AE 6101: Elastic Stability II School of Aerospace Engineering Georgia Institute of Technology Prof. Dewey H. Hodges Office: Weber 200-C; Phone: 4-8201 E-mail: <u>dhodges@gatech.edu</u> Tuesdays and Thursdays, 1:30-2:45 p.m., Guggenheim 246

Dates	Topics	Source	Due Dates
Week of	Elastica Theory for Beams	Article 3.7	
Jan. 16	Equilibrium equations; constitutive equations and strain energy		
	Kinematical equations		
	Example of using elastica theory		
	Buckling of Thin-Walled Beam-Columns	Article 3.8	
23	Vlasov Theory for Thin-walled Prismatic Beams – I		
	Vlasov Theory for Thin-walled Prismatic Beams – II		
	Torsional-Flexural Buckling		
	Buckling of Beams on Elastic Foundations	Chapter 6	
30	Exact solution for simply-supported case		Problems 3: 15 – 18
	General case		

	Go over homework		
Feb. 6	Exact solution for fixed-fixed case		
	Exact solution for free-free case		
	Buckling of Rings and Arches	Chapter 7	
	Thin circular rings		
13	High circular arches		
	Alternate approach to rings and arches		Problems 6:1 – 5
	Energy approach based on geometrically exact equations		
20	Go over homework		
	Alternative formulation based on elastica theory		
	Shallow arches		
	Torsional Buckling of Shafts	Chapter 8	
27	Governing equations		
	Governing equations; strain energy		
	Clamped-clamped boundary conditions; applied loads and potential energy; nonconservative torques (tangential, axial)		
	Applied conservative torques (semi-tangential, quasi-tangential, pseudo-tangential); Cardan joint		Problems 7:2 – 5, 8, 9
Mar. 6	Go over homework		

	Boundary conditions when bending slopes of the ends are allowed to change (e.g. pinned ends and free ends); paradox of the axial and tangential torques		
	Effect of axial force – cantilever case with semi-tangential torque		
	Lateral-Torsional Buckling of Deep Beams	Chapter 9	
13	Pinned-pinned boundary conditions on out-of-plane bending, applied tip moment; restrained warping effect (a refinement)		
	Effect of initial curvature		
	Cantilever under applied tip moment: nonconservative moments (tangential, space-fixed); conservative moments (semi-tangential, quasi-tangential, pseudo-tangential)		
27	Cantilever under applied tip moment: conservative moments (semi-tangential, quasi-tangential, pseudo-tangential); Cantilevered, isotropic strip under applied tip force		Problems 8:1 – 7
	Cantilevered, isotropic strip under applied tip force		
	Go over homework problems		
Apr. 3	Cantilevered composite strip under applied, offset tip force		
	Cantilevered composite I-beam under applied, offset tip force		
	Rotating Rods, Beams	Chapter 10	
	Buckling of inwardly directed rotating beams		
10	Buckling of inwardly directed rotating beams		
	Nonconservative Problems	Chapter 11	

	Simple mechanical system: coalescence of frequencies	Problems 9:1 – 3, 5
	Go over homework set; cantilever beam under tangential force (Beck's problem)	
17	Beck's problem	
	Approximate solutions: Beck's and Leipholz's problems	
	Shaft instability under axial torque (various boundary conditions) – another paradox	Problems 10:1 – 4
	Deep beam lateral-torsional flutter instability under follower force	
24	Fully intrinsic equations	
	Examples: Beck's column and lateral-torsional flutter instability	
	Examples: lateral-torsional flutter instability – static solution	Problems 11:1 – 6
30	Final exam period, 2:50 – 5:40 p.m.	

Updated 12/16/2017