the axial force, which is critical for accurately computing the blade bending
stiffness. The source of the difficulty is that the near inextensibility of the blade effectively ill conditions the calculation
of the axial strain whenever the displacements become sizable; i.e., εx = Vx

EA
= u′ + 1

2
w′2 and therefore |εx| � |u′|,
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Node Displacements Forcesa

1 u1, v1, v′

1
, w1, w′

1
, φ1 Vx1

2 u2, v2, v′

2
, w2, w′

2
, φ2 Vx2

Internal Degrees of Freedom u3, u4, φ3 Vx3

aForce degrees of freedom appear only in the mixed element

Table 1: Beam finite element degrees of freedom.

|εx| � w′2 since EA � 1. As a consequence, calculating εx accurately requires far more accuracy in both u′ and w′2

than can be obtained by representing either of these quantities using a small number of eigenmodes.

The effects of the ill-conditioned axial strain computation will now be illustrated with several computational examples
that employ the blade model shown in Figure 1, which is based on the properties of the UH-60 rotorcraft blade.
Each element is formulated as the displacement-based aeroelastic beam element described in Ref. 16. This element

Aerodynamic Computation PointStructural Node

Structural Properties

Radius - 26.83 ft.
EIy  - 1.85E5 lb-ft2

EIz  - 4.18E5 lb-ft2

GJ  - 2.08E5 lb-ft2 
EA  - 6.69E8 lb
92 DOF’s

Aerodynamic Properties

SC1095 Airfoil
Uniform Inflow
Greenberg Aerodynamics
Chord - 1.7405 ft

Flight Conditions

  Ω=258 rev/minute
 θο=10.0 deg.
 θc=2.0 deg.
 θs=-7.0 deg.
 Θ=4.0 deg.
 Ψ=Φ=0.0 deg.
 µ=.373, CT/σ=.072

0 3.25 6.25 9.251.25 12.25 15.25 18.25 21.25 24.25

4 51 2 6 7 8 9 10 113

ΩΩΩΩ

Aerosegment Boundaries

12

26.83

Figure 1: UH-60 blade model.

is a displacement-only analogue of the mixed element described in Ref. 11, the only difference being that the mixed
treatment applied to the axial motions in Ref. 11 is absent, but the kinematics, the interpolation functions, and the
inertia forces are treated identically in both elements. The element’s degrees of freedom correspond to the default
configuration described in Ref. 11 (see also Ref. 17): the lag (v) and flap (w) displacements are interpolated using the
standard cubic Hermitian polynomials for beam finite elements, the axial (u) displacements are interpolated using C0

Jacobi polynomials up to third-order, and the pitch rotations (φ) are interpolated using C0 Jacobi polynomials up to
second-order. These interpolations result in the element having the degrees of freedom listed in Table 1.

In all computational examples, the blade response is expanded modally about the steady-state in vacuo spin condition,
viz.,

{q} = {qss} + [Φ]{qmodal} (8)
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where {q} is the total blade response, {qss} is the static response of the blade to steady-state spin, [Φ] is a column
matrix of eigenmodes, and {qmodal} is a vector of modal generalized coordinates.

Consider, first, an eigenanalysis of the spinning blade. The analysis assumes in vacuo conditions along with zero
applied blade pitch. The eigenmodes are computed about deflection configurations caused by tip flap loads that result
in coning angles of 4◦ (2539.6 lb.) and 8◦ (5079.2 lb.). The modal basis contains the first two flap nodes, and the
number of axial modes is varied from one to thirty; note that thirty is the dimension of the axial motion subspace. The
flap frequencies are plotted against the number of axial modes in Figure 2. While reasonable results are obtained for
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Figure 2: UH-60 blade flap frequencies: displacement elements.

the first flap frequency with just a few axial modes, the accuracy of the second flap frequency is much poorer, and does
not become acceptable until almost the entire axial subspace is filled.

Consider, now, the periodic solution of the model shown in Figure 1. The in vacuo eigenmodes of this model are given
in Table 2, and the modal bases used in the calculations are given in Table 3. In this example, all blade motions (i.e.,

Mode ID Frequency (/rev)
First Lag 0.27
First Flap 1.03
Second Flap 2.63
Second Lag 4.09
First Torsion 4.86
Second Torsion 14.59
First Axial 22.12
Second Axial 66.41

Table 2: UH-60 blade modes.

Modal Number of Modes
Basis Lag Flap Torsion Axial

1l,1f,1t,1a 1 1 1 1
2l,2f,2t,2a 2 2 2 2

Table 3: Description of modal bases.

axial, flap, lead-lag, and torsion), are considered. Periodic solutions for the degrees of freedom at the tip node are
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Figure 3: UH-60 blade tip deflections: displacement elements.

shown in Figure 3. The flight conditions for the analysis are given in Figure 1: θ0, θc, and θs, are the collective, lateral
cyclic, and longitudinal cyclic swashplate controls; Θ, Ψ, and Φ are the pitch, yaw and roll angles of the vehicle;
µ = V cos α/ΩR is the rotor advance ratio, where V is the vehicle speed, α is the rotor angle of attack and R is the
rotor radius; CT = T/ρA(ΩR)2 is the thrust coefficient, where T is the rotor thrust, and A is the rotor disk area; and
σ = Nc/πR is the rotor solidity, where N is the number of blades, and c is the blade chord.

It may be seen that the agreement between the modal and finite-element solutions is quite poor for the flap, lag and
axial displacements, as was expected. But surprisingly, the agreement between the finite-element and modal solutions
is quite good for the pitch rotation. The reasons for the good modal approximations are the high torsional stiffness of
the blade, combined with the low degree of bending-torsion coupling in stiff, articulated blades of the type analyzed
here, although aerodynamic coupling between the torsion and bending equations is appreciable for all rotor blades.
Thus, it may be inferred that the poor modal reduction accuracy of the bending response can come only from errors in
solving the rotor blade bending equations.

Method 2: the axial force variable

One approach to facilitating modal reduction involves parameterizing the axial motion using the axial force rather than
the axial displacement. The axial displacement may be written in terms of the axial force using equation (4):

u′ =
Vx

EA
−

1

2
w′2 (9)
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or

u =

∫ x

0

(

Vx

EA
−

1

2
w′2

)

ds (10)

With this re-parameterization, the axial force is now expressed as a single variable, and the numerical conditioning
problems associated with the axial displacement variable are absent.

The likely effectiveness of the axial force variable in modal reduction may be inferred from its similarity to the axial
elongation variable, which is defined as:

ue =

∫ x

0

Vx

EA
ds (11)

and for which the modal reduction effectiveness has been well demonstrated. Unfortunately, the approach is developed
from a one-dimensional conception of the displacement field, and applying it to two-dimensional components such as
plates and shells appears to be problematic. The methods that will be described subsequently in this paper are largely
motivated by the desire to circumvent this restriction.

Method 3: axial force and axial displacement variables – a mixed element

It has been shown that parameterizing axial motions using the Lagrangian axial displacement gives unrestricted mod-
eling freedom at the expense of ill-conditioned and highly nonlinear axial-bending coupling, while using the axial
force as a variable makes modeling more awkward, but simplifies axial-bending coupling. In an attempt to obtain
the advantages of both methods – without their limitations – both the axial displacement and the axial force will be
employed as variables. This may be accomplished by augmenting the Hodges-Dowell equations with an equation that
relates the axial force and the axial displacement. Three equations result:

Vx

EA
= u′ +

1

2
w′2 (12)

mü = V ′

x + mΩ2(x + u) + fx (13)

mẅ =
(

Vxw′

)

′

+ fz (14)

Since the axial force and displacements are variables in these equations, it is dubbed a mixed element.

The advantages of the mixed-element equations are more readily appreciated when they are expressed in varia-
tional form. That process involves applying finite-element interpolations to the three independent variables: Vx =
[HVx

]{qVx
}, u = [Hu]{qu}, and w = [Hw]{qw}. In what follows, all variables are assumed to have been discretized,

but – when possible – they are displayed as continuous for improved readability. Substituting the finite-element inter-
polations into equations (12), (13), and (14), then multiplying those equations by δVx, δu, and δw, respectively, and
finally summing the results of these operations and integrating over the length of the element gives:

∫ l

0

({δqVx
}T {ȲVx

} + {δqu}
T {Ȳu} + {δqw}

T {Ȳw})dx = 0 (15)

where:

{ȲVx
} = [HVx

]T
(

Vx

EA
− u′ −

1

2
w′2

)

(16)

{Ȳu} = [Hu]T [mü − V ′

x − mΩ2(x + u) − fx] (17)

{Ȳw} = [Hw]T
[

mẅ − (Vxw′)
′

− fz

]

(18)

For future reference, note that it is often convenient to express the discretized form of u′ as follows:

u′ =

[

H ′

u

]

{qu} =

[

Hu′

]

{qu′} (19)
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for some set of unknowns, {qu′}, which is of size Nu − 1.

The usefulness of the mixed element may be inferred from arguments similar to those used in discussing the axial
force variable. First, consider the {δqu} variation. Setting the coefficient of that variation to zero gives, after removing
the small contributions from u, and ü:

∫ l

0

[Hu]T [V ′

x − mΩ2x − fx]dx = 0 (20)

which is analogous to the first of the Hodges-Dowell equations, and which largely determines Vx. Thus, in contrast to
the axial displacement variable method, the axial force, which is a key quantity, is determined directly from what is
essentially an equilibrium equation. Using Vx in the {δqw} variation gives:

∫ l

0

[Hw]T
[

mẅ − (Vxw′)
′

− fz

]

dx = 0 (21)

which is analogous to the second of the Hodges-Dowell equations, and which largely determines w. Finally, the
{δqVx

} variation leads to:
∫ l

0

[HVx
]T

(

Vx

EA
− u′ −

1

2
w′2

)

dx = 0 (22)

which is analogous to equation (10), and which largely determines u. Observe that weak enforcement of the governing
equations is crucial in allowing the axial force to be computed as a separate variable. Also, weak enforcement of the
force-displacement equation (equation 22) permits the implicit determination of u from that equation and eliminates
the potential need to constrain the model’s topology to explicitly calculate u by integrating outward from the spin axis
as in equation (10).

Aside from the analysis advantages just described, a unique modeling advantage of the mixed finite-element method is
that it imposes no geometric restrictions whatsoever on the model. As in displacement-based finite-element methods,
Lagrangian displacements are the only variables defined at nodes where elements join. Displacements are transformed
from the model level to the element level using mapping tables that relate element and model coordinate systems;
conversely, forces are assembled from the element level to the model level using the transpose of the mapping table
matrix. Axial force degrees of freedom are defined only within elements, not at nodes, and equilibrium equations where
elements join at nodes are formed automatically by the process just described. This highly general model assembly
process is identical to that used in the well known, general purpose finite-element codes, and as in those codes, it
permits the construction of highly intricate finite-element models that can incorporate plate and shell elements as well
as beam elements.

The mixed element equations just presented (i.e., equations 15 – 18), were developed in a rather ad hoc manner, and
apply only to a blade with coupled axial and flap motions. In Ref. 11, a complete mixed finite element for rotor
blade applications, in which coupled axial, flap, lag, and torsional motions are present, is systematically derived from
a mixed variational principle. The accuracy of that element will now be illustrated using the examples considered
earlier. The additional axial force degrees of freedom are interpolated using Jacobi polynomials up to second order
(see Table 1, Ref. 17.) The first example is an eigenanalysis of the UH-60 blade. Plots of the first two flap frequencies
versus the number of axial modes are shown in Figure 4. In contrast to the corresponding results seen in Figure 2 for
the displacement element, only a single axial mode – but actually, two generalized coordinates – are required to match
the finite-element results accurately.

Periodic solutions for finite-element and modal bases are compared in Figure 5 for blade tip displacements, and in
Figure 6 for blade root loads. It may be seen that there is a dramatic improvement in how the modal solutions
approximate blade tip displacements when compared with the corresponding results for the displacement elements
(Figure 3). The axial displacement is not approximated quite as well as the other displacements, probably because of
the nonlinearity of the axial foreshortening effect. However, the primary interest in the axial displacement is its impact
on lag moments through the Coriolis effect, but as may be seen in Figure 6, the root lag moments are approximated
quite well, which suggests that the axial displacement is sufficiently accurate for most practical purposes. Still, it is
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Figure 4: UH-60 blade flap frequencies: mixed elements.
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Figure 5: UH-60 blade tip deflections: mixed elements.

desirable to improve the modal approximation of the axial displacement, and a technique for doing that is the subject
of the remainder of this paper.
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Figure 6: UH-60 blade root loads: mixed elements

Mixed Finite-Element Analysis of Axial Displacements

Overview

An interesting feature of the axial force variable method becomes apparent upon examination of equation (10). As
noted earlier, the axial strain is significantly smaller than the deformation gradient quantities and, if that term is
dropped, there results:

u = −

∫ x

0

1

2
w′2ds (23)

which is the axial foreshortening term. In other words, the axial foreshortening effect is embedded within the axial
force variable method. The mixed finite-element analogue of equation (10) is equation (22), which does not approxi-
mate the foreshortening effect well in modal space because the axial displacement is obtained by a linear superposition
of eigenmodes. However, it seems that if – analogous to equation (10) – one were to solve equation (22) for the axial
displacement in terms of the remaining variables, the axial foreshortening effect would be accurately recovered, thus
improving the modal representation of the axial displacement field.
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Axial displacement analysis for a single mixed element

For the case of a single element, the first step in computing the axial displacement involves substituting the finite-
element discretization for u in equation (22). Then, rearranging terms gives:

(
∫ l

0

[HVx
]T [Hu′ ]dx

)

{qu′} =

∫ l

0

[HVx
]T

(

Vx

EA
−

1

2
w′2

)

dx (24)

The Babuska-Brezzi convergence conditions for mixed elements (see Ref. 18) dictate that:

Nu − 1 = NVx
(25)

and recalling that {qu′} is of length Nu − 1, it may be concluded that the coefficient of {qu′} in equation (24) is a
square matrix. Since that matrix should also be nonsingular in a properly formulated element, equation (24) can be
solved for {qu′} as follows:

{qu′} =

(
∫ l

0

[HVx
]T [Hu′ ]dx

)

−1 ∫ l

0

[HVx
]T

(

Vx

EA
−

1

2
w′2

)

dx (26)

Thus, equation (26) accomplishes the goal of using the mixed finite-element equations to express the axial displace-
ment explicitly in terms of the foreshortening effect. And since ue = Vx

EA
, equation (26) formally reveals the links

between the mixed finite-element, the axial elongation variable, and the axial force variable methods.

Axial displacement analysis for structures of arbitrary geometry: extensibie-inextensible decomposition of the
displacement field

If the axial force equations (i.e., the {δqVx
} equations) of all the elements of an arbitrary structural model are collected

together, they can be written in the form:

[Ū ]{qu} = −[V̄ ]{qVx
} + {fFS} (27)

where [Ū ] (NV × NU ) and [V̄ ] (NV × NV ) are matrices and {fFS} (NV × 1) are the nonlinear terms arising from
axial foreshortening, in which NV is the number of force degrees of freedom, and NU is the number of displacement
degrees of freedom. Since the model is assumed to contain only structural elements, N = NU + NV where N is the
total number of degrees of freedom.

Before proceeding to solve for the axial displacements, it is helpful to examine the axial force equations to gain insights
into the properties of the displacement field. Key features of the displacement field can be discerned from the structure
of the matrix [Ū ]. It is well-known from basic matrix theory (see Ref. 19) that for a given matrix [Ū ], the basis of the
space of vectors of dimension NU can be partitioned into two orthogonal subsets. Each vector in the first subset has
the property [Ū ]{q} = 0, and the dimension of this subset is nullity(Ū). The subspace spanned by this subset, usually
termed the null space, does not generate axial forces in the linear model equations, so the null space may be referred
to as the inextensible subspace. Each vector in the second basis vector subset has the property [Ū ]{q} 6= 0, and the
subspace spanned by this sub-basis may be referred to as the extensible subspace. The dimension of the extensible
subspace is rank(Ū). The dimensions of the two subspaces satisfy:

rank(Ū) + nullity(Ū) = NU (28)

which means that the combined basis vector set is complete and that any displacement vector may be regarded as
a linear combination of the extensible and inextensible basis vectors. The measure numbers of the extensible and
inextensible bases are, respectively, the extensible and extensible coordinates of a vector, and may be viewed as
generalizations of the axial and non-axial degrees of freedom of the single element structural model.

Another important result from basic matrix theory is that

dimension(range(Ū)) = rank(Ū) (29)

11



which implies that if rank(Ū) < NV , then not all the axial force degrees of freedom are linearly independent. The
model then has redundant or multiple load paths, and the degree of redundancy is equal to the number of independent
relationships among the axial force degrees of freedom. These relationships are generated from the solution process
to be described shortly.

Solution of the axial force equations

Solving the axial force equations for the extensible coordinates in terms of the axial force and foreshortening terms
allows the extensible coordinates to be eliminated from the system equations, and is analogous to the procedure used
earlier to eliminate the Lagrangian axial displacements from the equations for a single blade element.

The extensible coordinates may be obtained with the aid of the singular-value decomposition of [Ū ]:

[

Ū
]

= [A] [Σ] [B]
T (30)

where [A] (NV ×NV ) are the left singular vectors, and BT (NU ×NU ) are the right singular vectors. The matrix [Σ]
may be written as:

[Σ] = [ ΣT 0 ] (31)

where [ΣT ] is a diagonal matrix that lists, in descending order, the positive square roots of the eigenvalues of
[

Ū
] [

Ū
]T

.

Since
[

Ū
] [

Ū
]T

is generally positive semi-definite, its eigenvalues are either zero or positive. The positive eigenvalues
correspond to the extensible displacement field, and will be denoted with the subscript ext, while the zero eigenval-
ues are associated with the inextensible displacement field, and will be denoted with the subscript inext. It proves
convenient to write [Σ] as:

[Σ] =

[

Σext 0
0 0

]

(32)

where [Σext] (rank(Ū) × rank(Ū)) contains the positive part of [ΣT ]. The matrices [A] and [B] are orthogonal
matrices, in which the columns of [A] are the eigenvectors of

[

Ū
] [

Ū
]T

, and the columns of [B] are the eigenvectors
of [Ū ]T [Ū ]. It follows that [A] and [B] may be partitioned as follows:

[A] = [Aext|Ainext] (33)

[B] = [Bext|Binext] (34)

The ordering of the columns of [A] and [B] pertaining to nonzero eigenvalues matches the ordering of their corre-
sponding eigenvalues in [Σ].

Since the columns of [B] span the finite-element space, an arbitrary vector {qu} may be expanded as follows:

{qu} = [B]

{

qext

qinext

}

(35)

Substituting equation (35) into equation (27), premultiplying by [A]T , and then premultiplying the top partition by
[Σext]

−1 gives:

{qext} = [Σext]
−1

[Aext]
T

(

−[V̄ ]{qV } + {fFS}
)

(36)

0 = [Ainext]
T

(

−[V̄ ]{qV } + {fFS}
)

(37)

The total displacement field is obtained by adding the foreshortening displacements to the linear and steady-state
displacements (see equation 8):

{qu} = {qss} + [Φ]{qmodal} + {qforeshortening} (38)
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where:

{qforeshortening} = [Bext](Σext)
−1[Aext]

T {fFS} (39)

in which the contribution of the axial forces to the displacement field, [Σext]
−1

[Aext]
T

(

−[V̄ ]{qV }
)

, has been ab-
sorbed into [Φ]{qmodal}. Strictly speaking, {qss} should be computed only from the linear blade equations so that the
axial foreshortening generated by the static response will not get computed twice.

Equation (36) is a generalization to models of arbitrary geometry of the axial displacement equation derived earlier
for a single element (see equation 26). Equation (37) is the equation mentioned earlier that relates axial force degrees
of freedom when the model is redundant. Note that in redundant structures, the extensible displacement field may
produce nonzero foreshortening in elements belonging to the multiple load paths, and this will result in {qext} being
present on both sides of equation (36). However, if the elements are quite stiff in the axial direction, as they generally
are in rotorcraft blades, the foreshortening caused by the extensible displacements will be small in comparison with
the foreshortening caused by the inextensible displacements, and will be readily accounted for during the solution
iterations.

Applicability of the method

The method sits atop the general finite-element procedure described earlier and therefore, there are no limitations
whatsoever on the model’s geometry. The geometry restrictions that are often introduced into the axial force variable
method (see, for example, Ref. 6) to permit the axial displacements to be computed explicitly, have not been introduced
here.

The method was formally derived from equation (27), which was in turn obtained from the mixed finite-element
equations for beam axial force degrees of freedom. Thus, the most obvious application of the method is to assemblages
of beam components, and it is expected that a common application of the method will be the analysis of redundant,
rotorcraft blade models composed of beams. However, there already are several methods available that can analyze the
behavior of such models, and it is important to realize that the value of the method presented here is that it is potentially
applicable to a far broader range of structural models. To understand why this is so, note that equation (27), from which
the method is obtained, is simply a discretized form of the relationship between axial force and axial strain degrees
of freedom in beams. But the peculiar form of equation (27) is a consequence of the structure of the nonlinear axial
strain tensor, and equations having similar forms will appear in all structural components in which axial strains arise,
and not just in beams. Therefore, the method, which follows from equation (27), should apply just as broadly. For
example, Ref. 14 shows how the method may be applied to the analysis of laminated composite plates employing von
Karman plate kinematics. Studies are ongoing that seek to apply and validate the method for complex, higher-order
finite-element models of rotor blades containing two-dimensional structural components as well as beams.

Conclusions

The analysis issues associated with several blade formulations have been examined by applying them to the Hodges-
Dowell blade equations, specialized to flap-axial motions. It has been shown that classical displacement-based finite
elements, while permitting full topological generality, are problematic owing to the near inextensibility of the blade,
which makes the small, but critical, axial strain difficult to approximate accurately in reduced basis analyses. Two
solutions to the problem were considered, both of which employ the axial force, or a related quantity, as a variable
in the analysis. The first of these replaces the axial displacement with the axial force as a solution variable, and may
lead to restrictions on the geometry of the model that can be analyzed. The second approach, the mixed finite-element
method, removes these geometry restrictions, but introduces additional degrees of freedom into the analysis. Numer-
ical examples demonstrating the effectiveness of the mixed finite-element method for the eigenanalysis and periodic
solution of a rotor blade were presented. It was seen that the axial displacement was approximated less accurately
than the flap, lag and torsion displacements. To remedy this problem, a method was proposed that generalizes the
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notions of “axial displacement” and “bending displacement” to displacements that cause the blade to extend and not
to extend. Then, the mixed finite-element axial force equations are used to eliminate the extensible displacements in
favor of inextensible displacement and axial force degrees of freedom. This elimination process reduces the number
of degrees of freedom in the analysis, but more importantly, it explicitly embeds the nonlinear axial foreshortening
effect in the axial displacement calculation. The analysis was first developed for a single mixed element, and then
extended to an arbitrary assemblage of elements. It was shown that the method is potentially applicable to highly
intricate finite-element mesh geometries that can include two dimensional and three dimensional finite elements, a
feature which distinguishes the method from most others that have been proposed for reduced basis analyses of rotor
blades.
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Node Displacements Forcesa

1 u1, v1, v′

1
, w1, w′

1
, φ1 Vx1

2 u2, v2, v′

2
, w2, w′

2
, φ2 Vx2

Internal Degrees of Freedom u3, u4, φ3 Vx3

aForce degrees of freedom appear only in the mixed element

Table 1
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Mode ID Frequency (/rev)
First Lag 0.27
First Flap 1.03
Second Flap 2.63
Second Lag 4.09
First Torsion 4.86
Second Torsion 14.59
First Axial 22.12
Second Axial 66.41

Table 2
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Modal Number of Modes
Basis Lag Flap Torsion Axial

1l,1f,1t,1a 1 1 1 1
2l,2f,2t,2a 2 2 2 2

Table 3
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Figure Captions

Figure 1: UH-60 blade model.

Figure 2: UH-60 blade flap frequencies: displacement elements.

Figure 3: UH-60 blade tip deflections: displacement elements.

Figure 4: UH-60 blade flap frequencies: mixed Elements.

Figure 5: UH-60 blade tip deflections: mixed elements.

Figure 6: UH-60 blade root loads: mixed elements.
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Table Captions

Table 1: Beam finite element degrees of freedom.

Table 2: Articulated blade modes.

Table 3: Description of modal bases.
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